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Preface

This manuscript is a textbook for a graduate course in quantum mechanics. I have
taught this course 15-20 times and gradually developed these notes. Orginally, I used as
a text Quantum Mechanics by A.S. Davydov. When that fine book went out of print, I
wrote these notes following a similar syllabus. It contains much new material not found
in older texts.

The beginning chapters follow a traditional syllabus. Topics include solving
Schrédingers equation in one, two, and three dimensions. Approximate techniques are
introduced such as (1) variational, (2) WKB], and (3) perturbation theory. Many examples
are taken from the quantum mechanics of atoms and small molecules. Solid-state ex-
amples include exchange energy, Landau levels, and the quantum Hall effect. Later
chapters discuss scattering theory and relativistic quantum mechanics. The chapter on
optical properties includes both linear and nonlinear optical phenomena. Each chapter
concludes with numerous homework problems.

Preliminary versions of these lectures have been handed to several generations of
graduate students. Their feedback has been invaluable in honing the material.
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.I Introduction

1.1 Introduction

Quantum mechanics is a mathematical description of how elementary particles move
and interact in nature. It is based on the wave—particle dual description formulated by
Bohr, Einstein, Heisenberg, Schrédinger, and others. The basic units of nature are indeed
particles, but the description of their motion involves wave mechanics.

The important parameter in quantum mechanics is Planck’s constant h=6.626 x
10**Js. It is common to divide it by 2#, and to put a slash through the symbol: h =
1.054 x 10™3*J s. Classical physics treated electromagnetic radiation as waves. It is par-
ticles, called photons, whose quantum of energy is hw where w is the classical angular
frequency. For particles with a mass, such as an electron, the classical momentum
mv = p = hk, where the wave vector k gives the wavelength k =27/ of the particle. Every
particle is actually a wave, and some waves are actually particles.

The wave function Y (r, t) is the fundamental function for a single particle. The position
of the particle at any time ¢ is described by the function |y(r, #)|%, which is the probabil-
ity that the particle is at position r at time t. The probability is normalized to one by
integrating over all positions:

1=/d3r||//(r, 1|2 (1.1)

In classical mechanics, it is assumed that one can know exactly where a particle is located.
Classical mechanics takes this probability to be

W (. y* =& —vt) (1.2)

The three-dimensional delta-function has an argument that includes the particle velocity
v. In quantum mechanics, we never know precisely where to locate a particle. There is
always an uncertainty in the position, the momentum, or both. This uncertainty can be
summarized by the Heisenberg uncertainty principle:

AxAp,2h (1.3)
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Table 1.1 Fundamental Constants and Derived Quantities

Name Symbol Value
Electron mass m 9.10938215x 10 *'kg
Electron charge e 1.602176487 x107*° C
Planck’s constant h 6.62606896 x 107 3*J s

h = h/2n 1.054571628 x 10 >*] s
Boltzmann’s constant ks 1.3806504 x 10~ 22 J/K
Light speed ¢ 299,792,458 m/s
Atomic mass unit AMU 1.660538782 x 10~ %" kg
Bohr magneton U 927.400915x 10~ 2°J/T
Neutron magnetic moment Uy —0.99623641x1072°]/T
Bohr radius a0 0.52917720859x 10" °m
Rydberg energy Egy 13.605691 eV
Fine structure constant a 7.2973525376 %1073
Compton wavelength Ae 2.463102175%10" 2 m
Flux quantum o = h/e 4.13566733 x10~'° T/m?
Resistance quantum h/é* 25,812.808 Q

Source: Taken from NIST web site http: /physics.nist.gov/

where Ax is the uncertainty in position along one axis, Ap, is the uncertainty in
momentum along the same axis, and h is Planck’s constant h divided by 2n(h = h/27n), and
has the value i = 1.05x 10>* joules-second. Table 1.1 lists some fundamental constants.

