1 & £ i g

mkﬁﬁﬁ%ﬁ ﬁﬁﬂ

(RINR - SB2hR)

COMPUTERS
AS COMPONENTS

PRINCIPLES OF EMBEDDED COMPUTING
SYSTEM DESIGN

‘| 1
) = o 54 s i 2

K L) S

! K I ot M‘. ;

" 4 x‘ : A

& R
i

WAYNE WOLF M <

(%) Wayne Wolf &
S A v

China Machine Press

AR RRG R RE

(SR3ZhR - SB2hR)

ML T MR

Wayne Wolf: Computers as Components: Principles of Embedded Computing System
Design, Second Edition (ISBN 978-0-12-374397-8).

Original English language edition copyright © 2008 by Wayne Hendrix Wolf. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

ISBN: 978-981-272-293-5

Copyright © 2008 by Elsevier (Singapore) Pte Ltd.

Printed in China by China Machine Press under special arrangement with Elsevier

(Singapore) Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong
SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this
Law is subject to Civil and Criminal Penalties.

A5 HCRZENAR i Elsevier (Singapore) Pte Ltd BAUHLAR Tk H AR 76 v B Bt 5 4 iy
KEAT. FRXREFEREA (TREFERHITREREGEHK) HRERN#EE. &
SUFAIZH A, SAERERRE, BREEZHE.

IR E, BRBR.
FEZEME ALRHRIARESAT

AHIFENEICS: B 01-2008-4175
BHERSE (CIP) ¥iR

BRARUHERFRITER (FXR - F26R) / (%) KARK (Wolf, W.) #. —Jbxx.
HLBE T Ml Hikf 3, 2008.12

(SRR A5)

FBLEX: Computers as Components: Principles of Embedded Computing System
Design, Second Edition

ISBN 978-7-111-25360-0
Lofger T3k IO B HBHL-RER-33C V. TP36
FE R A EBECIPRERE F (2008) 1614465

HLA Tl AR (et B 5 EA#22S WEAFS 100037)
FEHE . BiRE

= ATEAEER A FRA R ERR « FreeBIEIL R RITRRAT
20094F1 A %5 1hR &S 1R EN A

170mm % 242mm - 33E15k

FrRiE$2 . ISBN 978-7-111-25360-0

Efr: 75.005¢

JLASS, mAMTT, BRI, G0, AAHRITEHER
Atk . (010) 68326294

BhRE BIE

XEE LU, FmRKAB AR S RS ARG, (5 EREH
REFER#A BRI T 20 Mm%, hERXHENES, EEEEFEERARK
RIS ZERARKEN, MO, EfliehHERS, EENT LR S5EFR
B B E AL A, T EAYLFER P £ % WAL S [R B AL B D B B Rl £k,
M= 2 B2, AR THFRTEE, B#m T 2AMEE, BE
EFEARE, XAAFEEME, HNMEHFASEE AR R,

VAR, FEARE BT, REMIHEI LR RAE, XEWAL
sk H 2508, XA EALEE AR AR R LS, ki, miL
FRIEAERE R LRAEERE., ERERGEBHARRNARENIIRT, XHE
RS E R AR BN ER R HERBREN R RS BEM DA T ZESE
Y2hb, Hik, SI3E—HESMES HHEYLEM A R E BT F kA R R E
Bk ZhE A, SRS, BiREEMHER —RRKENLHZE,

HUBE ol Rt e B R R B IRE] “HIREABFRS . A19984T 45, 4
ok TR R SORTE Tk, BiIFEIMEEEA L. &t ZEMAWES S, &
5Pearson, McGraw-Hill, Elsevier, MIT, John Wiley & Sons, CengageZFith 534
MR A FEL T RIFMWATERR, MbATBA 15 E Fh bt B B % H Andrew S.
Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray,
Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William
Stallings, Donald E. Knuth, John L. Hennessy, Larry L. PetersonZs Kk Jifi &4 K 9 —iit
e, LA “THENLBHEAS” ASFRMER, #iEE%]. MRESE. KEAL
HRETHE, WEAER T XENBE AR,

“HEHLEFAE MR TESSE TERNIMEER D EY, BENHERERAL -
R THENESES, AR SHEETEFEMERNLE, mEBES L
MYREFELERETEAEE, ARCERAKPIPEREF. £4, “HEILH
N BAHR TERE &, XEPEEREPHLT RV AM, Hir
LEBERANERBEM S ZEE, KPR “SHRFEMRPBE" 15415k & ek
Sk % L NUE B R TR A .

