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Preface

This volume is a collection of lecture notes generated from the first
two series of mini-courses of “Shanghai Summer School on Analysis and
Numerics in Modern Sciences” held during the summers of 2004 and
2006 at Fudan University, Shanghai, China. The summer school pro-
grams attracted more than 130 participants each year, including gradu-
ate students, postdoctors, and junior faculty members from more than
30 universities in China and USA.

The purpose of the summer school is to promote the interaction and
collaboration of researchers with expertise in scientific modeling, mathe-
matical analysis and numerical simulations. The focus of the year 2004’s
program was on the study of the multi-scale phenomena in complex flu-
ids. The focus of the year 2006’s program was on multi-scale analysis in
nonlinear partial differential equations and their applications.

The summer school hosted several mini-courses each year. During
the summer of 2004, the instructors are Weizhu Bao (National Uni-
versity of Singapore), Thomas Hou (California Institute of Technology,
USA), Chun Liu (Penn State University, USA), Jianguo Liu (Univer-
sity of Maryland, USA), Tiehu Qin (Fudan University, PRC) and Qi
Wang (Florida State University, USA). During the summer of 2006, the
mini-courses were taught by Zhaojun Bai and Albert Fannjiang (Univer-
sity of California at Davis, USA), Thomas Hou, Wenbin Chen and Feng
Qiu (Fudan University, PRC), Chun Liu, and Xiaoming Wang (Florida
State University, USA). There are also short lectures given by many
distinguished visitors from around the world.

There are five chapters in this volume, covering a wide range of top-
ics in both analysis and numerical simulation methods, as well as their
applications.

Chapter 1, by Zhaojun Bai, Wenbin Chen, Richard Scalettar and
Ichitaro Yamazaki, is on the numerical methods for quantum Monte
Carlo simulations of the Hubbard Models.

Chapter 2, by Albert Fannjiang, is on the wave propagation and
imaging in random media.

Chapter 3, by Thomas Hou, is on multi-scale computations for flow
and transport in porous media.

Chapter 4, by Chun Liu, is on the energetic variational approaches
of elastic complex fluids.



vi Preface

Chapter 5, by Qi Wang, is on the kinetic theories of complex fluids.

We would like to express our gratitude to all the authors for their
contributions to this volume, all the instructors for their contributions
to the Shanghai Summer Schools in 2004 and 2006 and, in particular,
thanks also go to all the participants in the Summer School programs.
We want to thank Ms. Chunlian Zhou for her assistance, without which
will be impossible for the success of the Summer School. The editors are
grateful to Fudan University, the Mathematical Center of Ministry of
Education of China, the National Natural Science Foundation of China
(NSFC) and the Institut Sino-Francais de Mathematiques Appliquees
(ISFMA) for their help and support. Finally, the editor wish to thank
Tianfu Zhao (Senior Editor, Higher Education Press) for his patience
and professional assistance.

Tomas Y. Hou, Chun Liu and Jianguo Liu
Editors
April 2008
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Numerical Methods for Quantum Monte
Carlo Simulations of the Hubbard Model*
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Abstract

One of the core problems in materials science is how the inter-
actions between electrons in a solid give rise to properties like mag-
netism, superconductivity, and metal-insulator transitions. QOur

*This work was partially supported by the National Science Foundation under
Grant 0313390, and Department of Energy, Office of Science, SciDAC grant DE-
FC02 06ER25793. Wenbin Chen was also supported in part by the China Basic
Research Program under the grant 2005CB321701.
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ability to solve this central question in quantum statistical me-
chanics numerically is presently limited to systems of a few hun-
dred electrons. While simulations at this scale have taught us a
considerable amount about certain classes of materials, they have
very significant limitations, especially for recently discovered ma-
terials which have mesoscopic magnetic and charge order.

