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Chapter 1

Introduction

1.1 Histcry and Applications

Optimization might be defined as the science of determining the ‘Dest™ solutions to
certain mathematically defined problems, which are often models of physical
reality. It involves the study of optimality criteria for problems, the determination
of algorithmic methods of solution, the study of the structure of such methods,
and computer experimentation with methods both under trial conditions and on
real life problems. There is an extremely diverse range of practical applications.
Yet the subject can be studied (not here) as a branch of pure mathematics.

Before 1940 relatively little was known about methods for numerical optimiz-
ation of functions of many variables. There had been some least squares calcu-
lations carried out, and steepest descent type methods had been applied in some
physics problems. The Newton method in many variables was known, and more
sophisticated methods were being attempted such as the self-consistent field for
variational problems in theoretical chemistry. Nonetheless anything of any
complexity demanded armies of assistants operating desk calculating machines.
There is no doubt therefore that the advent of the computer was paramount in the
development of optimization methods and indeed in the whole of numerical
analysis. The 1940s and 1950s saw the introduction and development of the very
important branch of the subject known as linear programming. (The term
‘programming’ by the way is synonymous with ‘optimization’ and was originaily
used to mean optimization in the sense of optimal planning.) Al these methods
however had a fairly restricted range of application, and again in the-postwar
period the development of ‘hill-climbing’ methods took place — methods of wide
applicability which did not rely on any special structure in the problem. The latter
methods were at first very crude and inefficient, but the subject was again
revolutionized in 1959 with the publication of a report by W. C. Davidon which
lead to the introduction of variable metric methods. My friend and colleague
M. J. D. Powell describes a meeting he attended in 1961 in which the speakers
were telling of the difficulty of minimizing functions of ten variables, whereas
he had just programmed a method based on Davidon’s ideas which had solved
problems of 100 variables in a short time. Since that time the development of the
subject has proceeded apace and has included methods for a wide variety of
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problems. This book describes these developments in what is hoped will be a
systematic and comprehensive way.

The applicability of optimization methods is widespread, reaching into almost
every activity in which numerical information is processed (Science, Engineering,
Mathematics, Economics, Commerce, etc.). To provide a comprehensive account
of all these applications would therefore be unrealistic, but a selection might
inchude:

(a) chemical reactor design;

(b) aero-engine or aero-frame design;

(¢) structural design - buildings, bridges, etc.:

(d) commerce — resource allocation, scheduling, blending;

and applications to other branches of numerical analysis:

(e) data fitting;

(f) variational principles in p.d.e.s;
(g) nonlinear equations in o.d.e.s; and
(h) penalty functions.

More such applications can be found in the proceedings of a conference on
‘Optimization in Action’ (Dixon, 1976), and many more of course in the specialized
technical literature. However to give some idea of what is involved consider the
optimum design of a distillation column, which can be modelled in an idealized

way as in Figure 1.1.1. The aim of such a column is to separate out a more voltatile
component from a mixture of components in the input stream. An objective
function to be optimized might therefore be the quantity of the product or the
profit from operating the system. The variables would be the rate of flow in the
input, ihe heat rates applied and on each plate the liquid and vapour compositions
of each component, and the temperature and vapour pressure. The variables are

Condenser
> Product
_ Recycle
— :
1 Plates
—-_-—.—-—.+._ —
Input —
—
— Recycle
Reboiler
o Waste

b e T

Figure 1.1.1 A model distillation column



subject to restrictions or inter-relations of many kinds, which are referred to as
constraints. For instance compositions and flows must be non-negative (x; = 0) and
temperatures must not exceed certain upper bounds (7; < T4« )- Relationships
such as the unit sum of percentage compositions must be included explicitly
(Zyx;=1). More complicated constraints state how components interact physically,
for instance vapour and liquid compositions are related by v; = [;¢(T}), where ¢(T;)
is a given but highly nonlinear function of temperature. A more difficult situation
arises ifthe number of plates in the column is allowed to vary, and this is an
example of an integer variable which can take on only integer values.