BB HITES . LHEM . —RNIFE. MERNER. FANEE, XEREHE
ERMWERAE TREMRIE. METHEILE%5HER S 2B &I A <5
B R R B, BB 3 E S LB 7 SR R0 L ER R A — A #T I B
B, BIMMWBERRERERE, MRBHELEZBINER X LK BRI EZRD,
AT 43+ WGM IR NI E XA TSR R IS T4 E, TANERR HEINT -

£ EMN . www.hzbook.com

B F B4 . hzjsj@hzbook.com
BEZEIE. (010) 88379604
BEMIE. KT EREE T AEGHLS
BRI 4R AL . 100037

About the Author

Wayne Wolf is Professor, Rhesea “Ray” P. Farmer Distinguished Chair in Embedded
Computing, and Georgia Research Alliance Eminent Scholar at the Georgia Institute
of Technology. Before joining Georgia Tech, he was with Princeton University and
AT&T Bell Laboratories in Murray Hill, New Jersey. He received his B.S., M.S., and
Ph.D. in electrical engineering from Stanford University. He is well known for his
research in the areas of hardware/software co-design, embedded computing, VLSI
CAD, and multimedia computing systems. He is a fellow of the IEEE and ACM. He
co-founded several conferences in the area, including CODES, MPSoC, and Embed-
ded Systems Week. He was founding co-editor-in-chief of Design Automation for
Embedded Systems and founding editor-in-chief of ACM Transactions on Embed-
ded Computing Systems. He has received the ASEE Frederick E. Terman Award and
the IEEE Circuits and Society Education Award. He is also co-series editor of the
Morgan Kaufmann Series in Systems on Silicon.

Foreword to The First Edition

Digital system design has entered a new era. At a time when the design of
microprocessors has shifted into a classical optimization exercise, the design of
embedded computing systems in which microprocessors are merely components
has become a wide-open frontier. Wireless systems, wearable systems, networked
systems, smart appliances,industrial process systems,advanced automotive systems,
and biologically interfaced systems provide a few examples from across this new
frontier.

Driven by advances in sensors, transducers, microelectronics, processor per-
formance, operating systems, communications technology, user interfaces, and
packaging technology on the one hand, and by a deeper understanding of human
needs and market possibilities on the other, a vast new range of systems and appli-
cations is opening up. It is now up to the architects and designers of embedded
systems to make these possibilities a reality.

However, embedded system design is practiced as a craft at the present time.
Although knowledge about the component hardware and software subsystems is
clear, there are no system design methodologies in common use for orchestrating
the overall design process, and embedded system design is still run in an ad boc
manner in most projects.

Some of the challenges in embedded system design come from changes in under-
lying technology and the subtleties of how it can all be correctly mingled and
integrated. Other challenges come from new and often unfamiliar types of sys-
tem requirements. Then too, improvements in infrastructure and technology for
communication and collaboration have opened up unprecedented possibilities for
fast design response to market needs. However, effective design methodologies
and associated design tools have not been available for rapid follow-up of these
opportunities.

At the beginning of the VLSI era, transistors and wires were the fundamental
components, and the rapid design of computers on a chip was the dream. Today
the CPU and various specialized processors and subsystems are merely basic com-
ponents, and the rapid, effective design of very complex embedded systems is the
dream. Not only are system specifications now much more complex, but they must
also meet real-time deadlines, consume little power, effectively support complex
real-time user interfaces, be very cost-competitive,and be designed to be upgradable.

Wayne Wolf has created the first textbook to systematically deal with this array
of new system design requirements and challenges. He presents formalisms and a
methodology for embedded system design that can be employed by the new type of
“tall-thin” system architect who really understands the foundations of system design
across a very wide range of its component technologies.

Moving from the basics of each technology dimension, Wolf presents formalisms
for specifying and modeling system structures and behaviors and then clarifies these

vi

ideas through a series of design examples. He explores the complexities involved
and how to systematically deal with them. You will emerge with a sense of clarity
about the nature of the design challenges ahead and with knowledge of key methods
and tools for tackling those challenges.

As the first textbook on embedded system design, this book will prove invaluable
as a means for acquiring knowledge in this important and newly emerging field.
It will also serve as a reference in actual design practice and will be a trusted
companion in the design adventures ahead. I recommend it to you highly.

