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Preface

If we wish to foresee the future of mathematics our proper
course is to study the history and present condition of the
science. HENRI POINCARE

This book treats the major mathematical creations and developments
from ancient times through the first few decades of the twentieth century.
It aims to present the central ideas, with particular emphasis on those
currents of activity that have loomed largest in the main periods of the life
of mathematics and have been influential in promoting and shaping sub-
sequent mathematical activity. The very concept of mathematics, the
changes in that concept in different periods, and the mathematicians’ own
understanding of what they were achieving have also been vital concerns.

This work must be regarded as a survey of the history. When one
considers that Euler’s works fill some seventy volumes, Cauchy’s twenty-six
volumes, and Gauss’s twelve volumes, one can readily appreciate that a
one-volume work cannot present a full account. Some chapters of this work
present only samples of what has been created in the areas involved, though
I trust that these samples are the most representative ones. Moreover, in
citing theorems or results, I have often omitted minor conditions required for
strict correctness.in order to keep the main ideas in focus. Restricted as this
work may be, I believe that some perspective on the entire history has been
presented.

The book’s organization emphasizes the leading mathematical themes
rather than the men. Every branch of mathematics bears the stamp of its
founders, and great men have played decisive roles in determining the course
of mathematics. But it is their ideas that have been featured; biography is
entirely subordinate. In this respect, I have followed the advice of Pascal:
“When we cite authors we cite their demonstrations, not their names.”,

To achieve coherence, particularly in the period after 1700, I have
treated each development at that stage where it became mature, prominent,
and influential in the mathematical realm. Thus non-Euclidean geometry is
presented in the nineteenth century even though the history of the efforts to
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repluce or prove the Euclidean parallel axiom date from Euclid’s time
onward. Of course, many topics recur at various periods. -

To keep the material within bounds I have ignored several civilizations
such as the Chinese,’ Japanese, and Mayan because their work had no
material impact on the main line of mathematical thought. Also some
developments in mathematics, such as the theory of probability and the
calculus of finite differences, which are important today, did not play major
roles during the period covered and have accordingly received very little
attention. The vast expansion of the last few decades has obliged me to
include only those creations of the twentieth century that became significant
in that period. To continue into the twentieth century the extensions of such
subjects as ordinary differential equations or the calculus of variations would
call for highly specialized material of interest only to research men in those
fields and would have added inordinately to the size of the work. Beyond these
considerations, the importance of many of the more recent developments
cannot be evaluated objectively at this time. The history of mathematics
teaches us that many subjects which aroused tremendous enthusiasm and
engaged the attention of the best mathematicians ultimately faded into
oblivion. One has but to recall Cayley’s dictum that projective geometry is
all geometry, and Sylvester’s assertion that the theory of algebraic invariants
summed up all that is valuable in mathematics. Indeed one of the interesting
questions that the history answers is what survives in mathematics. History
makes its own and sounder evaluations.

Readers of even a basic account of the dozens of major developments
cannot be expected to know the substance of all these developments. Hence
except for some very elementary areas the contents of the subjects whose his-
tory is being treated are also described, thus fusing exposition with history.
These explanations of the various creations may not clarify them completely
but should give some idea of their nature. Consequently this book may
serve to some extent as a historical introduction to mathematics. This
approach is certainly one of the best ways to acquire understanding and
appreciation.

I hope that this work will be helpful to proféssional and prospective
mathematicians. The professional man is obliged today to devote so much of
his time and energy to his specialty that he has little opportunity to familiar-
ize himself with the history of his subject. Yet this background is important.
The roots of the present lie deep in the past and almost nothing in that past is
irrelevant to the man who seeks to understand how the present came to be
what it is. Moreover, mathematics, despite the proliferation into hundreds of
branches, is a unity and has its major problems and goals. Unless the various
specialties contribute to the heart of mathematics they are likely to be

1. A fine account of the history of Chinese mathematics is available in Joseph Needham’s
Science and Civilization in China, Cambridge University Press, 1959, Vol. 3, pp. 1-168.
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sterile. Perhaps the surest way to combat the dangers which beset our
fragmented subject is to acquire some knowledge of the past achievements,
traditions, and objectives of mathematics so that one can direct his research
into fruitful channels. As Hilbert put it, ‘ Mathematics is an organism for
whose vital strength the indissoluble union of the parts is a necessary
condition.”

For students of mathematics this work may have other values. The
usual courses present segments of mathematics that seem to have little re-
lationship to each other. The history may give perspective on the entire
subject and relate the subject matter of the courses not only to each othe}but
also to the main body of mathematical thought.

