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Preface

Cognitive science is the interdisciplinary study of mind and intelligence, in
which psychology, neuroscience, artificial intelligence, anthropology, optometry,
speech and hearing sciences, linguistics, biology, information science, and philoso-
phy play major roles, computer science, statistics, informatics, and physics contrib-
ute important techniques and technical methods, and education, business, and gov-
ernment agencies are major areas of application. It is concerned with all our mental a-
bilities — perceiving, learning, remembering, thinking, reasoning, and understand-
ing. The research methods in cognitive science are similar to and compatible with the
natural sciences, and especially physics, with behavioral experiments and brain
measurements providing data that are fit with mathematical and computer simulation
models. As brain imaging techniques have become increasingly available in recent
years, cognitive science has seen especially pronounced growth of cognitive neuro-
science. In addition to addressing the profound scientific problems of the nature of
mind and brain, cognitive science also develops practical technology for constructing
intelligent systems.

There are currently three main approaches in cognitive science, although the
three overlap extensively: experimental psychology, computational cognition, and
cognitive neuroscience. Experimental psychology applies experimental methods to col-
lect behavioral data to investigate human cognition. Human choices, psychophysical
responses, response times, and eye tracking are often measured and collected in ex-
perimental cognitive psychology. Computational cognition develops formal mathemati-
cal and computational models of human cognition based on either symbolic and sub-
symbolic representations, dynamical systems, or some combination of the two. Cogni-
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tive neuroscience investigates the biological mechanisms underlying cognition, with a
specific focus on the neural substrates of mental processes and their behavioral mani-
festations that are typically based on measurements of brain activity. It addresses the
questions of how psychological/ cognitive functions are produced by the neuralcircuitry
and even chemical activity. The three approaches are often inter-linked and provide
both independent and complementary insights in every sub-domain of cognitive sci-
ence.

The intellectual origins of cognitive science arose in the mid-1950s with the ad-
vent of mathematical and computational modeling, theoretical formalisms for language
and thought, and theories of mind based on complex representations. Since 1970,
more than sixty universities in North America and Europe have established cognitive
science programs and many others have instituted courses in cognitive science. Cogni-
tive science research has produced an extensive body of principles, representations,
and algorithms. Successful applications range from treatment of mental illness through
economics, business, and custom-built expert systems to mass-produced software and
consumer electronics.

Realizing that cognitive science is not only one of the frontiers in scientific re-
search, but also critical for economic development, new-generation technologies, and
human health and well-being, the Chinese government declared cognitive science one
of the five top national priorities of scientific research in 2005. This declaration takes
notice of the fact that cognitive science is a relatively new discipline, making it possi-
ble for Chinese scientists to develop first-rate programs in a relatively short period of
time. Chinese developments have thus far focused on neural approaches: Much like
what happened in the United States, every major Chinese University now views MRI
as an instrument establishing scientific credibility in the field, and one required to
maintain and/or improve their academic status. Thus many universities have, or are
about to purchase, state of the art MRI instruments. A number of brand new cognitive
science centers, institutes, and key laboratories have emerged in the recent years
with a focus on neural measurements and associated techniques.

Supported by the US National Science Foundation, US Asian Office of Aerospace
Research and Development, University of Southern California, and Beijing Normal
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University, a workshop, “Cognitive Science: From Cellular Mechanisms to Computa-
tional Theories” , was held in Beijing, China from May 25th to 27th, 2009. The
workshop was organized by Drs. Zhong-Lin Lu, YuejiaLuo, Xiaoping Hu, Guogiang
Bi, RichardShiffrin. The workshop has several related aims, each designed to pro-
mote Cognitive Science in China: (1) promote interchanges across multiple sub-dis-
ciplines of cognitive science that investigate cognition at different levels and using dif-
ferent tools, (2) survey the current state of cognitive science research in China and
showcase to scientists and students in China the quantitative methods, successes, and
interdisciplinary nature of cognitive science, and (3) establish channels for collabo-
rative research, and initiate exchange programs at multiple levels.