In this paper, we begin with an introduction to the Hub-
bard model and quantum Monte Carlo simulations. The Hubbard
model is a simple and effective model that has successfully cap-
tured many of the qualitative features of materials, such as tran-
sition metal monoxides, and high temperature superconductors.
Because of its voluminous contents, we are not be able to cover
all topics in detail; instead we focus on explaining basic ideas,
concepts and methodology of quantum Monte Carlo simulation
and leave various part for further study. Parts of this paper are
our recent work on numerical linear algebra methods for quantum
Monte Carlo simulations.

1 Hubbard model and QMC simulations

The Hubbard model is a fundamental model to study one of the core
problems in materials science: How do the interactions between electrons
in a solid give rise to properties like magnetism, superconductivity, and
metal-insulator transitions? In this lecture, we introduce the Hubbard
model and outline quantum Monte Carlo (QMC) simulations to study
many-electron systems. Subsequent lectures will describe computational
kernels of the QMC simulations.

1.1 Hubbard model

The two-dimensional Hubbard mode! [8,9] we shall study is defined by

the Hamiltonian:
H=Hg+H,+Hv, (1.1)

where Hg, H, and Hy stand for kinetic energy, chemical energy and
potential energy, respectively, and are defined as

Hy = —t Z (c;rdcja + c;-gcw),

(t.4).0

H” = —-,LLZ(’HZ'T + nil)

0 (-3 1)

and
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e ¢ and j label the spatial sites of the lattice. (¢,j) represents a
pair of nearest-neighbor sites in the lattice and indicates that the
electrons only hopping to nearest neighboring sites,

e the operators c; and c;; are the fermion creation and annihila-
tion operators for electrons located on the ¢th lattice site with z

component of spin-up (¢ = 1) or spin-down (o = |), respectively,

e the operators n;, = c;-r(,cw are the number operators which count
the number of electrons of spin ¢ on site ¢,

e t is the hopping parameter for the kinetic energy of the electrons,
and is determined by the overlap of atomic wave functions on neigh-
boring sites,

e U is the repulsive Coulomb interaction between electrons on the
same lattice site. The term Un;yn;| represents an energy cost U for
the site 7 has two electrons and describes a local repulsion between
electrons,

e 4 is the chemical potential parameter which controls the electron
numbers (or density).

Note that we consider the case of a half-filled band. Hence the Hamil-
tonian is explicitly written in particle-hole symmetric form.

The expected value of a physical observable O of interest, such as
density-density correlation, spin-spin correlation or magnetic suscepti-
bility, is given by

(0) = Tx(0P), (12)
where P is a distribution operator defined as
1
P Lo, (1.3)

and Z is the partition function defined as
Z = Tr(e PM), (1.4)

and [ is proportional to the inverse of the product of the Boltzmann’s
constant kg and the temperature T

1

b= kpT

3 is referred to as an inverse temperature.
“TY” is a trace over the Hilbert space describing all the possible oc-

cupation states of the lattice:

Tr(e M) = ~(ghsle "),

2
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where {{4;)} is an orthonormal basis of the Hilbert space. Note that the
trace does not depend on the choice of the basis. A convenient choice
of the basis is the so-called “occupation number basis (local basis)” as
described below.

In a classical problem where H = E is the energy, a real variable,
then exp(~BE)/Z is the probability, where Z = [ e PE. In quantum
mechanics, as we shall see, we will need to recast the operator exp(—GH)
into a real number. The “path integral representation” of the problem
to do this was introduced by Feynman and Hibbs [3].

Remark 1.1. According to Pauli exclusion principle of electrons, there
are four possible states at every site:

|} no particle,
[T) one spin up particle,
|{) one spin down particle,
|T1) two particles with different spin directions.
Therefore the dimension of the Hilbert space is 4V, where N is the
number of sites.
The actions of the spin creation operators ¢/, on the four states are

1) 11 10 11D
ity o [1l) 0
dliy It o o

The actions of the spin annihilation operators ¢, are

|l'> [T 1L 111
cr|0 ) 0 [])
cl|0 0 [) T

Remark 1.2. The states |-) and | 1) are the eigen-states of the number
operator ny = c$cT:

nrl) =0[-) =0, ng|T) =1).