This book however is not concerned with applications, except insofar as they
indicate the different types of optimization problem which arise. It is possible to
categorize these into a relatively small number of standard problems and to state
algorithms for each one. The user’s task is to discover into what category his
problem fits, and then to call up the appropriate optimization subroutine on a
computer. This subroutine will specify to the user how the problem data is to be
presented, for example non-linear functions usually have to be programmed in a
user-written subroutine in a certain standard format. It is also as well to remember
that in practice the solution of an optimization problem is not the only information
that the user might need. He will often be interested in the sensitivity of the
solution to changes in the parameters, especially so if the mathematical model is
not a close approximation to reality, or if he cannot build his design to the same
accuracy as the solution. He may indeed be interested in the variation of the
solution obtained by varying some parameters over wide ranges, and it is often
possible to provide this information without re-solving the problem numerous times,

This book therefore is concerned with some of the various standard optimization
problems which can arise. In fact the material is divided into Volume I and Volume
IL. This volume, Volume I, is devoted to the subject of unconstrained optimization,
in which the optimum value is sought of an objective function of many variables,
without any constraints. This problem is important in its own right and also as a
major tool in solving some constrained problems. Also many of the ideas carry over
into constrained optimization. The special case of sums of squares functions, which
arise in data fitting problems, is also considered. This also includes the solution of
sets of simultaneous nonlinear equations, which is an important problem in its own
right, but which is often solved by optimization methods. Volume II is devoted to
constrained optimization in which the additional complication arises of the various
types of constraint referred to above. It is planned to include material on

linear programming,

integer programming,

first and second order conditions,

convexity and duality,

quadratic programming,

linearly constrained programming,

nonlinear programming and penalty functions,
geometric programming, and -
nondifferentiable optimization.



In these volumes a selection has had to be made amongst the extensive literature
about optimization methods. | have been concerned to present practical methods
(and associated theory) which have been implemented and for which a body of
satisfactory numerical experience exists. I am equally concerned about reliability
of algorithms and whether there is proof or good reason to think that convergence
to a solution will occur at a reasonably rapid rate. However I shall also be trying
to point out which new ideas in the subject I feel are significant and which might
lead to future developments. Many people may read this book seeking a particular
algorithm which best solves their specific problem. Such advice is not easy to give,
especially in that the decision is not as clear-cut as it may seem. There are many
special cases which should be taken into account, for instance the relative ease of
computing the function and its derivatives. Similarly, considerations of how best to
pose the problem in the first instance are relevant to the choice of method. Finally,
and of most importance, the decision is subject to the availability of computer
subroutines or packages which implement the methods. However some program
libraries now give a decision tree in thre documentation to help the user choose his
method. Whilst these are valuable, they should only be used as a rough guide, and
never as a substitute for common sense or the advice of a specialist in optimization
techniques.

1.2 Mathematical Background

The book relies heavily on the concepts and techniques of matrix algebra and
numerical linear algebra, which are not set out here (see Broyden, 1975, for
example), although brief explanations are given in passing in certain cases. A vector
is represented by a lower case bold letter (e.g. a) and refers to a column vector. A
matrix is referred to by a bold upper case letter (e.g. B). That is

a, Bll Bl2 BIST

ady Bll Bzg st
a= : B= .

an | B,y By oo By }

Transposition is referred to by superscript T so that aT is a row vector and a' z for
instance is the scalar product a'z=z2"a= X, a;z;.

The ideas of vector spaces are also used, although often only in a simple minded
way. A point x in n-dimensional space (IR") is the vector (x,,x;,...,x,)", where
x, is the component in the first coordinate direction, and so on. Most of the
methods to be described are iterative methods which generate a sequence of points,
x( x( () qay, or {x*¥7} (the superscripts denoting iteration number),
hopefully converging to a fixed point x* which is the solution of the problem (see
Figure 1.2.2). The idea of a /ine is important, and is the set of points

X(=x(a)) = x" +as (1.2.1)

for all & (sometimes for all a = 0; this is strictly a half-line), in which x' is a fixed



Line x +as
for all a

Figure 1.2.1 A line in two dimensions

point along the line (corresponding to a = 0), and s is the direction of the line. For
. 3

é) and s the direction (l ) . The vector s

is indicated by the arrow. Sometimes it is convenient to normalize s so that for

instance sTs = I; 57 = 1; this does not change the line, but only the value of

associated with any point.

The calculus of any function of many variables, f(x) say, is clearly important.
Some pictorial intuition for two variable problems is often gained by drawing
contours (surfaces along which f(x) is constant). A well-known test function for
optimization methods is Rosenbrock’s function

f(x)=1000x; — x})*+ (1 —x,;)? (1.2.2)

the contours for which are shown in Figure 1.2.2. Some other contours are

instance in Figure 1.2.1 x’ is the point (

Figure 1.2.2 Contours for Rosenbrock’s function, equation (1.2.2)
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illustrated in Figure 6.2.2 in Chapter 6. In general it will be assumed that the
problem functions which arise are smooth, that is continuous and continuously
(Fréchet) differentiable (€'). Therefore for a function f(x) at any point x there is
a vector of first partial derivatives, or eradient vector