Lynn Conway
Professor Emerita, Electrical Engineering and
Computer Science University of Michigan

Preface to The Second Edition

Embedded computing is more important today than it was in 2000, when the first
edition of this book appeared. Embedded processors are in even more products,
ranging from toys to airplanes. Systems-on-chips now use up to hundreds of CPUs.
The cell phone is on its way to becoming the new standard computing platform.
As my column in JEEE Computer in September 2006 indicated, there are at least a
half-million embedded systems programmers in the world today, probably closer to
800,000.

In this edition I have tried to both update and revamp. One major change is
that the book now uses the TI TMS320C55x™ (C55x) DSP. I seriously rewrote the
discussion of real-time scheduling. I have tried to expand on performance analysis
as a theme at as many levels of abstraction as possible. Given the importance of
multiprocessors in even the most mundane embedded systems, this edition also
talks more generally about hardware/software co-design and multiprocessors.

One of the changes in the field is that this material is taught at lower and lower
levels of the curriculum. What used to be graduate material is now upper-division
undergraduate; some of this material will percolate down to the sophomore level
in the foreseeable future. I think that you can use subsets of this book to cover
both more advanced and more basic courses. Some advanced students may not
need the background material of the earlier chapters and you can spend more time
on software performance analysis, scheduling, and multiprocessors. When teaching
introductory courses, software performance analysis is an alternative path to explor-
ing microprocessor architectures as well as software; such courses can concentrate
on the first few chapters.

The new Web site for this book and my other books is http://www.
waynewolf.us. On this site, you can find overheads for the material in this book,
suggestions for labs, and links to more information on embedded systems.

ACKNOWLEDGMENTS

I would like to thank a number of people who helped me with this second edition.
Cathy Wicks and Naser Salameh of Texas Instruments gave me invaluable help in
figuring out the C55x. Richard Barry of freeRTOS.org not only graciously allowed
me to quote from the source code of his operating system but he also helped clarify
the explanation of that code. My editor at Morgan Kaufmann, Chuck Glaser, knew
when to be patient, when to be encouraging, and when to be cajoling. (He also
has great taste in sushi restaurants.) And of course, Nancy and Alec patiently let me
type away. Any problems, small or large, with this book are, of course, solely my
responsibility.

Wayne Wolf
Atlanta, GA, USA

Preface to The First Edition

Microprocessors have long been a part of our lives. However, microprocessors have
become powerful enough to take on truly sophisticated functions only in the past
few years. The result of this explosion in microprocessor power, driven by Moore’s
Law, is the emergence of embedded computing as a discipline. In the early days of
microprocessors, when all the components were relatively small and simple, it was
necessary and desirable to concentrate on individual instructions and logic gates.
Today, when systems contain tens of millions of transistors and tens of thousands of
lines of high-level language code, we must use design techniques that help us deal
with complexity.

This book tries to capture some of the basic principles and techniques of this new
discipline of embedded computing. Some of the challenges of embedded computing
are well known in the desktop computing world. For example, getting the highest
performance out of pipelined, cached architectures often requires careful analysis
of program traces. Similarly, the techniques developed in software engineering for
specifying complex systems have become important with the growing complexity
of embedded systems. Another example is the design of systems with multiple
processes. The requirements on a desktop general-purpose operating system and
a real-time operating system are very different; the real-time techniques developed
over the past 30 years for larger real-time systems are now finding common use in
microprocessor-based embedded systems.

Other challenges are new to embedded computing. One good example is power
consumption. While power consumption has not been a major consideration in tra-
ditional computer systems, it is an essential concern for battery-operated embedded
computers and is important in many situations in which power supply capacity is
limited by weight, cost, or noise. Another challenge is deadline-driven program-
ming. Embedded computers often impose hard deadlines on completion times
for programs; this type of constraint is rare in the desktop world. As embedded
processors become faster, caches and other CPU elements also make execution
times less predictable. However, by careful analysis and clever programming, we
can design embedded programs that have predictable execution times even in the
face of unpredictable system components such as caches.

Luckily, there are many tools for dealing with the challenges presented by com-
plex embedded systems: high-level languages, program performance analysis tools,
processes and real-time operating systems, and more. But understanding how all
these tools work together is itself a complex task. This book takes a bottom-up
approach to understanding embedded system design techniques. By first under-
standing the fundamentals of microprocessor hardware and software, we can build
powerful abstractions that help us create complex systems.

ix

A NOTE TO EMBEDDED SYSTEM PROFESSIONALS

This book is not a manual for understanding a particular microprocessor. Why
should the techniques presented here be of interest to you? There are two rea-
sons. First, techniques such as high-level language programming and real-time opera-
ting systems are very important in making large, complex embedded systems that
actually work. The industry is littered with failed system designs that didn’t work
because their designers tried to hack their way out of problems rather than step-
ping back and taking a wider view of the problem. Second, the components used
to build embedded systems are constantly changing, but the principles remain
constant. Once you understand the basic principles involved in creating com-
plex embedded systems, you can quickly learn a new microprocessor (or even
programming language) and apply the same fundamental principles to your new
components.