The usual courses in mathematics are also deceptive in a ba-"_ respect.
They give an organized logical presentation which leaves the Linpression that
mathematicians go from theorem to theorem almost naturally, that mathe-
maticians can master any difficulty, and that the subjects are completely
thrashed out and settled. The succession of theorems overwhelms the student,
especially if he is just learning the subject.

The history, by contrast, teaches us that the development of a subject
is made bit by bit with results coming from various directions. We learn, too,
that often decades and even hundreds of years of effort were required before
significant steps could be made. In place of the impression that the subjects
are completely thrashed out one finds that what is attained is often but a
start, that many gaps have to be filled, or that the really important extensions
remain to be created.

The polished presentations in the courses fail to show the struggles
of the creative process, the frustrations, and the long arduous roac mathema-
ticians must travel to attain a sizable structure. Once aware of this, the
student will not only gain insight but derive courage to pursue tenaciously
his own problems and not be dismayed by the incompleteness or deficiencies
in his own work. Indeed the account of how mathematicians stumbled,
groped their way through obscurities, and arrived piecemeal at their results
should give heart to any tyro in research.

To cover the large area which this work comprises I have tried to
select the most reliable sources. In the pre-calculus period these sources,
such as T. L. Heath’s 4 History of Greek Mathematics, are admittedly secondary,
though I have not relied on just one such source. For the subsequent de-
velopment it has usually been possible to go directly to the original papers,
which fortunately can be found in the journals or in the collected works of the
prominent mathematicians. I have also been aided by numerous accounts and
surveys of research, some in fact to be found in the collected works. I have
tried to give references for all of the major results; but to do so for all asser-
tions would have meant a mass of references and the consumption of space
that is better devoted to the account itself.
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The sources have been indicated in the bibliographies of the various
chapters. The interested reader can obtain much more information from
these sources than I have extracted. These bibliographies also contain many
references which should not and did not serve as sources. However, they have
been included either because they offer additional information, because the
level of presentation may be helpful to some readers, or because they may be
more accessible than the original sources.

I wish to express thanks to my colleagues Martin Burrow, Bruce Chand-
ler, Martin Davis, Donald Ludwig, Wilhelm Magnus, Carlos Moreno,
Harold N. Shapiro, and Marvin Tretkoff, who answered numerous ques-
tions, read many chapters, and gave valuable criticisms. I am especially
indebted to my wife Helen for her critical editing of the manuscript, extensive
checking of names, dates, and sources, and most careful reading of the galleys
and page proofs. Mrs. Eleanore M. Gross, who did the bulk of the typing,
was enormously helpful. To the staff of Oxford University Press, I wish to
>xpress my gratitude for their scrupulous production of this work.

New York M. K.
May 1972
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I

Mathematics in Mesopotamia

Logic can be patient for it is eternal.
OLIVER HEAVISIDE

1. Where Did Mathematics Begin?

Mathematics as an organized, independent, and reasoned discipline did not
exist before the classical Greeks of the period from 600 to 300 B.c. entered
upon the scene. There were, however, prior civilizations in which the begin-
nings or rudiments of mathematics were created. Many of these primitive
civilizations did not get beyond distinguishing among one, two, and many;
others possessed, and were able to operate with, large whole numbers. Still
others achieved the recognition of numbers as abstract concepts, the adop-
tion of special words for the individual numbers, the introduction of symbols
for numbers, and even the use of a base such as ten, twenty, or five to denote
a larger unit of quantity. One also finds the four operations of arithmetic,
but confined to small numbers, and the concept of a fraction, limited, how-
ever, to 1/2, 1/3, and the like, and expressed in words. In addition, the sim-
plest geometric notions, line, circle, and angle, were recognized. It is perhaps
-of interest that the concept of angle must have arisen from observation of the
angle formed by man’s thigh and lower leg or his forearm and upper arm
because in most languages the word for the side of an angle is either the word
for leg or the word for arm. In English, for example, we speak of the arms of
a right triangle. Theé uses of mathematics in these primitive civilizations were
limited to simple trading, the crude calculation of areas of fields, geometric
decoration on pottery, patterns woven into cloth, and the recording of
time. '

Until we reach the mathematics of the Babylonians and the Egyptians
of about 3000 B.c. we do not find more advanced steps in mathematics.
Since primitive peoples settled down in one area, built homes, and relied
upon agriculture and animal husbandry as far back as 10,000 B.c., we see
how slowly the most elementary mathematics made its first steps; moreover,
the existence of vast numbers of civilizations with no mathematics to speak
of shows how sparsely this science was cultivated.
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