af/ox,
%2 _y fix) (1.2.3)
\af/axn [ x
where V denotes the gradient operator (3/dx,, . . ., 8/9x,)1. If f(x) is twice

continuously differentiable (€?) then there exists a matrix of second partial deriva-
tives or Hessian matrix, written V2£(x), for which the 7,jth element is 3%f/(3x; ;0X}).
This matrix is square and symmetric. Since any column (the jth, say)is V(of/ox;),
the matrix can strictly be written as Y(Vf 7). For example, in (1.2. 2)

v 100) (-—400x1(x2 —x¥) -2 —xl))
x —_—
| 200(x, — x3%)
(12.4)
1200x2 — 400x, +2 —400x,
Vif(x)=
-400x, 200

and this illustrates that V/and V2f will in general depend upon x, and vary from -

point to point. Thus at x' = (0) Vf(x)= ( )and Vif(x) = [(2) 200] by

substitution into (1.2.4).
These expressions can be used to determine the derivatives of falong any line
x(e) in (1.2.1). By the chain rule

d ¢ d T
_— —_— —— = —— = ) .5
i Z,:dax (o) o) Es;a sV (1.2.5)

so the slope of f(=f(x(a)) along the line at any point x(a) is

Y T g= vfTs (1.2.6)
da

Likewise the curvamure along the line is
d’f_d df
da? dada

where Vfand V[ are evaluated at x(a). Note that, writing G = V2f, then Gs is
the vector for which (Gs); = £;Gy;s;, and s TGs is the scalar product of s and Gs.

=sTV(VfTs)=sTV2fs (1.2.7)

For example, for (1.2.2)at x' = (0), the slope along the line generated by s = ((1))

(the x -axis in Figure 1.2.2)is 8T V= —2 and the curvature is s Gs = 2 (since

@ 5))



These definitions of slope and curvature depend on the size of s, and this
ambiguity can be resolved by requiring that || s|| = 1. (Note: the norm || s|| is just a
measure of the size of s; one common norm is the L, norm |{si{; = \/(s 5).)
Denoting Vf(x') by g, then +g'/|l g’ ||, are the directions of greatest and least slope,
over all directions for which ||s}i; = 1, and are orthogonal to the contour and
tangent plane of f(x) at x' (see Figure 1.2.3 and Question 1.4).

Special cases of many variabie functions include the general /inear ﬁmctzon
which can be written

fx)= T ayx;+b=aTx+b (1.2.8)
i=1

where a and b are constant. If the coordinate vector
/ 0
0

«jth position

\; -

is defined, then the identity Vx;= e; gives
VxT =V, xs,...,x,)=[e;,e2,...,e5] =1 (1.2.10)

since the vectors e; are the columns of the unit matrix 1. Thus for (1.2.8), V/=ais
a constant vector, and VZf = 0 is the zero matrix. A general quadratic function can
be written

g(x)=4xTGx +bTx + ¢ (1.2.11)
where G, b, and ¢ are constant and G is symmetric, or as
q(x)=1(x - x")TG(x —x")+¢' C(1.2.12)

where Gx' = —b and ¢’ = ¢ — #x'TGx'. From the rule for differentiating a product,

Flx)> Flxh) Tangent plane

Contour F{x)= F{x)

Flax) < Flx)

Figure 1.2.3 Properties of the gradient vector
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it can be verified that
Vu'v)=(vu"w+ (Vv (12.13)

if u and v depend upon x. It therefore follows from (1.2.11) (using u = x, v = Gx)
that

Vg(x)=4G+GT)x +b=Gx +b (1.2.14)

using the symmetry of G. Likewise V2¢ = G can be established. Thus ¢(x) has a
constant Hessian matrix G and its gradient is a linear function of x. A consequence
of (1.2.14) is that if x and x" are two given points and if g’ = Vg(x') and

g' = Vq(x") then

g —g =Gx"-x") (1.2.15)

that is the Hessian matrix maps differences in position into differences in gradient.
This result is used widely.

An indispensable technique for handling more general smooth functions of many
variables is the Taylor series. For functions of one variable the infinite series is

fla)=f(0)+of (0) +3a?f"(0) + . .. (1.2.16)

although the series may be truncated after the term in o”, replacing £7(0) by
f(p)(E)-where £ € [0, a] (the closed interval 0 <x < «). An integral form of the
remainder can also be used. Now let f(a) = f(x(«)) be the value of a function of
many variables along the line x(a) (see (1.2.1)). Then using (1.2.6)and (1.2.7)in
{1.2.16)

fx'+as)= f(x') +asT VA) + ha?sT[V2r(x )]s +. .. (1.2.17)
or by writing h = as

SO+ h) =)+ hT VA )+ $hT V3 S(x ) h+. . .. (1.2.18)

These are two forms of the many variable Taylor series. Furthermore, consider
applying (1.2.18) to the function 9(x)/0x;. Since V (3f(x)/dx;) is the ith column
of the Hessian matrix V *f, it follows that

V(' +h)= V(') + [V () h+ . . (1.2.19)

which is a Taylor series expansion for the gradient of /. Neglecting the higher terms
in the limit h — 0, then this reduces to (1.2.15) showing that a general function
behaves like a quadratic function in a sufficiently small neighbourhood of x'.

It is hoped that a grasp of simple mathematical concepis such as these will
enable the reader to follow most of the developments in the book. In certain places
more complicated mathematics is used without detailed explanation. This is usually
in an attempt to establish important results rigorously ; however they often can be
skipped over without losing the thread of the explanation.



Questions for Chapter 1

l.

Obtain expressions for the gradient vector and Hessian matrix for the functions
of n variables:
(i) aTx: a constant;
(i) xTAx: A unsy mmetric and constant;
(iii) ¢xTAx +bTx: A symmetric, A, b constant
(iv) fTf: fis an m-vector depending on x and V {7 js denoted by A which is
not constant,

. Write down the Taylor expansion for the gradient g(x’ + &) about x’, neglecting

terms of order || 8 ||*. Hence show that if f(x) is a quadratic function with
Hessian G, then y = G§, where & is the difference between any two points and
v is the corresponding difference in gradients,

. Write down the Taylor expansion for the m-vector f(x) about x', where V17 is

denoted by A.

. At a point x’ for which g’ # 0, show that the direction vector s = g'/llg' )|, has

the greatest slope, over all vectors for which sTs = 1. (The steepest ascent vector,
p

. At a point x’ for which g’ # 0, show that the direction vectors tg’ are orthogonal

to the contour and the tangent plane surface at x’.

. If x(e) is any twice differentiable arc, if f(x(a)) is regarded as f(a), and if

dx(ao)/da = s and d*x(ap )/da’ = t, use the chain rule to obtain expressions for
df(ao)/da and d?f(ag )/da? in terms of s, t and the derivatives of f(x) evaluated

at x(ayg).

(Some other questions which partly refer to the material of Section 1.2 are given
at the end of Chapter 2.)



Chapter 2
Structure of Methods

2.1 Conditions for Local Minima
In the following chapters the problem of finding a local solution to the problem
minimize f{x), xe R" | (2.1.1)

is considered. The minimizing point or minimizer is referred to as x*. Note first
of all that it is only generally practicable to search for Jocal solutions rather than
global sotutions (see Figure 2.1.1 for example and also Figure 6.2.2 in Chapter 6).
The possibility of finding global solutions has been considered; see Dixon and
Szego (1975), for example, and also Section 6.2. However there are considerable
difficulties.

Other difficulties are caused when non-smooth minima exist (see Figure 2.1.1)
and it is convenient that this case is excluded by the differentiability assumptions
of Section 1.2. However some problems of this type do arise in practice and it is
hoped to mention them in Volume IL. It is not difficult however to extend (2.1.1)
to solve maximization problems through the simple transformation

max f{x) = —min --f(x). (2.1.2)
X X

The existence of first and usually second derivatives of f will be assumed and to
simplify the notation

g(x) = VAx); G(x) =V?f(x)

! ’ \/
f e Non - smaoth

Local minima —~% f minimum

. j 7 -
Glgbal munmum X x

Figure 2.1.1 Types of minima

10



11

f(x(ﬁi” /

— e — e -

—
O a
Figure 2.1.2 Zero slope and positive curvature

ata=0

is written. Also f* = f(x*). g* = g(x*), etc, is used for quantities derived from
x*, likewise fK) = f(x(*)), gt#) = g(x\*)) and so on.

The main aim of this section is to state and discuss some simple conditions
which hold at a local minimizer x*. These arise from the observation that along
any line x(a) = x* + os through x*, then f{= f(x(a))) has both zero slope and
positive curvature at x*. This is lustrated in Figure 2.1.2 and is the usual condition
for a local minimum of a function of one variable. From (1.2.6) and (1.2.7) it
follows for all s that both s’ g* = 0 and sTG*s > 0. Since these conditions are
implied by x* being a local minimizer, they are necessary conditions for a local
solution and can be stated equivalently as

g*=0 (2.1.3)
and
TG s >0, s (2.1.4)

(v means ‘for all’). Condition (2.1.3) follows because s’ g* =0 for all s can be
true if and only if g* = 0, and is referred to as a first order necessary condition,
since it only involves first derivatives. Condition (2.1.4) is a second order
necessary condition, and is the condition that G* is a positive semi-definite
matrix, by definition of this property.

It is also possible to derive sufficient conditions (those which imply that x* is a
local minimizer). Here the result is stated in the form of a theorem.

Theorem Z2.1. 1

Sufficient conditions for an isclated local minimizer x* are that (2.1.3) holds
* ‘e w s .
and that G~ is positive definite, that is

sTG¥s >0 Vs# 0. (2.1.5)

Proof
Consider any point x* + 8, 8 # 0. A Taylor series about x* and (2.1.3) imply that
Fx*+8)=f*+487G"8 + 0(879)
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(using o(+) and O(+) strictly in the sense of Hardy, 1960, although a rough
interpretation is that o(+) means ‘negligible relative to (+)’ and O(+) means ‘of
order (+)"). Now (2.1.5) implies that there exists an ¢ > 0 such that 8T G*8 > 2818

(@ is the smallest cigenvalue of G*_) and hence that
f(x* +8)=f*+ (ha+0(1)878.
Asd = 0,0(1) > 0and a > 0is fixed. sc it follows that f(x* +8)> f/*, and hence

x* i5 an isolated local minimizer. ©

These sutficient conditions are convenient in that they are readily checked
numerically. For instance, if f(x) is given by (1.2.2). then at x* = (1, DI,

_ I « [ 802 400
g =(0,0)" and G "'[ 400 200
so that it follows from theorem 2.1.1 that x* is an isolated local minimizer. (In
fact since f* =0 and f{x) > Q it is clear that x* is also a global minimizer.) The
nccessary conditions (2.1.3) and (2.1.4), and the sufficient conditions of theorem
2.1.1 are almost necessary and sufficient, and there is only a ‘gap’ in the case of
zero curvature, Examples which satisfy the necessary but not the sufficient
conditions are f(x) = x> and f(x) =x*. x* =0 is a local minimizer of the second
function but not the first.

The notion of a positive definite matrix G may be unfamiliar to some readers,
and the definition (2.1.5) does not help in that it cannot be checked numerically.
However there are scveral different equivalent definitions which can be checked,
namely

(i) all eigenvalues of G* >0,

which is positive definite (see below),

Minimum Maximum

. 2

(¢)

Saddle
Figure 2.1.3  Types of stationary point
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124 ij

)

> r
X, x,
Maximum or minimum Saddie

Figure 2.1.4 Contours for stationary points

(i) LLT (Choleski) factors of G™ exist with /;; >0,
(iii) LDLT factors exist with /; = 1 and dy; > 0,
(iv)  all pivots > O in Gaussian elimination without pivoting, and
(v) all principal minors of G* > 0.
The matrices L and D are lower triangular and diagonal, respectively. For small
n (< 3), condition (v) is most readily checked (for G"* above we have

802 —400 : " .
det(802) > 0 and det [_400 200 > 0), but in general conditions (ii) or (iii)

are the most efficient and they also enable linear equations with coefficient matrix
G to be solved subsequently (see Section 3.1).

In fact many minimization methods are based only upon trying to locate a
point x* such that g(x*) = 0. This may not be a local minimizer and in general is
referred to as a stationary point. Different types of stationary point are illustrated
in Figure 2.1.3 and their contours in Figure 2.1.4. Note that in Figure 2.1.3, whilst
all the graphs have zero slope at x*, for (a) there is positive curvature in every
direction, for (b) negative curvature in every direction, whereas for (c) there is
negative curvature across the saddle and positive curvature along the saddle. Thus
usually a minimizer corresponds to a positive definite Hessian matrix, a maximizer
to a negative definite matrix, and a saddle point to an indefinite matrix (that is
one in which the eigenvalues have both positive and negative sign). Numerical
methods for finding stationary points which are not minimizers are occasionally
of interest (see Sinclair and Fletcher, 1974) and some possibilities are described
in Question 4.5.

2.2 Ad hoc Methods

Many early methods which were suggested for minimization were based on rough
and ready ideas without very much theoretical background. It is instructive for
the reader to think about how he or she would go about the problem, given that
values of f(x) only can be evaluated for any x. If the problem is in only two or
three variables then it is likely that some sort of repeated bisection in each one
of the variables might be tried so as to establish a region in which the minimum