A NOTE TO TEACHERS

The traditional microprocessor system design class originated in the 1970s when
microprocessors were exotic yet relatively limited. That traditional class emphasizes
breadboarding hardware and software to build a complete system. As a result, it
concentrates on the characteristics of a particular microprocessor, including its
instruction set, bus interface, and so on.

This book takes a more abstract approach to embedded systems. While I have
taken every opportunity to discuss real components and applications, this book
is fundamentally not a microprocessor data book. As a result, its approach may
seem initially unfamiliar. Rather than concentrating on particulars, the book tries to
study more generic examples to come up with more generally applicable principles.
However, I think that this approach is both fundamentally easier to teach and in
the long run more useful to students. It is easier because one can rely less on
complex lab setups and spend more time on pencil-and-paper exercises, simulations,
and programming exercises. It is more useful to the students because their eventual
work in this area will almost certainly use different components and facilities than
those used at your school. Once students learn fundamentals, it is much easier for
them to learn the details of new components.

Hands-on experience is essential in gaining physical intuition about embedded
systems. Some hardware building experience is very valuable; I believe that every
student should know the smell of burning plastic integrated circuit packages. But
I urge you to avoid the tyranny of hardware building. If you spend too much time
building a hardware platform, you will not have enough time to write interesting
programs for it. And as a practical matter, most classes do not have the time to let
students build sophisticated hardware platforms with high-performance I/O devices
and possibly multiple processors. A lot can be learned about hardware by measuring
and evaluating an existing hardware platform. The experience of programming

complex embedded systems will teach students quite a bit about hardware as
well—debugging interrupt-driven code is an experience that few students are likely
to forget.

A home page for the book (www.mkp.com/embed) includes overheads, instruc-
tor’s manual, lab materials, links to related Web sites, and a link to a password-
protected ftp site that contains solutions to the exercises.

ACKNOWLEDGMENTS

I owe a word of thanks to many people who helped me in the preparation of
this book. Several people gave me advice about various aspects of the book:
Steve Johnson (Indiana University) about specification, Louise Trevillyan and Mark
Charney (both IBM Research) on program tracing, Margaret Martonosi (Prince-
ton University) on cache miss equations, Randy Harr (Synopsys) on low power,
Phil Koopman (Carnegie Mellon University) on distributed systems, Joerg Henkel
(NEC C&C Labs) on low-power computing and accelerators, Lui Sha (Univer-
sity of Illinois) on real-time operating systems, John Rayfield (ARM) on the ARM
architecture, David Levine (Analog Devices) on compilers and SHARC, and Con
Korikis (Analog Devices) on the SHARC. Many people acted as reviewers at
various stages: David Harris (Harvey Mudd College); Jan Rabaey (University of
California at Berkeley); David Nagle (Carnegie Mellon University); Randy Harr (Syn-
opsys); Rajesh Gupta, Nikil Dutt, Frederic Doucet, and Vivek Sinha (University
of California at Irvine); Ronald D. Williams (University of Virginia); Steve Sapiro
(SC Associates); Paul Chow (University of Toronto); Bernd G. Wenzel (Eurostep);
Steve Johnson (Indiana University); H. Alan Mantooth (University of Arkansas);
Margarida Jacome (University of Texas at Austin); John Rayfield (ARM); David
Levine (Analog Devices); Ardsher Ahmed (University of Massachusetts/Dartmouth
University); and Vijay Madisetti (Georgia Institute of Technology). I also owe a
big word of thanks to my editor, Denise Penrose. Denise put in a great deal
of effort finding and talking to potential users of this book to help us under-
stand what readers wanted to learn. This book owes a great deal to her insight
and persistence. Cheri Palmer and her production team did an excellent job
on an impossibly tight schedule. The mistakes and miscues are, of course, all
mine.

