B

it

"W Baoks
gI 7N 2K

§#SoC

(ZR3ZhR)

s R el /

ok 00

Fast, Flexible Design with
Configurable Processors

[;lee RAWEN
(%) Chris Rowen #

LA T A ORR R

China Machine Press

® L KR B ¥ &

,-J:SOleiﬁ

(9&32#&

« 2

~ ‘E:ngmeermg the Complex SOC

Fast, FIexuble Desugn with Configurable Processors

}f; ‘ (%) Chris Rowen % J’

English reprint edition copyright © 2005 by Pearson Education Asia Limited and China
Machine Press. - o

.Original English lauguage title: Engineering the Complex SOC: Fast, Flexible Design
with Conﬁgurable Processors (ISBN 0-13-145537-0) by Chris Rowen, Copyright © 2004.

All rights reserved.

Published by arfangement with the original publisher, Pearson Education, Inc., publishing
as Prentice Hall PTR.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A+ % LB EAR HiPearson Education Asia Ltd. 4L Tl HIRH SRR HiR. K2 H
EBmE, FBRLAMEAGXEHIRPELREAE.

URRFHEARIEEN (FREPEEFE. WISNTREMPESBBX) %
BET.

7453 HiRs A Pearson Education (34 3F HARER) BOCPIIRE, TAREEFHHE.

RRIURE. @B,
FHERWE ALRTRARNEES

ABFEICES: EAFE: 01-2005-3622
EBEREE (CIP) ¥iE

H#&SoCikit (FEIMR) / (%) FB (Rowen, C.) #F. —Jbx: HMRI A,
2005.9

(2 HFRRASE)
452/ 3C: Engineering the Complex SOC: Fast, Flexible Design with Configurable Processors
ISBN 7-111-17193-4

1. O.%- 0 HEGES-RLZIF-FL V. TP332
HERA B BECIPEEZ T (2005) 0938055

HUR Tl AR CEsimmsRE 55 B A#228 iEAF 100037)

HEGH: BiRE
b IESLEN R BRI - BB R AT R & A7
200549 A 158 LK ENRI

787mm x 1092mm 1/16 - 30.25E[13k
ENf: 0001 -3 000/} '
Efr: 55.005C

WA, masi. K. 65, BdtEIiTiiRg
AR HHiek: (010) 68326294

HARE B91F

YZE%&%,ﬁﬁﬁ&%ﬂ%ﬁ#ﬁ%%ﬁﬁ%%*ﬂﬁ,ﬁﬁﬁﬁi&ﬁ%ﬁ%%%
¢ﬁﬁﬁﬁ7§ﬁﬁmﬁ%;&E%ﬁ#m%%,ﬁ%ﬂ&%&&*k@%#+§$ﬁ%i¥
&‘m%m%oﬁﬁﬂ%%ﬁﬂ¢,%@%FﬂﬁEﬁﬁﬁﬂ%ﬁgﬁﬂ%%,Hﬁﬂ%ﬂ*
%#5%&%4@%%ﬁﬂmﬂﬁ%%%ﬁ&,m%ﬁFéﬁéﬂﬂﬁﬁﬁ,mﬁgﬂTﬂ%
mﬁ%,ﬁﬁﬁT%*Wﬁﬁ,%Eﬁ%*ﬂﬁ,REE%%?ﬁ,KmE#$%E$H%ﬁ

ﬁﬁ,ﬁéﬁﬁﬁmkﬁﬁﬁﬁT,ﬁ@%ﬁﬁﬂ?%i@ﬂﬁ,H?&Aiwﬁﬁﬁﬁ
ﬁ@»ﬁﬁﬁ%ﬂﬁﬁﬁﬁm%ﬁﬁ%%ﬂﬁ,&%%&;ﬁ?%ﬁﬁ%ﬁ&&ﬁﬁﬁ%ki
ﬁ%ﬂﬁioEﬁﬁ%ﬁﬁ*ﬁ@ﬁ@ﬁﬁ‘&ﬂkﬁﬁ&%ﬂ%T,%@%ﬁﬁ@%&%ﬂ
ﬁﬂﬂ'—%ﬁ@ﬂ@ﬂ’f‘ﬁil‘ﬁ]mﬁiﬁgﬁﬁﬁﬁ%ﬁiq:gﬁ?%%%Z&bo Hik, sLi#—#EIMEFET
ﬁmﬁﬁﬁﬂﬁ@H%ﬂﬁﬁﬁ%%ﬁ@ﬁﬂﬁ%ﬁ%ﬁm,&%Eﬁﬁﬁﬁ\E&EE%&
R—WREN VB ZE.