When the operator n1 takes the actions on the states | |) and | T]), we
have
ntll) =0, np[TL) =]|TL).
The states |-) and | |) are the eigen-states of the number operator
n| = CICl:
nyl)=0[) =0, nl)=11).
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When the operator n; on the state | 1) and | 1]}, we have

n|T) =0, ny|1l) =[10).

The operator U(ns — é)(n - %) describes the potential energy of two
electrons with different spin directions at the same site:

Ulny = g)(ny = 3) 2 1) =+%1) 1) =-FI1,
L) ==Z10, 111 =+Y4|11).

These eigenenergies immediately illustrate a key aspect of the physics of
the Hubbard model: The single occupied states |T) and ||) are lower in
energy by U (and hence more likely to occur). These states are the ones
which have nonzero magnetic moment m? = (ny — n})2. One therefore
says that the Hubbard interaction U favors the presence of magnetic
moments. As we shall see, a further question (when ¢ is nonzero) is
whether these moments will order in special patterns from site to site.

Remark 1.3. The creation operators c}a and the annihilation operators
Ciy anticommute:

{Cja, ng/} = 6j€50'a'”
{C..?r'o’ CIO”} = 0’
{cjcra céa’} = 0:

where the anticommutator of two operators a and b is defined by ab+ ba,
ie., {a,b} = ab+ba, and §;, = 1 if j = ¢, and otherwise, djg = 0.
If we choose £ = j and ¢ = ¢’ in the second anticommutation relation,
" we conclude that (c;r.(,)2 = 0. That is, one cannot create two electrons on
the same site with the same spin (Pauli exclusion principle). Thus the
anticommutation relations imply the Pauli principle. If the site or spin
indices are different, the anticommutation relations tell us that exchang-
ing the order of the creation (or destruction) of two electrons introduces
a minus sign. In this way the anticommutation relations also guarantee
that the wave function of the particles being described is antisymmetric,
another attribute of electrons (fermions). Bosonic particles (which have
symmetric wave functions) are described by creation and destruction
operators which commute.
Remark 1.4. When the spin direction o and the site i are omitted, a
quantization to describe the states is

|0} : no particle,
|1) : one particle.

The actions of the creation and destruction operators on the states are

¢ |0) —0, |1)—]0),

¢t [0) = 1), 1) — 0. (1.5)
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Subsequently, the eigen-states of the number operator n = cfc are
n : [0)=0, |[1)=][1).

In addition, the operator cTciH describes the kinetic energy of the elec-

i

trons on nearest neighbor sites:

cleqer 100) — 0, {01) — [10),
110) — 0, |11) — ¢][10) — 0.

Therefore, if there is one particle on the (i + 1)th site, and no particle on
the sth site, the operator cTciH annihilates the particle on the (¢ + 1)th

i
site and creates one particle on the ith site. We say that the electron
hops from site ¢ + 1 to site ¢ after the action of the operator c;f Cit1-

1.1.1 Hubbard model with no hopping

Let us consider a special case of the Hubbard model, namely, there is
only one site and no hopping, t = 0. Then the Hamiltonian H is

H=U (nT - %) (“l - %) — p(ng +mny)-

It can be verified that the orthonormal eigen-states ¢; of the operator
n, are the eigen-states of the Hamiltonian H:

Hel) =51, 1= (5 -+ )N,
1= (5 = e+ D)0 110 = (5 - 20) 111).
The Hamiltonian H is diagonalized under the basis {1:}:

12

H— ((WilHlv;)) = T kr) U (u+Y)

Consequently, the operator e~ M is diagonalized:

e s o % diag (1, BU/2H) (BU/24n), ew) .

The partition function Z becomes

2 = Tr(e ™) = S (e M) — 2 = e~ F (14 2e(579)% 4 eh).

