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FOREWORD

This is an important and useful book — important because it addresses a phenomenon that affects
every industry sooner or later, and useful because it offers a clear, step-by-step methodology by
which engineers and executives in the microelectronics industry can create growth and profit
- from this phenomenon. The companies that seize upon this opportunity will transform the way
competition occurs in this industry. I wish that a hands-on guide such as this were available to
strategists and design engineers in other industries where this phenomenon is occurring — indus-
tries as diverse as operating system software, automobiles, telecommunications equipment, and
management education of the sort that we provide at the Harvard Business School. This indus-
try-transforming phenomenon is called a change in the basis of competition — a change in the
sorts of improvements in products and services that customers will willingly pay higher prices to
get. '

There is a natural and predictable process by which this change affects an industry. Chris
Rowen, a gifted strategist, engineer and entrepreneur, has worked with me for several years to
understand this process. It begins when a company develops a proprietary product that, while
not good enough, comes closer to satisfying customers’ needs than any of its competitors. The
most successful firms do this through a proprietary and optimized architecture, because at this
stage the functionality and reliability of such products are superior to those that employ an open,
modular architecture. In order to provide proprietary, architecturally interdependent products,
the most successful companies must be vertically integrated.

As the company strives to keep ahead of its direct competitors, however, it eventually
overshoots the functionality and reliability that customers in less-demanding tiers of the market
can utilize. This precipitates a change in the basis of competition in those tiers. Customers will
no longer pay premium prices for better, faster and more reliable products, because they can’t
use those improvements. What is not good enough then becomes speed and convenience. Cus-
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tomers begin demanding new products that are responsively custom-configured to their needs,
designed and delivered as rapidly and conveniently as possible. Innovations on these new tra-
jectories of improvement are the improvements that merit attractive prices and drive changes in
market share. In order to compete in this way — to be fast, flexible and responsive, the dominant
architecture of the products must evolve toward a modular architecture, whose components and
sub-systems interface according to industry standards. When this happens, there is no advantage
to beiag integrated. Suppliers of components and sub-systems can begin developing, making
and selling their products independently, dealing with partners and customers at arms’ length
because the key interface standards are completely and clearly specified. This condition begins
at the bottom of the market, where functional overshoot occurs first, and then moves up inexora-
bly to affect the higher tiers.

When the architecture of a product or a sub-system is modular, it is conformable. This
conformability is very important when it is being incorporated within a next-level product
whose functionality and reliability aren’t yet good enough to fully satisfy what customers need.
Modular conformability enables the customer to customize what it buys, getting every piece of
functionality it needs, and none of the functionality it doesn’t need.

The microprocessor industry is going through precisely this transition. Microprocessors,
and the size of the features from which they are built, historically have not been good enough —
and as a result, their architectures have been proprietary and optimized. Now, however, there is
strong evidence that for mainstream tiers of the market the basis of competition is changing.
Microprocessors are more than fast enough for most computer users. In pursuit of Moore’s Law,
circuit fabricators have shrunk feature sizes to such a degree that in most tiers of the market, cir-
cuit designers are awash in transistors. They cannot use all the transistors that Moore’s Law has
made available. As a result, especially in embedded, mobile and wireless applications, custom-
configured processors are taking over. Their modular configurability helps designers to opti-
mize the performance of the product systems in which the processors are embedded. -

With this change, the pace of the microprocessor industry is accelerating. Product design
cycles, which in the era of interdependent architectures had to be measured in years, are collaps-
ing to months. In the future they will be counted in weeks. Clean, modular interfaces between
the modules that comprise a circuit — libraries of reusable IP — ultimately will enable engineers
who are not experts in processor design, to build their own circuits. Ultimately software engi-
neers will be able to design processors that are custom-configured to optimize the performance
of their software application.