List of Examples

Application Example 1.1

Example 1.1
Example 2.1
Example 2.2
Example 2.3
Example 2.4

Application Example 2.1
Example 2.5 An FIR filter for the ARM

BMW 850i brake and stability control system
Requirements analysis of a GPS movingmap
Status bit computation in the ARMcviiiiinn.n.
C assignments in ARM inStrucCtionsooovviuiinnn.
Implementing an if statementin ARM
Implementing the C switch statement in ARM
FIRfIltersooveeiiiiii i

Example 2.6 Procedure calls in ARMooiiiiiiiiiiiiiiieniiiiiinaann,
Application Example 3.1 The 8251 UARTooiiiiiiiiiinien...
Example 3.1 Memory-mapped I/OOnARM............ccoiiiiiiiiiiiiiinnnn,
Example 3.2 Busy-wait I/O programming....................cooiiiiiiiiinieen.
Example 3.3 Copying characters from input to output using

DUSTEWALE T/O: srscsinsies 5 3 mowmmaso s 5 4 5 wssemins 5 ¢ £ pusieiem 5 § HSEEETE 5 3 2 Hiia
Example 3.4 Copying characters from input to output with basic

INEELTVIPES o5 s sswmnns o sommmin s s noomens 1 55 aiuweng s o 8 HIERAR TS Fids
Example 3.5 Copying characters from input to output with interrupts

and buffers ...
Example 3.6 Debugging interrupt codec.oviuiiiiiiiiiiiiiiii ...
Example 3.7 I/O with prioritized interruptsccooiiiiiiiiiiniian
Example 3.8 Direct-mapped vs. set-associative caches
Example 3.9 Execution time of a for looponthe ARM

Application Example 3.2

Energy efficiency features in the PowerPC 603.. ..

Application Example 3.3 Power-saving modes of the StrongARM SA-1100 ..

Application Example 3.4 Huffman coding for text compression

Example 4.1

Programming Example 4.1

A glue logic interfaceooooiiiiiiiiiii e
Application Example 4.1

System organization of the Intel StrongARM
SA-1100 and SA-1111

Breakpoints

Example 4.2 A timing error in real-time code ...,

Example 4.3

Programming Example 5.1

Performance bottlenecks in a bus-based system.................
A software state machine..........................

Programming Example 5.2 A circular buffer implementation of an FIR

Programming Example 5.3 A buffer-based queue

Example 5.1
Example 5.2
Example 5.3
Example 5.4
Example 5.5

Generating a symbol table oo,
Compiling an arithmetic exXpressionoooouen
Generating code for a conditional
LOOP URFOLIMIG, « - . scusrinin s 5 5 o smwnin 5 3 5 5 smmsrses « « o simpsgaman s 3 5 pirsoe e g o b s
Register allocation

xii

Example 5.6
Example 5.7
Example 5.8
Example 5.9
Example 5.10
Example 5.11
Example 5.12
Example 5.13

Application Example 6.1

Example 6.1
Example 6.2
Example 6.3
Example 6.4
Example 6.5
Example 6.6
Example 6.7

Programming Example 6.1

Example 6.8
Example 6.9
Example 7.1
Example 7.2
Example 7.3
Example 8.1
Example 8.2

Application Example 8.1
Application Example 9.1

Example 9.1

Example 9.2

Operator scheduling for register allocation...................... 243
Data-dependent paths in if statements.......................... 251
Pathsiin Q100D v+ cemeeniine s » siiminsio s s s sissioniss s & 550 aewnes s 5009 252
Cycle-accurate simulationooiiiiiiiiiiiiiii. 256
Data realignment and array padding 260
Controlling and observing programscoooeveeeian. 268
Choosing the paths tO teStuuiiiiiieiiiiiiiiiiiieaniens 270
Condition testing with the branch testing strategy.............. 273
Automotive engine control 296
Application Example 6.2 A space shuttle software error 300
Utilization of a set of processes............cccoevvviiiiiinnenno... 304
Priority-driven scheduling. ... 309
Rate-monotonic schedulingcoooiiiiiiiiiiiinia.. 317
Earliest-deadline-first scheduling...................cooooieiiin... 320
Priority inVErSiONoouiuiii ittt 324
Data dependencies and schedulingcooviee. 325
Elastic buffers as shared memory................coocoeiiiii. ... 326
Test-and-set operations 328

Scheduling and context switching overhead 330
Effects of schedulingonthecache 332
Performance effects of scheduling and allocation................ 365
Overlapping computation and communication 366
Buffers and Jatency ...t 368
Data-push network architecturesooo. 405
Simple message delay for an I?C message........................ 414
An Internet video camerac..oooueenn... 420

Loss of the Mars Climate Observer 439

Concurrent engineering applied to telephone systems......... 444
Application Example 9.2 The TCAS II specificationccoeeee... 451
CRC card analysisoovininiiiiiiie i 456
Application Example 9.3 The Therac-25 medical imaging system............. 458