1.2 Schrédinger's Equation

The exact form of the wave function y(r, t) depends on the kind of particle, and its
environment. Schrédinger’s equation is the fundamental nonrelativistic equation used in
quantum mechanics for describing microscopic particle motions. For a system of particles,
Schrodinger’s equation is written as

. oY

ih<; =Hy (1.4)

H= ,Z [% + U(rj, sj)] + g V(r; —1j) (1.5)
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The particles have positions r;, momentum pj, and spin s;. They interact with a po-
tential U(r;, s)) and with each other through the pair interaction V(r; —r;). The quantity
H is the Hamiltonian, and the wave function for a system of many particles is
Y(r1,T2,13, - ,IN; 51,52, - - -, SN)-

The specific forms for H depends on the particular problem. The relativistic form of
the Hamiltonian is different than the nonrelativistic one. The relativistic Hamiltonian
is discussed in chapter 11. The Hamiltonian can be used to treat a single particle, a
collection of identical particles, or different kinds of elementary particles. Many-particle
systems are solved in chapter 9.

No effort is made here to justify the correctness of Schréodinger’s equation. It is as-
sumed that the student has had an earlier course in the introduction to modern physics
and quantum mechanics. A fundamental equation such as eqn. (1.4) cannot be derived
from any postulate-free starting point. The only justification for its correctness is that its
predictions agree with experiment. The object of this textbook is to teach the student how
to solve Schrédinger’s equation and to make these predictions. The students will be able
to provide their own comparisons to experiment.

Schrédinger’s equation for a single nonrelativistic particle of mass m, in the absence of
a magnetic field, is

ih— = Hy (1.6)

He 2, V(r) (1.7)
2m

The potential energy of the particle is V(r). This potential is usually independent of
the spin variable for nonrelativistic motions in the absence of a magnetic field. Prob-
lems involving spin are treated in later chapters. When spin is unimportant in solving
Schrédinger’s equation, its presense is usually ignored in the notation: the wave function
is written as y(r).

In quantum mechanics, the particle momentum is replaced by the derivative operator:

p — —ihV (1.8)
Ve
H=—m e o+ Vi) (1.9)

Schrodinger’s equation (1.4) is a partial differential equation in the variables (r, t). Solving
Schrédinger’s equation for a single particle is an exercise in ordinary differential equa-
tions. The solutions are not just mathematical exercises, since the initial and boundary
conditions are always related to a physical problem.

Schrédinger’s equation for a single particle is always an artificial problem. An equation
with V (r) does not ever describe an actual physical situation. The potential V(r) must be
provided by some other particles or by a collection of particles. According to Newton’s
third law, there is an equal and opposite force acting on these other particles, which are
also reacting to this mutual force. The only situation in which one particle is by itself has
V=0, which is a dull example. Any potential must be provided by another particle, so
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Schrédinger’s equation is always a many-particle problem. Nevertheless, there are two
reasons why it is useful to solve the one-particle problem using classical potentials. The
first is that one has to learn using simple problems as a stepping stone to solving the
more realistic examples. Secondly, there are cases where the one-particle Schrédinger’s
equation is an accurate solution to a many-particle problem: i.e., it describes the relative
motion of a two-particle system.

1.3 Eigenfunctions

In solving the time-dependent behavior, for the one-particle Schrédinger’s equation (1.8),
an important subsidiary problem is to find the eigenvalues &, and eigenfunctions ¢,(r)
of the time-independent Hamiltonian:

H,(r) = enpp(r) (1.10)

There is a silly convention of treating “eigenfunction” and “eigenvalue” as single words,
while “wave function” is two words. The name wave function is usually reserved for the
time-dependent solution, while eigenfunction are the solutions of the time-independent
equation. The wave function may be a single eigenfunction or a linear combination of
eigenfunctions.

The eigenfunctions have important properties that are a direct result of their being
solutions to an operator equation. Here we list some important results from linear al-
gebra: The Hamiltonian operator is always Hermitian: H' = H.

 Eigenvalues of Hermitian operators are always real.

« Eigenfunctions with different eigenvalues are orthogonal:

[en—tm] /d’r¢:(r)¢m(r)=o (1.11)

which is usually written as
/d’nb:(r)aﬁm(r) =B pm (1.12)

These two statements are not actually identical. The confusing case is where there are several
different states with the same eigenvalue. They do not have to obey eqn. (1.12), but they can
be constructed to obey this relation. We assume that is the case.

» The eigenfunctions form a complete set:

D bnm)eu(r) =8> (r—r) (1.13)

These properties are used often. Orthogonality is important since it implies that each
eigenfunction ¢,(r) is linearly independent of the others. Completeness is important, since
any function f(r) can be uniquely and exactly expanded in terms of these eigenfunctions:



