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Preface

UNTIL about 1960, the attention given to turbulence theory was much less
than was justified by its obvious interest and importance. Practising engineers
were repelled by its complexity and by its inability to tell them anything
that they actually wanted to know. Its relative neglect by the mathematical
physicists is harder to understand since its structure is similar to, but simpler
than, that of quantum field theories.

In 1958 the theory could give only a few isolated results, and the central
problem of closure of the Navier-Stokes equations remained quite un-
touched. In 1958 and 1959 R. H. Kraichnan published two papers which
contain the essence of his Direct Interaction method for effecting this closure.
In the years since then, he has devoted much effort to justifying this method
and to examining the predictions which it makes of phenomena at high
wavenumbers. There is now an increasing body of opinion which holds that,
although his work is not conclusive, it does represent a great advance in our
understanding, and that much in it is of permanent value.

In 1964, S. F. Edwards offered another method of closing the Navier—
Stokes equations which was based on Fokker-Planck principles. Subsequent
work by Kraichnan, Edwards, and myself has shown that, although the
Fokker-Planck and the Direct Interaction methods are not identical, yet
they are very closely related. The same is true of other closure methods which
have been devised since.

My aim in writing this book has been to makel these developments acces-
sible to a wider circle of people, and to encourage more research workers to
take up this difficult but interesting and rewarding subject. I have had in
mind readers both with engineering and with mathematical backgrounds.
For the sake of the engineers, I have kept the mathematics as simpie as is
consistent with a proper exposition of the subject and mathematical ideas
which such readers may not have met before are explained in the first two
Chapters. For mathematical readers, I have tried to explain which aspects
of the subject are of particular concern to engineers, and to give a little of the
engineering background.

Although the total volume of Kraichnan's published work 1s very large,
his papers are terse in that they omit a good deal of algebraic detail. I have
not tried to describe everything that he has done, but I have given more
detail than he does of those parts of his work which I do discuss.

As already noted, Chapters 1 and 2 are a mathematical introduction to
the subject. Chapter 3 explains the problem of closure, the central difficulty
of the theory of turbulence, and also contains further introductory mathe-
matics. The Direct Interaction method is explained in Chapter 4, justified
in Chapter 5 and applied to the Navier-Stokes equations in Chapter 6.

188954



viil Preface

Other methods of closure, including the Fokker—-Planck method, are de-
scribed in Chapter 7. Chapter 8 is devoted to the diffusion of a passive scalar
by a turbulent velocity field : this chapter includes a number of results which
antedate the invention of Direct Interaction. Chapters 9—12 show how Direct
Interaction can be combined with 2 Lagrangian representation of the fluid
motion, the need for this change of representation being explained in Chapter
9.

in the last three chapters, an attempt is made to connect the rather abstract
theory presented in the rest of the book with the more practical aspects of
turbulent flow. Chapter 13 is mainly for the more mathematical reader.
It describes the properties of a particular real flow which ts used to illustrate
the methods. Chapter 14 explains some of the methods which are currently
used to make engineering calculations. It lays particular emphasis on a
new method due to Hanjalic and Launder which, besides its obvious practical
success, seems to be closely refated to the more fundamental theory.

Finally, Chapter 15 sets out my own ideas on how Direct Interaction
might be used to solve this problem. These ideas have not been fully worked
out, and such relatively undeveloped material would not normally be put
v a book. I have put it in because it is the only work known to me (apart
from a purely formal paper by Kraichnan) which attempts to relate the theory
explained in the rest of the book to engineering problems; as such, it will,
it is hoped, be of particular interest to engineering readers. Such readers
are advised to omit the whole of Chapters 5 and 7, §§ 9.4-9.7 of Chapter 9,
the whole of Chapter 10, and § 11.4 and [1.5 of Chapter 11 in their first
encounter with th¢ book.

A glossary of the notation follows on pp. xv-xix. In addition to a list of
symbols, this giossary describes the principles underlying the notation and
indicates briefly how it differs from that of other authors.

It is a pleasure to thank the people who have heiped me to write this book.
My greatest debt is to Dr. S. F. Edwards F.R.S., Plummer Professor of
Physics in the Urniversity of Cambridge. He introduced me to the subject,
and has patiently steered me round some of its many pitfalls. If I persist in
falling into them, that is not his fault. I have been much helped by correspon-
dence with, and a visit to, Dr. Robert H. Kraichnan and by discussions with
Mr. P. Bradshaw of the Department of Aeronautical Engineering at Imperial
College and with Dr. B. E. Launder of the Department of Mechanical
Engineering at the same College. These four people have seen the book
(or parts of it) in manuscript. Both they and the reviewers of the Clarendon
Press have made helpful suggestions and comments, many of which have
been incorporated. Naturally, this does not relieve me of sole responsibility
for the book’s defects.