The workshop brought researchers from a broad spectrum of distinct and connect-
ed sub-disciplines together to seek cross-disciplinary interactions and collaborations.
The workshop was a tremendous success. We had 17 distinguished speakers and more
than 180 participants ( postdocs and graduate and undergraduate students) from many
major universities, research institutes and organizations. The poster session had 27
presentations. In addition, there was a two-hour discussion session in the end of each
day during the workshop.

While this book originated as the proceedings of the conference, it has been or-
ganized and expanded to cover Cognitive Science in a coherent manner. The editors
solicited new chapters from outstanding scholars. Contributors include distinguished
scientists from many sub-areas of cognitive science. Some are widely known outside
the field of cognitive science. The list of authors includes many who are members of
their nations academies of science, recipients of prestigious scientific prizes, and au-
thors of some of the most widely cited papers in cognitive science. Most of the authors
have made significant contributions to the field of cognitive science. We are extremely
pleased that this distinguished group agreed to participate in the workshop, and to
contribute chapters to this book.

This book covers recent progress in cognitive science from cellular mechanisms
to computational theories. We think it would be suitable for upper-level undergradu-
ate and graduate courses on cognitive science. But primarily, the book is intended for
scientists, graduate and postdoctoral students working in areas of cognitive science.
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All the contributors and many other people have given us a great deal of help in
organizing the workshop and producing this book. In particular, we thank the staff
and students, especially Wanjun Lin and Jinchuan Chen, in the Key Laboratory of
Cognitive Neuroscience and Learning for their help in organizing the workshop. We
wish to thank Xiaohong Chenfrom Peking University Press. We also thank NSF,
AOARD, USC, and Beijing Normal University for their generous support.

Zhong-Lin Lu, Columbus, Ohio, USA
YuejiaLuo, Beijing, China
February, 2013
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Contributions of Ideal Observer Theory to
Vision Research

Wilson S. Geisler

( Center for Perceptual Systems and Department of Psychology, University of Texas at Austin)

Abstract: An ideal observer is a hypothetical device that performs optimally in a
perceptual task given the available information. The theory of ideal observers has
proven to be a powerful and useful tool in vision research, which has been applied to
a wide range of problems. Here I first summarize the basic concepts and logic of ideal
observer analysis and then briefly describe applications in a number of different areas,
including pattern detection, discrimination and estimation, perceptual grouping,
shape, depth and motion perception and visual attention, with an emphasis on recent
applications. Given recent advances in mathematical statistics, in computational pow-
er, and in techniques for measuring behavioral performance, neural activity and natu-
ral scene statistics, it seems certain that ideal observer theory will play an ever increas-

ing role in basic and applied areas of vision science.

CA email: geisler@psy. utexas. edu
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Introduction

The major goal of basic vision research is to understand and predict visual per-
formance. Empirical progress toward this goal has come from measurements of natural
stimuli, physiological optics, anatomy and neurophysiology of visual pathways, and
behavioral performance in adult and developing organisms. Empirical findings in vi-
sion research have been interpreted and driven by a wide array of qualitative and
quantitative theories and models. Of the quantitative theories, the theory of ideal ob-
servers has played a unique and fundamental role, especially during the last 25
years.

There are many different visual tasks human and non-human primates perform
under natural conditions and can perform under laboratory conditions. What is ulti-
mately desired is a general theory that parsimoniously explains and quantitatively pre-
dicts visual performance in arbitrary natural and laboratory visual tasks. The field is a
very long way from such a theory. Instead, vision researchers have been forced to
identify specific well-defined tasks, or families of tasks, and then attempt to develop
informal or formal models that can explain and predict performance in those specific
tasks. For each task or family of tasks the field typically attempts to address a number
of fundamental questions, which include: What are the properties of the stimuli in a
given task that contribute to the measured performance? How and where are those
properties encoded into neural activity along the visual pathway? How are the different
sources of task-relevant sensory information combined by the visual system? What are
the relative contributions of peripheral and central mechanisms in the task? What are
the contributions of “bottom-up” and “top-down” mechanisms in the task? How is
the task-relevant information in the neural activity along the visual pathways decoded
into behavior?