Contents

APOUL EREATEROL .« « & ssisnes s s svmamvn & ¢ woiemiam s & 5 Saivision 5 » & SCEEES ¢ 3 SHEHENS § 5 5 Dosaams s iv
Foreword toThe First Edition ... v
Preface toThe Second Editionoiiiiiiiiiiiiiiiii e, vii
PrefacEto The First EAIION - . cowmon s s o somumns 5 ¢ acmmmes & 5 s demin & § § soImsms o § 5 saemees s viii
List of EXamPIEs ... s xi
CHAPTER 1 Embedded Computing 1
INtrodUuCtionovuiiiiii i 1
1.1 Complex Systems and MiCTOProCessors 1
1.1.1 Embedding COomputerscc.oeveeeuuneeennnn. 2
1.1.2 Characteristics of Embedded Computing
APPLCAtONS oo ¢ o 5w s 5 5 smmazoms s & ¥ sy + ¢ 5 oo & 4
1.1.3 Why Use MiCroproCessors?eeevuueeeennn. 6
1.1.4 The Physics of Software................ccooovviiiinn... 8
1.1.5 Challenges in Embedded Computing System
DeSign 8
1.1.6 Performance in Embedded Computing 10
1.2 The Embedded System Design Process 11
1.2.1 Requirements.............ccooouiiiiiiniiiiiinnaennnnn. 12
1.2.2 SPECHICHION wuvse s o 5 ssmmins s s ssrormpn s ¢ § g g 8 o 8 worosss 17
1.2.3 Architecture Designooeviiiiiiiiiiiaiannn.. 18
1.2.4 Designing Hardware and Software
COMPONENES oo 55 s nammsn s o s nammns s § § GaveeRs s & § 5HE0053 20
1.2.,5 System Integrationooia. 20
1.3 Formalisms for System Designcooeiiiiune... 21
1.3.1 Structural Descriptioncooooiiiiiiiia. 22
1.3.2 Behavioral Description..............c.cooveiiiieiiinn.. 27
1.4 ModelTrain Controller..............coviiuiiiiiiiiuieiiiinan... 30
1.4.1 REQUITCMENTSuvtieeieiieeieeieeeaaaeeen e 31
VA2 DCEG o s s ¢ smmmon a5 5 » siaseion 6 55 ¢ s & & & smsrsig § § ¢ § vessrey 32
1.4.3 Conceptual Specificationo.oeee. 34
1.4.4 Detailed Specification...................ccooiviiiinn... 37
1.45 LessonsLearnedooiiiiiiiiiiniiieiiaaa... 44
1.5 A Guided Tour of This BOOKccovviiiiiiiiiiinnn... 45
1.5.1 Chapter 2:InStruction Sets.............coovveueeeeannn. 46
1.5.2 Chapter 3:CPUScooiiniiiiiiiiiiiie i, 46