The tirst half of this book was written while [ was on the staff of the Atomic
Energy Establishment, Winfrith, and T am very grateful for the constant
support which I received from the Director, Mr. D. W. Fry, and my Head of
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Division, Mr. W. S. Eastwood. Finally, I am much indebted to Miss Jennifer
Rogers, Mrs. Linda Hawkes, Mrs. Sylvia Monk, and Mrs. Norah Lowe for
their devoted typing of a difficult manuscript, and to the authors and editors
of journals who have allowed me to reproduce figures from published
papers.

London DCL.
October 1972
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1. Introductory material

1.1. Historical note

VIEWED mathematically, the central problem of turbulence theory is to
obtain statistical solutions of the Navier-Stokes equations, but it has taken
a long time for this fact to become apparent. Some remarkable engravings
show that Leonardo da Vinci studied the physical appearance of turbulent
flow, but the first paper to show any understanding of the phenomenon was
published by Osborne Reynolds in 1883. This was followed in 1895 by a
second publication in which he introduced the ideas of Reynolds stress and
Reynolds number. These papers describe turbulence as ‘sinuous motion’;
their contents do not suggest that Reynolds was aware that he was dealing
with a statistical phenomenon. The statistical nature of turbulence was
first realized by Taylor (1921, 1935); this is implicit in his first paper and
explicit in the title of his second paper.

There has been a rather agonizing gap between the realization of the
nature of the problem and the first steps toward solving it. Although some
interesting results were produced between 1930 and 1960, the main develop-
ment in this period was an increasing realization of the difficulties of tur-
bulence theory; it was found that the normal techniques of fluid mechanics
were not powerful enough for the work. The state of knowledge at that time
1s well summarized in the books of Batchelor (1971), Townsend (1956),
and Hinze (1959).

In the late nineteen-fifties and early sixties, first Kraichnan and then
Edwards applied the techniques of quantum field theory to this problem
and were able to overcome, to some extent at least, the difficulties which
had defeated earlier workers. This book is mainly concerned with these
later developments.

1.2. Tensor notation

A Cartesian tensor notation is always used in work on turbulence, and
no other notation can satisfactorily describe the quantities which arise in
this work. Readers who are unfamiliar with the notation should study it in
one of the standard texts, of which the book by Jeffreys and Jeffreys (1966)
is an attractive example. The general tensor calculus which is used in the
theory of relativity is complex, and this complexity has given the subject
a bad name. The Cartesian tensor notation, which is all that is needed for this
work, is no more complex than vector algebra.

The reader who is unfamiliar with the subject has to master only three basic
ideas. The first is the use of a suffix to denote the components of a vector or
a tensor; thus the coordinate vector (x,y,z) 1s written (x,, X,, X3) = X;
and the velocity vector (i, v, w) as (u,, #,, u3) = u;. This vector is a function



2 Introductory material

of the space coordinates, a fact which is recognized by writing
u; = ux).

The right-hand side should strictly be written u(x;) but this seems unneces-
sarily pedantic. Similarly the differential vector operator

_(535

8x’ 8y’ oz

is written d/dx;.
The second basic idea is that repeated indices are summed from 1 to 3;
thus

aib,- = albl + a2b2 + a3b3,

a quantity which is written a. b in vector notation. Similarly div a is written
0a;/¢x;. The tensor notation for curl a is more awkward, but fortunately
we shall have no occasion to use it.} -

Lastly, the reader must acquaint himself with the Kronecker symbol

S,=1 ifi=]

i
(1.1)
=0 ifisj
whose uses will become clear as we go on. Among its more evident proper-
ties are
6;,— = 3 and 5 a ai.

it =

1.3. The equations of motion

Throughout this book, we confine ourselves to the motion of incompres-
sible Newtonian fluids with constant physical properties, since it seems
sensible to restrict ourselves to the simplest possible problem until we start
to get some real results. There is, of course, no implication that the effects
of compressibility, non-Newtonian behaviour, or varying physical properties
are uninteresting or unimportant.

In tensor notation the incompressibility condition reads

u/ox; = 0, (1.2)
while the Navier-Stokes equations take the form
Ou; Ou; .., _  Op
5 + u,,,axm — vy, = _a—x,-' (1.3)

Here v is the kinematic viscosity, which has dimensions L2T~! p is the
normal pressure divided by the (constant) density; it is sometimes called the
kinematic pressure. Note that we do not hesitate to write V2 instead of
52
0x;0x;

t The scalar quantity A, is called the trace of the tensor Ay, and the operation j = i is known
as contraction.
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which would again be rather pedantic. Also, the “inertial term’ is easily
written in tensor notation. The various vector notations for this term are
all rather strained and artificial.