Twenty-five years ago ideal-observer theory had only been worked out and ap-
plied to a very narrow range of simple tasks. In the intervening years it has been ap-
plied to much wider range of tasks. This article attempts to summarize some of the
different kinds of tasks where ideal observer theory has played a major role in develo-
ping models of visual performance and in answering one or more of the questions lis-
ted above. Due to space limitations, the primary focus is on behavioral performance,

even though ideal observer theory has also played an important role in studies of the
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underlying neurophysiology. Before getting down to specific tasks, there are some

general points to make about the theory of ideal observers.

Ideal Observers

An ideal observer is a hypothetical device that performs a given task at the opti-
mal level possible, given the available information and any specified constraints. If
the ideal observer can be derived for a given task, then it can serve vision research in

several importam ways:
1. Identifying task-relevant stimulus properties

The ideal observer performs its task optimally; thus, in deriving the ideal ob-
server one is forced to identify, at least implicitly, all the task-relevant properties of
the stimuli. This makes it possible to rigorously evaluate and test which relevant stim-

ulus properties real observers exploit when they perform the task.
2. Describing how to use those properties to perform the task

The ideal observer explicitly specifies one set of computations that is sufficient to
achieve optimal performance in the task. Although there may be other sets of compu-
tations that are sufficient to achieve optimal or near-optimal performance, an ideal ob-

server often provides deep insight into the computational requirements of the task.

3. Providing a benchmark against which to compare the performance of re-

al or model vision systems

The performance of the ideal observer is a precise “information measure” that
describes how the task-relevant information varies across stimulus conditions. In gen-
eral, real and model (heuristic) observers do not efficiently use all the task-relevant
information and hence do not reach the performance levels of the ideal observer.
However, if a real or model observer is exploiting the same stimulus properties as the
ideal observer, then its performance should parallel that of the ideal observer (e. g. ,
stimulus conditions that are harder for the ideal observer should be harder for the real
or model observer). When human performance approaches ideal performance, then
the implications for neural processing can become particularly powerful ; specifically,

all hypotheses (' model observers) that cannot approach ideal performance can be re-
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jected. When human performance is far below ideal, there are generally a greater

number of models than could explain human performance.
4. Suggesting principled hypotheses and models for real performance

Natural selection and learning during the lifespan necessarily drive perceptual
systems in the direction of optimal performance in the tasks the organism normally
performs in its natural environment. Although perceptual systems may not reach opti-
mum , it is a good bet that they are closer to ideal than to the simple models one might
generate from intuition or to explain some experimental result. Thus, a powerful re-
search strategy is to use the ideal observer to guide the generation of hypotheses and
models of real performance. This is often done by degrading the ideal observer with
hypothesized neural noise or with hypothesized heuristic computations that approxi-
mate ideal computations. Models generated this way are principled and often have
very few free parameters.

In all visual tasks, performance is limited at least in part by various sources of
random variability. These include variability in the stimuli (e. g. , photon noise, het-
erogeneity of the objects defining a category, variability in scene illumination, varia-
bility due to the projection from a 3D environment to the 2D retinal images) , varia-
bility in the sensory neural representation (e. g., sensory neural noise), and varia-
bility in the decoding circuits (e. g. , decision and motor neural noise). Thus, ideal
observers are properly defined in probabilistic terms, using statistical decision theory
and information theory. Most of the ideal observers described here fall within the
framework of Bayesian statistical decision theory.

The logic and structure of a Bayesian ideal observer is relatively straight forward.
In most visual tasks, there is some actual unknown state of the world w (e. g. , a par-
ticular class of physical object) that gives rise to a particular ( random) received
stimulus S reaching the eyes. The observer’s goal is to make the response r, that
maximizes the utility ( or equivalently minimizes loss) averaged over all possible
states of the world (in that task) , given the stimulus S. If some biological constraints
are included, then the goal becomes maximizing utility given a neural 'representation
of the stimulus Z = g(S;6), where g(S;60) is the constraint function that specifies
the mapping of the stimulus into a neural representation. For example, Z might re-
present the number of photons absorbed in each photoreceptor, and g(S;6) the map-

ping from the stimulus at the eyes to photons absorbed in each photoreceptor. ( The
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symbol @ is included because in some applications of ideal observer theory it is useful
to allow unknown parameters in the mapping from stimulus to neural representation ;