1.5.3 Chapter 4: Bus-Based Computer Systems 46

Xiv

CHAPTER 2

2.1

2.2

23

CHAPTER 3

3.1

3.2

33

1.5.4 Chapter 5: Program Design and Analysis 47
1.5.5 Chapter 6: Processes and Operating Systems........... 48
1.5.6 Chapter 7: MultiproCessors 49
1.5.7 Chapter 8: Networkscoovieiiiiiiiieiinn.... 50
1.5.8 Chapter 9:System Design Techniques................. 50
SUBDINALY: o vcorvcos 5 5 simmmoumis s 5 5 HE0BERE & 5 5§ Gobismss & § ¢ HUUWERG § § 8 BaEREats 51
FUBthEr REAAINE, ;oo s o s sowmuns & « 5 s & 5 gissess & s 8 Sidisiome s 51
QUESHONS w5 4 snvmomnn 5 ¢ ¢ siwiersn s & 5o bimiie & 5 sassisianis o » i /ainen o 52
Lab EXErciSesouuiiiiiiiii i 53
Instruction Sets 55
Introducton..... i 55
Preliminariesooiiiiiiiiiiiiiii i 55
2.1.1 Computer Architecture Taxonomy 55
2.2 ASSEMPLY LANSUABE wo - s vsswmmsivns s ssmsnin o s s 835 0ma00s 58
ARM Processor O L T T e T T 59
2.2.1 Processor and Memory Organization 60
2.2.2 Data Operationsc.oeeiiiiiieiainninneeinn.. 61
223 Flow of CoONtrol.........oooveeiniiiiiiiiiieaineenn... 69
TLCOSKDSE ;s ¢ sssmismrsss 1 5 summnins » ¢ 6aiwwmians & § Ssionsmd § § bosshonnn s s o 76
2.3.1 Processor and Memory Organization 76
2.3.2 Addressing Modescoioiiiiiiiiiiiia, 78
2.3.3 Data Operationsooiiiiiiiiniininiieana.... 82
234 Flow of Control..........oovviiiiiiiiieiinieainneann... 83
235 CCodingGuidelinescooeeiiiieeoina... 85
SUMMATY . ..o 86
Further Readingoooiiiiiiiiii i 86
QUESHIONSot 86
Lab-EXEICISES - ; cuwwunis ssvmamns s omswin oo s Saamsaig 5 6055555555 89
CPUs 91
YAEEOAUCLION & 5 » 5 semmsste s smsismanre v v snmawnn s 98 os 54 L4 CREE AR T & 91
Programming Input and Outputccooeiiiiinnn.. 91
3.1.1 Inputand Output Devicescc.eeeveeeen.... 92
3.1.2 Input and Output Primitives........................... 93
30,3 BuSFEWAET/O 1., vuswonss s s sossines = 1« smmemes s 5 soswsmss s s 5 95
20 TOCETEUPES sannc : 5 s 3 5 soemmms 5 5 5o § FADERA S § 96
Supervisor Mode, Exceptions,andTraps....................... 110
3.2.1 SupervisorMode ..ot 111
322 EXCEPUONScooiiiiiiiiiiiiiiiiiii e 111
BiZ:3 "TTAPS. « - conceseroiis » o ecoromismasnin s = sissiasarss & srarsiotaiwse s svisroioinism o 3 o1 112

CO-PIOCESSOTS ...ttt e e 112

34

3.5

3.6
3.7

CHAPTER 4

4.1

4.2

4.3

44

4.5

XV

Memory System Mechanisms..............coooooen, 113
4.1 CAChES ::::cvmmansoms srurumss s mpmmess s SuERIs s e 113
3.4.2 Memory Management Units and Address

TEANSIAION ..o omcchionis i5aneimesss sesssusidse s imes 119
CPU PerfOrmancCeoovuununniiiieeeeeeeeataaaaaaaaaannn. 124
3.5.1 Pipeliningoooiiiiiiiiiii 124
352 Cachingooiiuiiiiiiiiii i 128
CPU Powes: CONSUMPHON. : : ; o osvsminins s ysmswnny o o srosassisisis o v aows 129
Design Example: Data COMPressorc..coveeeeiieen... 134
3.7.1 Requirements and Algorithm 134
B3.7.2 Specification. .. zussssssmssna 15 sasmenns s sunpsmans ss s s s 136
373 Program Design...... ..ottt 139
374 TESHMEooeiiiiee et 145
SUMMATY . ..ottt 147
Further Readingoooiiiiiiiiiiiiiiiieiaaiaiaannn, 147
QUIESHONS 5 - covmmmin s 3 sempnmms s HYEEEEES SHABETESTS 55 HATABENS § 5504 148
Lab BXCICISES: s ¢ 5 namumans § asmahs s § Sasmsin s 6.5 5onemon s § o 151
Bus-Based Computer Systems 153
INEFOAUGCHON : srsvamen s s ssmmermns & ssmamens 3 5 semawes § 5 5 Sepesmes § 3 §s 153
The CPU BUS ; ; ssemsns s » commmen § § cunseos ¢ § 5 Samssi s § § § o § 3 § o4 153
4.1.1 Bus Protocols: . . vosswiss s s swsemss s s samsnons 5 5 5 s e s 55 6 154
4.1.2 DMA . o 160
4.1.3 System Bus Configurations.....................c..o.... 162
414 AMBABUSoovviiiiit it 165
MEMOTY DEVICES nuemsss s samempns swasmumoes supmmmpns § Sovasanes ¢ 166
4.2.1 Memory Device Organization 166
4.2.2 Random-Access MEMOTIESoovuuiiiuniaanannns 167
4.2.3 Read-Only MEMOTIESvouuueenieeiniieainieniiaanns 169
T/O AEVACES: ... - « civrocncssacen o waromomomioin o & ibessiissait s s 5 sipssimisiengins =simisgmiolis's 169
431 Timersand COUNLETSveeeiinnenieaninneennn. 169
432 A/Dand D/A CONVEILerS.........cvvveieeieeeeananannn. 171
43.3 Keyboards: . .oosonumumss os comsnss o o s onsmonms ie s snomuss s 171
434 LEDS: s s sammenss vs i s segasais s s s suEsamns s sssesaeses 173
4.3.5 DSPIAYS ..c.coromose o s oimiisnsi s 580505636 55 b TRREEET § SHRTEVES 173
4.3.6 TOUCHSCIEENSooeneeeiiiiiieiiiiieaeiaeenns 175
Component Interfacing..............oooeeiiiiiiiiiiiiiinna... 175
4.4.1 Memory Interfacingcooiiiiiiiiiiiiinaa... 176
4.4.2 Device Interfacing............coovvieeiinnieeeiinnnn... 176
Designing with MiCTOPIOCESSOIS.oovviiiiiiiiiiiiinnnn. 177
45.1 SystemArchitECINNS «umvsss oosnamns s s s svmonimnis s s smpans 177
4.5.2 Hardware Designccooeiiiiiiiiiiiiiiiiiinn. 179