We shall also consider the convection of a passive scalar by this velocity
field. This is governed by the equation

VoY ey = (1.4)
ot X

x being the appropriate diffusivity. For example,  might be the temperature,
in which case x would be the thermal diffusivity k/pC,, k, p, and C, being
the thermal conductivity, the density, and the specific heat respectively.
In this case, it is implied that the temperature differences are too small to
affect the physical properties of the fluid. Alternatively,  might be the con-
centration of a second substance, and x would then be the molecular dif-
fusivity. Again, the condentration of this second substance would have to
be small enough not to affect the physical properties of the first substance.

There are, of course, many useful and interesting extensions of eqns (1.3)
and (1.4). One of the simplest is obtained by making appropriate allowance
for the therma! expansion of the fluid by adding the ‘Boussinesq term’
agyd,; to the right-hand side of (1.3), where a is the coefficient of thermal
expansion of the fluid, g is the acceleration due to gravity, y = T — T,
T being a general temperature and T, a reference temperature, and x;
points vertically upwards. The resulting equations describe Boussinesq
turbulence, which occurs in a fluid heated from below and which is driven
by thermal expansion. Similarly, if we add an electromagnetic force term to
eqn (1.3) and replace (1.4) by the equations of the electromagnetic field, we
can study magnetohydrodynamic turbulence. All such possibilities will be
ignored, tempting though they are, since they can only aggravate the central
problem of solving eqns (1.3) and (1.4).

It is sometimes asked whether the Navier—Stokes equations (1.3) really
do represent turbulence. They are exact for a continuous fluid which shows
Newtonian behaviour under all conditions, and it is perhaps more appro-
priate to ask whether this is an adequate approximation for real turbulent
fluids. We shall see in § 2.8 that there is a fairly definite minimum to the size
of eddy which is found in a turbulent field, and that, for flow at a Reynolds
number of 10% in a pipe 10 mm in diameter (these being very extreme con-
ditions), this minimum eddy is more than 10~* mm in diameter.

The continuum approximation will be valid as long as the minimum eddy
size is substantially larger than the mean free path. This condition is well
satisfied in liquids, in which the mean free path is comparable with atomic
dimensions (10~ 7 mm). It is also satisfied, though not by such a comfortable
margin, by any gas dense enough to produce a Reynolds number of 10%in a
passage only 10 mm in diameter.



4 Introductory material

Velocity and temperature gradients can be high in turbulent fields and
one must also ask whether Newton’s approximation may be inadequate,
even though there is no departure from continuum behaviour. This can be
investigated by using the exact statistical-mechanical equations of motion.
The Navier-Stokes equations are the first approximation to these exact
equations when the velocity and temperature gradients are assumed to be
small and when the properties of the individual molecules are not too
bizarre. This last proviso excludes aggregation and molecular chains which
can tie themselves in knots. The next approximation can be evaluated roughly
in some simple cases and it seems that, while not utterly negligible, it is not
large enough to cause concern.

There is another line of argument which, though rather pragmatic, weighs
heavily with those who are working on this problem. If the Navier—Stokes
equations are in fact inadequate, the proper equations must be more com-
plex and more difficult to solve. It seems sensible to stick to the Navier—Stokes
equations until we have obtained some proper solutions, which should
give real evidence as to their adequacy.

We end this section with two simple transformations which will be useful
later on. Using the incompressibility condition (1.2), the Navier—Stokes
equations (1.3} may be rewritten

Ju; ¢ . ©Op
= + axm(uium) Wy, = “ (1.5
Taking the divergence of this equation and using (1.2) again, we have
2 52
Vip= - (u .
P = e ) (1.6)

and we write the solution of this as

1 &2

p= vz m(u#ml (1.7)

At this stage, the symbol 1,V should not be thought of as implying any
more than that p is the solution of equation (1.6). It will be given a more

definite meaning in § 13.5.
We can now eliminate the pressure from the Navier-Stokes equations,

which may be rewritten

%% - "Vzui = _%Pijm(v)(ujum)’ (1.8)
where
d 7]
P(V) = 5—PAV) + +—Fp(V) (1.9)

0X;

0%,
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and

1 &2
S (1.10)

FiV) =0, — V2 éx,0x,
iv2j

0,; being defined by eqn (1.1.).

1.4. Survey of statistical questions

Fig. 1.1 summarizes the difference between laminar conditions and tur-
bulence. In steady laminar flow the velocity does not change with time while
m turbulent flow it fluctuates in a fairly unpredictable way, although ob-
viously one can say that it is unlikely either to jump outside certain limits or
to change very quickly. These restrictions are perfectly compatible with the
notion of randomness, which may be thought of as unpredictability.