DL Tk AR A B B S B A PRA TR R BIRS “HIRE SRS IRE . H 19984 744,
@ﬁﬁﬂ%%lﬁﬁﬁmET%ﬁ\ﬁﬁ@%ﬁ%ﬁﬁic%ﬁ%@%KW%ﬂ,ﬁME
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannE#H R ELHIRATETI TR
HHIAEXR, MENBLA K% E #h bt o 85 3% 1 Tanenbaum, Stroustrup, Kernighan, Jim
@W%kﬁﬁi%—ﬁﬁﬂﬁﬁ,u“ﬁ§Mﬂ%&#”%H%&ﬁ,ﬁﬁ%#ﬂ‘mﬁﬁﬁ
. KEAOLEVEE, WEAR TXENBNRmEIE. v

“H%ﬂﬂ%&%”%&ﬁlﬁﬁﬂ?@ﬂ%%%%ﬁﬁ%%,@W%?%Kﬂ%#T*ﬁ
mﬂﬁﬁQ,EKﬂ%%%ﬂETﬂ%ﬁ$&%Iﬁ;ﬁﬁ%%ﬁ%&ﬁﬁ%ﬁﬁﬁ%&*@
WEE, AUSERAXBAPERERE. €4, “URIBZNE BELHRTEE SR,
REBRERETRLTREGOMN, HEFLERRAAERBHNSZHE, i 56
"S5 RBATT TR scryEal.

B H A PH IR S 2 E M Btk E QBB ER AL, BHE S RSN BE LM BT KR
HEA-TFOB B ik, SLEATHMASIESHBGDE, £ “EERE HLAHYNZT
AR = RS EALEA: B U EHBEAE" 240, MEERRMEht, W 650 IF B
‘BIFRBE ; F, SIS RETHEFHSI “Schaum’s Outlines” RFIHM “L %2
ﬁ#ﬁ%@%ﬂVo%TﬁﬁﬁEQ&%%ﬂﬁﬁ,ﬁﬁ&%TEﬁ%%%&ﬂ%%ﬂ%%,ﬁ
BEAFBETHEBEE. bRk, BEk®. EHREAYE. SHA%. FRSEAS.
B K%, WL K%, hEBHE A, M IRIE T K2, vﬁi‘ﬁiﬁki‘\ FEARKYE. b
MUZEATRKE . bR A%, hlik2. MBRERT RS, B A2z, BT ¥, EE
i%ﬁ%é%ﬁﬂﬁ*b%ﬁWEﬁk%ﬂﬂﬂﬂﬁ&ﬁ%ﬂ%%¢@ﬁ%§&%%@ﬁ“?

KEFZRAR, ABRMNBHEEELMHERE.

X=ZFENBRM B EFHREERAMNEBEHOESRE, AEAERNTELRAEX S
HEEEITEN. HPFSHEMBHEAIM. L T., Stanford, U.C. Berkeley, C. M. U. Z it {48
k%ﬁ%ﬁoKﬂﬁ%TEﬁﬁﬁ‘ﬁﬁ%@‘&ﬁ§ﬁ~Hﬁﬂ#%%@\&ﬁﬁ\%ﬁﬁ
H, ZfTE. BEE. EEEMNE. SEE¥SEAKRFHENLS L ESFIRNEOIRRE,
mA&Ra ARHAEBEFRUIEZF. ANHL=1TE0AR. ANCHESHANILE
R, EXSRRERNAMAENESIZT, RELBETEIFENE R HBE
MAZE.