453 ThePCasaPlatfOrml .o co sommmenss ssasmenns s s s soess 180

XVi

4.6

4.7

4.8

CHAPTER 5

5.1

5.2

5.3

5.4

5.5

Development and Debuggingcoviiiiiiiiiiinn... 183
4.6.1 Development Environments........................... 183
4.6.2 Debugging Techniques................ccooevveiniann... 184
4.6.3 Debugging Challengesccccevvvveeeeennn... 187
System-Level Performance Analysisoo... 189
4.7.1 System-Level Performance Analysis.................... 189
4.7.2 PACANCHSIN ons 5 s 5 ssmwmnsio s o o imimenion » » 5 Saeemi s § ¢ 52 194
Design Example: Alarm ClOCK.vvvviiiiieeiieeeeeaeannn.. 196
4.8.1 REQUICMENTSevtiinetiiniieiiieeaiieaineeannn. 196
4.8.2 SPecCifiCationcoviiiuiiiiiiii e 198
4.8.3 SystemArchitectureccoooevveviiiinieeeaann. 200
4.8.4 Component Design andTesting 203
4.8.5 System Integration andTesting 204
SUMMALY . sio0smm0s + ssiemmesin 3 5 5usBmapsne & & SAwesivns & v oatea s e o b 204
Fuither REAAING « - : smnins o5 summmsin .6 5 4anmaiias 655 Faanss s 545 205
QUESHONS . civnmnnas sammenness #54mmmg & § SHeawes b S amuFh o506 55 205
Lab EXEICISES ... ouuuiitiiiiiieee e 207
Program Design and Analysis 209
IDtCOAUCHION s cisiwisn s 5 swmmwmming s s sowamsns ¢ ¢ svowaaes s 5 SoEaanns s 3 s 80 209
Components for Embedded Programs 210
5.1.1 State Machines...............ooiiiiiiiiiniiiiiiieeiinnn. 210
5.1.2 Stream-Oriented Programming and Circular

BUEIETS . cccse:e « craracamasmansss 50 apugiyefaios & S mmmey 3 § 7. ToEmmes e Sae 212
5.1.3 QUEUESiiiiieiinii ettt 213
Models Of PLOGLAMS . . .osvones s & s smmasine b ssomsweass s o s snssemsss s 215
521 DataFlow Graphs ... susesvnsssssmossnsss sassmsoss ves 215
5.2.2 Control/Data Flow Graphs............................. 217
Assembly, Linking,and Loadingcooonnnn.. 220
5.3.1 ASSEMDIELSoouniiiiiiiiiii e 222
5.3.2 LinKiNG ...ooovviiiiiiiiiiiti i 225
Basic CompilationTechniquesooeeen, 227
5.4.1 StatementTranslationc.oooiiiiiiiiinnn. 229
542 ProCeAUIES::c: sommmmiss 3 sunmemns s SHEsmE oS § SemanE 233
5.4.3 Data StIUCLULESouvuneiiiieeeeeeieaaaaniaaannnns 234
Program OptimiZationccoevvviiiiiiieiiiiinneeann. 236
5.5.1 Expression Simplification.............................. 236
5.5.2 Dead Code Eliminationoooiiiiiinnnn. 237
5:5.3 Procedure INHOINE . ocove . v mssmmes o s sussmoni s o s s 237
5.5.4 Loop Transformationscccoeuuuuiiiananns 238
5:5:5 ReEgIStEr AOCAtON: < ivoris s » cswmmns s « v s s o vassms's 239
5:516 SCheAUBINR cnsns v s vosmmamss s sssmans oo smemamss § 56 a@inesms 244

5.5.7 INStruction SEleCtioncouesesosmsosssssssmsmss 246