Laminar
£
3
>
Turbulent
Time
FiG. 1.1.  Time dependence of the velocity in laminar and in turbulent flow.

It is often asked how a motion which is described by the Navier—Stokes
equations can be random, since a given set of initial conditions determines
the motion for the rest of time. This question is still being debated, con-
sequently the answer given below may meet with some dissent. It can
be demonstrated both experimentally and theoretically that the Navier—
Stokes equations have enormous amplifying power under the right con-
ditions. Even though two sets of initial conditions may be very similar,
the resulting flows can diverge greatly as time goes on. This means that the
initial conditions must be specified with unrealistic and indeed subniolecular
accuracy in order to determine the flow uniquely and, if one considers only
the molccular level, the motion is random. One therefore either accepts
that a proper specification of the initial conditions is unattainable and
is content to regard the flow as random, or one asserts that the visible



6 Introductory material

randomness 1s, in the end, due to amplification of molecular randomness.
The second point of view is probably the less unsatisfying but, as far as
practical calculations are concerned, either will serve.

Having accepted that the flow is random, one then enquires what in-
formation one can reasonably ask for. The concept of the mean velocity
is almost implicit in Fig. 1.1, and one can also see how it is to be measured.
One will measure the velocity as a function of time, and will then average
this measurement:

T
= (1/T)f u(f) dt. (1.11)
0

This is an integral average, which is the limit of averaging measurements
taken at successive moments of time. This average will itself fluctuate,
depending on the starling-point and duration of the averaging process,
but we can see intuitively that the process will eventually yield a definite
quantity. Mathematically we define i by

T
= lim (I/T)f u(r) dt (1.12)
T+ 0

while experimentally we continue the averaging process until the fluctuations
n @ are acceptably small (and we have to say what we will regard as accept-
able).

This seems quite straightforward, but one encounters logical and mathe-
matical difficulties if the i defined by eqn (1.12) depends on the starting time
of the integration. For this reason statisticians prefer to define the averaging
process in a different way. If one wants to know the velocity at a particular
point in a pipe at a particular time,.one imagines making the experiment on a
great number of pipes at the same time, If the pipes are labelled 1,...,n,... N
and the corresponding measurements are

ule), ..., u"™0),. .., u™M()

(¢ being the time at which all the imaginary measurements are made), the
average velocity at time ¢ is now redefined as

Cu(®)y = lim (1/N) 2 u). (1.13)

This is known as ‘averaging over repeated realizations’ and is the fundamental
definition as used by turbulence theorists. { ) always means a realization
average, while is an average over time; { ) is also called an ‘ensemble
average’.

It may be shown that, if {u(t)) as defined by eqn (1.13) is in fact indepen-
dent of ¢, then i as defined by eqn (1.12) is

1. independent of the time at which the integration is started and

2. equal to (u).
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This is known as the ergodic theorem. 1f {u(t)) is independent of ¢, the velocity
field is said to be ‘stationary’, a stationary turbulent field being the equivalent
ofa steady laminar field. (We shall see later that stationarity impli¢s more than
this.) This theorem assures us that we are theorizing about the same quantity
that the experimenter is measuring.

Averaging as defined by eqn (1.13}is a linear operation ; this has a number
of useful consequences. For example

Au(t)) = A<u(1)),

where A is a constant,

(1) + uy(1)y = Cuy(1)) + Cux(1))

ou()\ 5’
<K> =% u(t)), (1.14)

where s is any variable on which u might depend (time, space, temperature
and so on). However,

and

Cua(1) ua(0))

is not in general equal to

Cuy (1)) Cup(0)).

From now on, it is convenient to write
u(t) = U + () (1.15)

where the mean velocity U = {u(r)> does not fluctuate, while i is a fluctuating
quantity with zero mean. The quantity

{ae)it + t)> (1.16)

is a typical correlation which tends to zero as the time interval t tends to
infinity. If the velocity field is stationary, the correlation is independent
of t and depends only on 7. (1.16) must be positive when t = 0, since
then it is just {@%(¢)), but it can be negative for some values of z; this happens
quite commonly in turbulence fields.

In the previous paragraph we treated u as though it were a scalar function
of t only. In fact it.is a vector function of x and ¢, and should be written
u(x, t). Eqn (1.15) should now be rewritten

ufx, 1) = Ufx) + d(x,t) (1.17)

since although the mean velocity U, is independent of ¢, it can, and usually
does, vary with x. A quantity of great importance in turbulence theory is the
spatial correlation

Cidx, a x’, ). (1.18)