T
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The operators He P, nie M n e and nyn;e~#™ required for cal-
culating physical observables O of interest become

He PH e‘¥diag (%, <—,u — g) ePU/2+u),

1
< p— O AU/ (% _ Qu) ew) ’

dia (0’ U2 ezw) 7
(

nTe_ﬁH TB
ne= " e~ diag (0,0 ﬁ(U/2+u)762uﬁ)’
_ __ﬁ
nine s, 4 (O 0,0,ezﬂﬂ).

The traces of these operators are

Tr(He #™M) = e 7 <% +2 <_N — %) eBU/2+p)

+ % — 2,u> 62“ﬂ> ,

Tr((nT + nl)e‘ﬂ')‘f) — e_%g <2eﬁ(U/2+/_L) + 262uﬁ) ,
Tr(ntnge PM) = e~ F o218
By definition (1.2), the following physical observables O can be com-
puted exactly:

1. The one-site density p = (ns) + (n|) to measure the average occu-
pation of each site:

n n e BH
p= o) + (ny) = LT

2e(§+1)8 4 9c218

14 2e($Hu)8 | caus

When there is no chemical potential, i.e., g = 0, p = 1 for any
U and g, it is referred to as “half-filling” because the density is
one-half the maximal possible value.

2. The one-site energy E = (H):

Tr(He M)
Tr(Z)

U (2,u+U)e(%+")5 + 2ue?#P
4 1+ 2e(51)8 4 g2us

E=(H)=
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When there is no chemical potential, i.e., u =0,
U U

4 2l+eF)
Figure 1.1 shows the plot of E versus U and (.

yE

y

0 -0.54 !

Potential energ

I
(¥,

0 .

Figure 1.1. Potential energy E for t = 0, = 0.

3. The double occupancy (ning) is

o Tr(nyn e P™) e2HP
V13 A — = "
I Tr(Z) 1+ 2e(5+4)8 4 c2u8
When there is no chemical potential, i.e., p =0,
1
nin|) = ————.
) = S+ %)

Note that as U or 3 increases, the double occupancy goes to zero.

1.1.2 Hubbard model without interaction

When there is no interaction, U = 0, the spin-up and spin-down spaces
are independent. H breaks into the spin-up (1) and spin-down (|) terms.
We can consider each spin space separately. Therefore, by omitting the
spin, the Hamiltonian H becomes

H=-t Z(c;'cj + c;ci) - uZni‘
(4.5) ?
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It can be recast as a bilinear form:

H=cl(—tK — ul)c,

where
C1
C2
_ PN A | T
c=| . and ¢! = [e1, ¢y -y Nl
CN

and I is the identity matrix, K = (ki) is a matrix to describe the
hopping lattice geometry (i, j):

s — 1,if 7 and j are nearest neighbors,
B 0, otherwise.

For instance, for a one-dimensional (1D) lattice of N, sites, K is an
N, x N, matrix given by

1 01

1 10
The (1, Ng) and (N, 1) elements of K incorporate the so-called “periodic
boundary conditions {(PBCs)” in which sites 1 and N, are connected by
t. The use of PBC reduces finite size effects. For example, the energy on
a finite lattice of length N with open boundary conditions (OBCs) differs
from the value in the thermodynamic limit (N — oo) by a correction of
order 1/N while with PBCs, the correction is order 1/N2.9 The use of
PBCs also makes the system translationally invariant. The density of
electrons per site, and other similar quantities, will not depend on the
site in question. With OBCs quantities will vary with the distance from
the edges of the lattice.

For a two-dimensional (2D) rectangle lattice of N; x Ny sites, K is
an NN, x N;N, matrix given by

K=FKp=I,9 K, +K,®I,

where I, and I, are identity matrices with dimensions N, and NV, re-
spectively; ® is the matrix Kronecker product.

@A simple analogy is this: Consider numerical integration of f(x) on an interval
a < = < b. The only difference between the rectangle and trapezoidal rules is in their
treatment of the boundary point contributions f(a) and f(b), yet the integration
error changes from linear in the mesh size to quadratic.