see later. ) Formally, the ideal observer’s response is given by
rp(Z) = argmax( Y y(r,0)p(w| 2)) (1)

where p(w | Z) is the posterior probability of each state of the world given the re-
ceived signal Z, and y(r,w) is the utility (gain or loss) of making response r when
the true state of the world is w. If there is no constraint function, then Z in equation
(1) is replaced by S. The performance of the ideal observer (e. g. , accuracy and/or
reaction time) can sometimes be determined by direct calculation, but often can be
determined only by Monte Carlo simulation (i.e. , applying equation (1) to random
samples of the signal Z).

Equation (1) is fairly general; in fact, all of the examples of ideal observers de-
scribed here are special cases. However, as a concrete example, consider a task
where there are just two categories of object and the observer’s task is to be as accu-
rate as possible in identifying which object was presented. In this case, the state of
the world can take on only two values (w =1 and w =2) and observer’s responses
can take on only two values (r=1 and r =2). Because the goal is to be as accurate
as possible, the proper utility function rewards correct responses (y(r,w) =1 if r =
® and does not reward (or punishes) incorrect responses (y(r,w) =0 if r#w).
Substituting into equation (1) shows that the ideal decision rule is simply_to make re-
sponse r=1 if p(w=11Z) <p(w =21Z) and otherwise make response r =2. In oth-
er words, the rule is simply to pick the object with the highest posterior probability.

Although the ideal observer framework as described above is sufficient for pres-
ent purposes, there are a number of useful elaborations of the framework that should
be mentioned here. One conceptual elaboration is the influence graph (or Bayesian
network ) , which describes the qualitative mapping between states or properties of the
world @ and properties of the stimulus S (e. g. , see Kersten, Mamassian & Yuille,
2004 ; Jacobs & Kruschke, 2010). Influence graphs specify the task relevant proper-
ties of the world (local environment) and stimulus, and their causal relationships,
and they imply how those properties should be treated in computing posterior proba-
bilities for the task. A second elaboration of the framework is to incorporate mecha-
nisms (including ideal Bayesian mechanisms) for learning posterior probability distri-

butions, utility functions, or simple decision rules equivalent to equation (1), either
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on short (Jacobs & Kruschke, 2010) or evolutionary ( Geisler & Diehl, 2003) time
scales. A third elaboration is to take into account biophysical costs (e. g., energy)
of neural computations ( Laughlin & Sejnowski, 2003 ; Koch et al. , 2004 ; Manning
& Brainard, 2009) and motor responses ( Kording & Wolpert, 2006) , or more gen-
erally fitness ( Geisler & Diehl, 2003 ).

Pattern Detection, Discrimination and Identification

The earliest applications of ideal observer theory in vision were concerned with
understanding how detection is limited by photon noise and how the performance of
real observers compares that of an ideal observer that is limited only by photon noise
(e.g., Rose, 1948; DeVries, 1943; Barlow, 1957; Cohn & Lashley, 1974). For
this ideal observer, the threshold for detecting an increment (or decrement) in inten-
sity increases in proportion to the square root of the background ( baseline) intensity.
Early studies showed that there are some conditions in which human increment detec-
tion performance parallels that of the photon noise limited ideal observer, but, on an
absolute scale, humans are substantially less efficient than the ideal observer.

Shortly after the 25" anniversary of Vision Research, photon-noise-limited ideal
observers were derived and applied to a wider range of tasks, including various acuity
tasks ( Geisler, 1984 ; 1989 ), contrast sensitivity and contrast discrimination tasks in
adults ( Banks, et al. , 1987; Geisler 1989 ; Banks et al. 1991; Sekiguchi et al.
1993; Arnow & Geisler, 1996) and in infants ( Banks & Bennett, 1988) , color dis-
crimination ( Geisler, 1989) , and letter identification ( Beckman & Legge, 2002).
These studies also evaluated the additional effects on ideal observer performance of bi-
ological constraints such as the optics of the eye, the spatial and chromatic sampling
by the photoreceptors, photoreceptor noise, and ganglion cell spatial summation. This
work provides insight into how optics, photoreceptors, photon noise, and retinal spa-
tial summation contribute to human performance. The general finding is that human
performance is suboptimal, but often parallels ideal observer performance qualitatively
(and sometimes quantitatively) for a surprising number of detection and discrimina-
tion tasks. In other words, for these tasks the variation in human performance across
conditions is often predicted by the information available in the retinal responses ( see
Geisler, 2003 for a review ). Nonetheless, the suboptimal performance of human ob-