BRBHEE . SR0EBHM. —ENiFEE. MHROER. BROSRE, SEREFERMNNE
BAETREMVRIE, HRMNOBRRERERE, MRBROELERBRIER X -4 BiRMNE
EWB). BEMHHERRRBINEERS MRS, LI TV BT FIEE RN TERSY
BIES TRIE, BAMBRAEMT:

H,Fhifd: hzjsj@hzbook.com
BEABIE: (010) 68995264

BeFRibalk: JERTHHERKE L EEELS
HBBc4MES: 100037

ERIBVERE

E
e &
FHE
Fids R 4
B #&
7818 R
R
xR

(LR EEIF)
RS
WEF
=y
i &3k
&g
W EBHR
)

X &M
XH &
WA
R
e B
EFEX
WA=

LiST OF FIGURES

Design complexity and designer productivity. 4

The essential tradeoff of design. 13

One camera SOC into many camera systems. 14

Wireless computation outstrips transistor performance scaling. 16
MPSOC design flow overview. 22

Basic processor generation flow. 23

Performance and power for configurable and RISC processors. 26
Conceptual system partitioning. 29

Conceptual system partitioning with application-specific processors. 31
Simple system structure. 37

Hardwired RTL function: data path + finite state machine. 39
Typical software runtime and development structure. 42

Today’s typical SOC design flow. 46

Total SOC design cost growth. 49

Basic processor generation flow. 59

Migration from hardwired logic and general-purpose processors. 61
Processor configuration and extension types. 65

Block diagram of configurable Xtensa processor. 66

Simple 4-way MAC TIE example. 67

EEMBC ConsumerMarks—per MHz. 72

EEMBC ConsumerMarks—performance. 72

EEMBC TeleMarks—per MHz. 73

viii List of Figures

EEMBC TeleMarks—Performance 74

EEMBC NetMarks—per MHz. 75

EEMBC NetMarks—Performance. 75

Configurable processor as RTL alternative. 78

Simple heterogeneous system partitioning. 82

Parallel Task System Partitioning 83

Pipelined task system partitioning. 84

Basic extensible processor interfaces. 85

Interface characteristics and uses. 86

Advanced SOC design process. 91

Example amortized chip costs (100K and 1M system volumes). 92

SOC as component within a large system. 104

SOC as a network of communicating nodes. 105

Characteristics for parallelism in processors. 108

Multiple processors for wireless media application. 110

Basic I/O request and response flow. 112

Total contention + service latency for queuing model. 115

Dependency loop among tasks. 117

Structure of producer—consumer communications abstraction. 119

Early, middle or late binding of communications. 121

Traffic profile for abstract system model 125

Traffic flow graph for abstract system model. 125

Baseline task performance requirements. 130

Task requirements after processor configuration. 131

Latency of sequential task execution. 133

Latency of overlapped task execution. 134

Shared bus communications style. 135 ,
General-purpose parallel communications style: cross-bar. 136
General-purpose parallel communications style: two-level bus hierarchy. 136
General-purpose parallel communication style: on-chip mesh network. 137
Application-specific parallel communications style: optimized. 138

Idealized shared-memory communications mode for simple data transfer. 141
Shared memory communications mode with ownership flag. 142
Unpredictable outcome for simultaneous shared-memory access by two tasks. 143
VxWorks shared-memory API functions. 144

Device-driver master/slave interface handshake. 145

Two processors access shared memory over bus. 148

One processor accesses local data memory of a second processor over a bus. 148

List of Figures

Two processors share access to local data memory. 149
Direct processor-to-processor ports. 149

Two-wire handshake. 151

Interrupt-driven handshake. 151

Hardware data queue mechanism. 152

Producer enqueues destination with data. 153

One producer serves two consumers through memory-mapped queues. 154
Memory-mapped mailbox registers. 154

XTMP code for single-processor system description 162
Block diagram for multiple processor XTMP example. 163
XTMP code for dual-processor system. 165

Advanced SOC design flow. 167

Direct attachment of RTL to processor pipeline. 174
Standard C language data types and operations. 182
Pixel-blend function in C. 183

Execution profile for swap (before optimization). 188
Execution profile for byteswap (after optimization). 189
Combining of common input specifiers. 195

Reduced operand specifier size. 196

Combine address increment with load instruction. 197
Combine load with compute instruction. 197

Fusion of dependent operations. 203

Simple operation sequence example. 204

Basic operation sequence TIE example. 204
Non-pipelined versus pipelined execution logic. 206 -
Pixel blend with color bias in state register TIE example. 207
Compound instruction TIE example. 210

An encoding of four compound instructions. 211

Simple SIMD data path with four 32-bit operands. 212
SIMD instruction TIE example. 213

Typical processor state (Xtensa). 215

Typical instruction formats (Xtensa). 215

Typical instruction description (Xtesna). 218

Branch delay bubbles. 226

An MP (multiple-processor) linker resolves addresses for code and data with
processor-specific address maps. 232

Application-specific processor generator outputs. 237
SSL out-of-box code profile (total: 27M cycles). 238

SSL code profile after initial optimization (total 19M cycles). 239

SSL code profile with full 32-bit optimization (total 14M cycles). 240

SSL final 64-bit optimized code profile (total 7M cycles). 241

TIE source for OpenSSL acceleration. 243

Memory system profile and parameters. 245

. SOC memory hierarchy. 248

Data memory stalls graph. 249

Example of long-instruction word encoding. 254

EEMBC telecom code size comparison. 255

EEMBC consumer code size comparison. 256

Simple 32-bit multislot architecture description. 258

Mixed 32-bit/128-bit multislot architecture description. 259

Compound operation TIE example revisited. 259

Automatic processor generation concept. 261

Automatic generation of architectures for sum-of-absolute-differences. 262
XPRES automatic processor generation flow. 263

Automatic architecture generation results for DSP and media applications. 264
Traditional processor + accelerator partitioning. 268

Incorporation of an accelerator into a processor. 270

Implementation of an accelerator as an application-specific processor. 271
A basic RISC pipeline. 273

Pipe stages in five-stage RISC. 274

Pipeline with extended register file and complex execution unit. 276
Simple hardware-function data flow. 278

Optimized data path with operator reuse and temporary registers. 279
Cycles for execution of pipelined function. 279

Data-path function TIE example. 280

Data path with pipelined address and lookup. 282

Cycles for execution of pipelined function, with combined address and load. 283
Data path with unified register file. 284

Data-path function TIE example, with unified register file. 284

Data path with three independent operation pipelines. 286

Data-path function TIE example, with three operation slots per instruction. 287
Implementation of an accelerator as an application-specific processor. 288
Fully pipelined instruction implementation. 289

Fully pipelined data-path TIE example. 290

Simple finite-state machine. 293

Translation of a six-state sequence to C. 295

List of Figures

List of Figures

Vector comparison and condition move TIE example. 298

A simple microcoded engine structure. 299

Simple microengine TIE example. 304

Sample packing of 24-bit data into 32-bit memory. 305

Use of alignment buffer to load packed 24-bit values from 32-bit data memory. 306
Unpacked 24-bit data in 32-bit memory. 306

24-bit load, store, multiply-accumulate TIE example. 307

System structure for remote-to-local memory move. 308

Read overhead for on-chip bus operation. 309

Bandwidth calculation for move-with-mask operation. 309

Shared on-chip RAM on bus. 312

Shared off-chip RAM on bus. 312

Shared RAM on extended local-memory interface. 314

Slave access to processor local RAM. 315

Input queue mapping onto extended local-memory interface. 315

Optimized data path with input and output registers. 316

Cycles for execution of pipelined function, with input loads and output stores. 317
Data path with unified register file and memory-mapped I/O queues. 318

Fully pipelined instruction implementation with direct I/O from block. 319
Data path with input and output queues TIE example. 320

Basic handshake for direct prccessor connections. 321

Data path with import wire/export state TIE example. 323

ATM segmentation and reassembly flow. 324

Hardware algorithm for ATM segmentation. 326

Pipelined processor Implementation of AALS SAR algorithm. 327
Opportunities for deeply buried processors in high-end set-top box design. 330
System organization with two spare processors. 332

Hardware development and verification flow. 334

Typical combinations of processor and non-processor logic simulation. 339
Basic and extended RISC pipelines. 343

Non-pipelined load-multiply-store sequence. 345 ,

Pipelined load-multiply-store sequence (one load/store per cycle) 345
Pipelined load-multiply-store sequence (one load and one store per cycle) 346
Simple bypass and interlock example. 348

Branch delay bubble example. 350

Direct pipelining model. 353

Exposed pipelining model. 353

Original control flow. 356

xi

Xii

Optimized control flow. 357

Sequence of tests of variable x. 359

Multiway dispatch based on variable x. 360

Four;processor SOC with JTAG-based on-chip debug and trace. 362
Pipelining of load-operation-store. 366

SIMD alignment buffer operations. 367

Shared-memory communications mode with ownership flag. 368
Interrupt-driven synchronization of shared-memory access. 371
Impact of processor optimization on energy efficiency. 374
Instruction cache power dissipation. 378

Data cache power dissipation. 379

TIE's operators are the same as Verilog. 382

TIE built-in memory interface signals. 388

TIE built-in functions. 389

SOC development tasks and costs. 396

Design complexity and designer productivity. 397

Chip return on investment calculation. 398

Intel processor efficiency trend independent of process improvement. 400

Basic processor generation flow. 402

Comparison of Pentium 4 and configurable processor die. 403

List of Figures

EEMBC summary performance: configurable processors versus RISC and DSP. 405

Transition of SOC to processor-centric design. 406
Influence of silicon scaling on complex SOC structure. 407
Advanced SOC design process. 408

Standard cell density and speed trends. 412

Processors per chip for 140mm? die. 415

Aggregate SOC processor performance. 416

Processor scaling model assumptions. 418

Wireless computation complexity outstrips transistor performance scaling. 421

Christensen's technology disruption model. 432

Applying the disruptive technology model to embedded processors. 435

FOREWORD

This is an important and useful book — important because it addresses a phenomenon that affects
every industry sooner or later, and useful because it offers a clear, step-by-step methodology by
which engineers and executives in the microelectronics industry can create growth and profit
- from this phenomenon. The companies that seize upon this opportunity will transform the way
competition occurs in this industry. I wish that a hands-on guide such as this were available to
strategists and design engineers in other industries where this phenomenon is occurring — indus-
tries as diverse as operating system software, automobiles, telecommunications equipment, and
management education of the sort that we provide at the Harvard Business School. This indus-
try-transforming phenomenon is called a change in the basis of competition — a change in the
sorts of improvements in products and services that customers will willingly pay higher prices to
get. '

There is a natural and predictable process by which this change affects an industry. Chris
Rowen, a gifted strategist, engineer and entrepreneur, has worked with me for several years to
understand this process. It begins when a company develops a proprietary product that, while
not good enough, comes closer to satisfying customers’ needs than any of its competitors. The
most successful firms do this through a proprietary and optimized architecture, because at this
stage the functionality and reliability of such products are superior to those that employ an open,
modular architecture. In order to provide proprietary, architecturally interdependent products,
the most successful companies must be vertically integrated.

As the company strives to keep ahead of its direct competitors, however, it eventually
overshoots the functionality and reliability that customers in less-demanding tiers of the market
can utilize. This precipitates a change in the basis of competition in those tiers. Customers will
no longer pay premium prices for better, faster and more reliable products, because they can’t
use those improvements. What is not good enough then becomes speed and convenience. Cus-

Xiv Foreword

tomers begin demanding new products that are responsively custom-configured to their needs,
designed and delivered as rapidly and conveniently as possible. Innovations on these new tra-
jectories of improvement are the improvements that merit attractive prices and drive changes in
market share. In order to compete in this way — to be fast, flexible and responsive, the dominant
architecture of the products must evolve toward a modular architecture, whose components and
sub-systems interface according to industry standards. When this happens, there is no advantage
to beiag integrated. Suppliers of components and sub-systems can begin developing, making
and selling their products independently, dealing with partners and customers at arms’ length
because the key interface standards are completely and clearly specified. This condition begins
at the bottom of the market, where functional overshoot occurs first, and then moves up inexora-
bly to affect the higher tiers.

When the architecture of a product or a sub-system is modular, it is conformable. This
conformability is very important when it is being incorporated within a next-level product
whose functionality and reliability aren’t yet good enough to fully satisfy what customers need.
Modular conformability enables the customer to customize what it buys, getting every piece of
functionality it needs, and none of the functionality it doesn’t need.

The microprocessor industry is going through precisely this transition. Microprocessors,
and the size of the features from which they are built, historically have not been good enough —
and as a result, their architectures have been proprietary and optimized. Now, however, there is
strong evidence that for mainstream tiers of the market the basis of competition is changing.
Microprocessors are more than fast enough for most computer users. In pursuit of Moore’s Law,
circuit fabricators have shrunk feature sizes to such a degree that in most tiers of the market, cir-
cuit designers are awash in transistors. They cannot use all the transistors that Moore’s Law has
made available. As a result, especially in embedded, mobile and wireless applications, custom-
configured processors are taking over. Their modular configurability helps designers to opti-
mize the performance of the product systems in which the processors are embedded. -

With this change, the pace of the microprocessor industry is accelerating. Product design
cycles, which in the era of interdependent architectures had to be measured in years, are collaps-
ing to months. In the future they will be counted in weeks. Clean, modular interfaces between
the modules that comprise a circuit — libraries of reusable IP — ultimately will enable engineers
who are not experts in processor design, to build their own circuits. Ultimately software engi-
neers will be able to design processors that are custom-configured to optimize the performance
of their software application.

Clearer interface standards are being defined between circuit designers and fabs, enabling
a dis-integrated industry structure to overtake the original integrated one. This structure began
at the low end, and now dominates the mainstream of the market as well. The emergence of the
modular “designed-to-order” processor is an important milestone in the evolution of the micro-
processor industry, but modular processors have broader implications. Just as the emergence of
the personal computer allowed a wide range of workers to computerize their tasksfor the first
time, the configurable processor will change the lives of a wide range of chip designers and chip

Foreword XV

users. This new processor-based methodology enables these designers and users to specify and
program processors for tasks that are too sensitive to cost or energy-efficiency for traditional
processors. It empowers the ordinary software or hardware developer to create new computing
engines, once the province of highly-specialized microprocessor architecture and development
teams. And these new processor blocks are likely to be used in large numbers — tens and hun-
dreds per chip, with total configurable processors vastly outnumbering traditional microproces-
sors. The future will therefore be very different from the past.

The design principles and techniques that Chris Rowen describes in this book will be
extremely useful to companies that want to capitalize on these changes to create new growth. I
thank him for this gift to the semiconductor industry.

Clayton M. Christensen

Robert and Jane Cizik Professor of Business Administration
Harvard Business School

March 2004

FOREWORD

For more than 30 years, Moore’s law has been a driving force in the computing and electronics
industries, constantly forcing changes and driving innovation as it provides the means to inte-
grate ever-larger systems onto a single chip. Moore’s law was the driving force that led to the
microprocessor’s dominance throughout the world of computing, beginning about 20 years ago.
Today, Moore’s law is the driver behind the system-on-chip (SOC) paradigm that uses the vastly
increased transistor density to integrate ever-larger system components onto a single chip,
thereby reducing cost, power consumption, and physical size.

Rowen structures this thorough treatise on the design of complex SOCs around six funda-
mental problems. These range from market forces, such as tight time to market and limited vol-
ume before obsolescence, to the technical challenges of achieving acceptable performance and
cost while adhering to an aggressive schedule. These six challenges lead to a focus on specific
parts of the SOC design process, from the integfation of application-specific logic to the maxi-
mization of performance/cost ratios through processor customization.

As Rowen clearly illustrates, the processor and its design is at the core of any 'complex
SOC. After all, a software-mostly solution is likely to reduce implementation time and risk; the
difficulty is that such solutions are often unable to achieve acceptable performance or efficiency.
For most applications, some combination of a processor (executing application-specific code)
and application-specific hardware are necessary. In Chapter 4, the author deals with the critical
issue of interfacing custom hardware and embedded processor cores by observing that a mix of
custom communication and interconnection hardware together with software to handle decision
making and less common tasks often enables the designer to achieve the desired balance of
implementation effort, risk, performance, and cost.

Chapters 5 and 6 form the core of this book and build on the years of experience that Ten-
silica has had in building SOCs based on customized processors. Although the potential advan-

Foreword XVii

tages of designing a customized processor should be clear—lower cost and better
performance—the required CAD tools, customizable building blocks, and software were previ-
ously unavailable. Now they are, and Rowen discusses how to undertake the design of both the
software and hardware for complex SOCs using state-of-the art tools.

Chapters 7 and 8 address the challenge of obtaining high performance in such systems.
For processors, performance comes primarily from the exploitation of parallelism. This is a cen-
tral topic in both these chapters. Chapter 7 discusses the use of pipelining to achieve higher per-
formance within a single instruction flow in a single processor. Chapter 8 looks to the future,
which will increasingly make use of multiple processors, configured and connected according to
the needs of the application. The use of multiple processors broadly represents the future in
high-performance computer architecture, and not just in embedded applications. I am delighted
to see that SOCs are playing a key role in charting this future.

The design of SOCs for new and challenging applications—ranging from telecommunica-
tions, to information appliances, to applications we have yet to dream of—is creating new
opportunities for computing. This well-written and comprehensive book will help you be a suc-
cessful participant in these exciting endeavors.

John Hennessy
President

Stanford University
March 2004