Clearer interface standards are being defined between circuit designers and fabs, enabling
a dis-integrated industry structure to overtake the original integrated one. This structure began
at the low end, and now dominates the mainstream of the market as well. The emergence of the
modular “designed-to-order” processor is an important milestone in the evolution of the micro-
processor industry, but modular processors have broader implications. Just as the emergence of
the personal computer allowed a wide range of workers to computerize their tasksfor the first
time, the configurable processor will change the lives of a wide range of chip designers and chip
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users. This new processor-based methodology enables these designers and users to specify and
program processors for tasks that are too sensitive to cost or energy-efficiency for traditional
processors. It empowers the ordinary software or hardware developer to create new computing
engines, once the province of highly-specialized microprocessor architecture and development
teams. And these new processor blocks are likely to be used in large numbers — tens and hun-
dreds per chip, with total configurable processors vastly outnumbering traditional microproces-
sors. The future will therefore be very different from the past.

The design principles and techniques that Chris Rowen describes in this book will be
extremely useful to companies that want to capitalize on these changes to create new growth. I
thank him for this gift to the semiconductor industry.

Clayton M. Christensen

Robert and Jane Cizik Professor of Business Administration
Harvard Business School

March 2004
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For more than 30 years, Moore’s law has been a driving force in the computing and electronics
industries, constantly forcing changes and driving innovation as it provides the means to inte-
grate ever-larger systems onto a single chip. Moore’s law was the driving force that led to the
microprocessor’s dominance throughout the world of computing, beginning about 20 years ago.
Today, Moore’s law is the driver behind the system-on-chip (SOC) paradigm that uses the vastly
increased transistor density to integrate ever-larger system components onto a single chip,
thereby reducing cost, power consumption, and physical size.

Rowen structures this thorough treatise on the design of complex SOCs around six funda-
mental problems. These range from market forces, such as tight time to market and limited vol-
ume before obsolescence, to the technical challenges of achieving acceptable performance and
cost while adhering to an aggressive schedule. These six challenges lead to a focus on specific
parts of the SOC design process, from the integfation of application-specific logic to the maxi-
mization of performance/cost ratios through processor customization.

As Rowen clearly illustrates, the processor and its design is at the core of any 'complex
SOC. After all, a software-mostly solution is likely to reduce implementation time and risk; the
difficulty is that such solutions are often unable to achieve acceptable performance or efficiency.
For most applications, some combination of a processor (executing application-specific code)
and application-specific hardware are necessary. In Chapter 4, the author deals with the critical
issue of interfacing custom hardware and embedded processor cores by observing that a mix of
custom communication and interconnection hardware together with software to handle decision
making and less common tasks often enables the designer to achieve the desired balance of
implementation effort, risk, performance, and cost.

Chapters 5 and 6 form the core of this book and build on the years of experience that Ten-
silica has had in building SOCs based on customized processors. Although the potential advan-
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tages of designing a customized processor should be clear—lower cost and better
performance—the required CAD tools, customizable building blocks, and software were previ-
ously unavailable. Now they are, and Rowen discusses how to undertake the design of both the
software and hardware for complex SOCs using state-of-the art tools.

Chapters 7 and 8 address the challenge of obtaining high performance in such systems.
For processors, performance comes primarily from the exploitation of parallelism. This is a cen-
tral topic in both these chapters. Chapter 7 discusses the use of pipelining to achieve higher per-
formance within a single instruction flow in a single processor. Chapter 8 looks to the future,
which will increasingly make use of multiple processors, configured and connected according to
the needs of the application. The use of multiple processors broadly represents the future in
high-performance computer architecture, and not just in embedded applications. I am delighted
to see that SOCs are playing a key role in charting this future.

The design of SOCs for new and challenging applications—ranging from telecommunica-
tions, to information appliances, to applications we have yet to dream of—is creating new
opportunities for computing. This well-written and comprehensive book will help you be a suc-
cessful participant in these exciting endeavors.

John Hennessy
President

Stanford University
March 2004