servers implies substantial contributions of central factors.
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Barlow (1978) reasoned that it may be possible in psychophysical experiments
to largely bypass the effects of photon noise and retinal factors, and hence isolate the
effects of some of the central factors, by adding high levels of external noise. This
proved to be a powerful insight that spawned a number of studies measuring target de-
tection and identification in Gaussian or Poisson pixel noise. Importantly, using sta-
tistically independent Gaussian or Poisson pixel noise makes it is relatively easy to de-
rive and determine ideal observer performance. For example in simple detection
( where the goal is to maximize accuracy) the ideal observer applies a template matc-
hing the shape of the target and then compares the template response to a criterion.
Adding external noise raises detection and identification thresholds; however, as ex-
pected from bypassing low-level factors, performance generally moves closer to that of
the ideal observer (i.e. , efficiency increases).

For an ideal observer limited by external noise, the square of contrast detection
(or identification ) threshold increases linearly with the square of the root-mean-
squared (rms) contrast of the external noise. Human thresholds match this prediction
approximately both in the fovea ( Burgess et al. ,1981; Legge et al. , 1987; Pelli,
1990) and in the near periphery ( Najemnik & Geisler, 2005), once the external
noise contrast exceeds a certain level (see Figures la and 1b). Measuring contrast
thresholds as a function of external noise contrast allows one to estimate an equivalent
internal noise, which can be interpreted as the combined effect of those low-level fac-
tors that are swamped ( dominated) by the external noise as external noise contrast in-
creases (for review see Pelli & Farell, 1999).

Although efficiency is higher with moderate to high levels of external Gaussian or
Poisson noise, performance is still generally well below ideal. Several factors proba-
bly contribute to this suboptimal performance. One factor is internal uncertainty
(Tanner, 1961; Nachmias & Kocher, 1970; Cohn & Lashley, 1974 ; Pelli, 1985) ,
which may include uncertainty about the spatial location of the target ( spatial uncer-
tainty) or uncertainty about certain target feature properties such as orientation or
shape (channel uncertainty). These are forms of internal noise that necessarily limit
performance. Another factor is contrast nonlinearities (e. g. , contrast gain control) ,
which may produce masking effects above and beyond those due to the similarity of
the target and external noise (Foley & Legge, 1981; Foley, 1994; Geisler & Al-
brecht, 1997). A third factor is inefficient pooling of target feature information. If

the features that the real observer uses to detect the target do not correspond to the
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template that matches the shape of the target, then performance will be suboptimal.
The image features that an observer uses in performing a detection or identification
task can be estimated using the classification image technique, which is based on ide-
al observer theory and measures the trial-by-trial correlation between the image noise
pixels and the observer’s behavioral responses ( Ahumada, 1996). Measurements of
classification images for various kinds of target reveal non-optimal pooling of feature
information ( Ahumada, 1996; 2002; Eckstein et al. , 2002; Gold et al. , 2000;
Murray et al. , 2005). Some of this non-optimal pooling is due to uncertainty and
contrast nonlinearities. However, these factors can only blur (or sharpen) the classi-
fication image; whereas measured classification images frequently reveal missing tar-

get features and sometimes added illusory features ( Figure lc; Murray et al.

2005).
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Figure 1 Detection and discrimination in Gaussian noise. a. Detection threshold as a
function of white noise power for one observer for five pedestal contrasts. (adapted from
Legge et al. , 1987). b. Detection threshold for a 6 cpd target as a function of 1/f noise
contrast for two observers at two retinal eccentricities ( adapted from Najemnik & Gei-
sler, 2005). c. Classification images for shape discrimination in white noise ( adapted

from Gold et al. , 2000).



