

ARTIFICIAL
INTELLIGENCE
PROGRAMMING

SECOND EDITION

EUGENE CHARNIAK

Brown University
CHrisTordeER K. RIESBECK
Yale Universiry

Drew V. McDERMOTT
Yale Untversity

JAMES R, MEEHAN ~%: - g
© “Cognitive Svsiems, fnc. &

@ LAWRENCE ERLBAUM ASSOCIATES. PUBLISHERS
1987 Hillsdale. New Jersey Hove and London

Copytight « 1987 by Lawrence Erlbaum Associates, Ine.
All nghis reserved. No part of this book mav be 1eproduced 1n
any form. by photostat. muwroform. retrieval system. or aay other
Means, without the prior writlen permiasion of the publisher.

Lawrence Erfbaum Associates. [ne.. Publishers
363 Broadway
Hillsdale. New Jersey 07642

Library of Congress Cataloging in Publication Data

Aruticiul imelligence programming,

Rev. ed. ul: Aruficial intelhgence programamnyg .
Eugene Charniuk. Christopher K. Ricsbeck. Drew V.
McDermout. 1980

Bibhography: p.

Includes wmdex.

1. Artificsal intelltgence—Data processing
2. Programrmung (Electronic compuiers) 3 LiSP
tComputer program langwage) 1. Charniak. Eugene.

336 AT7E (Y87 0063 K7-BYRi

- 1

Prine e thef Qi) Swnes of Americu

PREFACE TO THE SECOND EDITION

Since the first edition of this book uppeared. some things in the Al
programming world have changed a great deal. and some things are almost
exactly the way they were five years ago. Perhaps the most significant
development has been the appearance of Comman Lise, documented in abundant
detail by Guy Steele [102]. Al of the Lise ¢code in this new edition has been
rewritten in Common Lisp. CommoN Lisp is a pleasant surprise, given the
normal result of compromise solutions designed by committees. It manages to be
a synthesis of many of the best ideas present in modern Lise dialects, rather than
a fossilization of the worst. While there are other dialects that have a more
coherent semantics, such ag SCHEME [82] and T }81]. Common Lisp is more than
adeqguate tor our needs.

The choice of CoMmoN LisP has atfected the contents of this book in several
ways. First. many features that we spent some time developing and adding to our
earhier dialect of Lisp are airgady available in Common Lisp. In some cases, we
have therefore just described the Common Lise feature. In other cases. we have
retained the developmental material in order to exptain the underlying principles.

Common Lusp is a “large” language. and we cover only part of it; some of
the best-designed fcatures allowed us (o remove material from the first edition
that dealt with the friendly but limited dialect we used then. UCI Lisp. Gone are
the sections on FEXPRs and LEXPRs: while we still discuss the issue of
extending the language by adding new dats types, CommoN LisP's
DEFSTRUCT is an example of a tool that we had to build from scratch in UCH
Lise.

We considered both ScHEME and T for this edition. SCHEME has the right
essential semantics for programming, such as lexical scoping and closures, and

Xi

xii Preface

T extends that to include the right primitives for object-oriented programming
and language-extension via macros. as weli as a host of well-designed support
features. (The next edition (') will probably be in T.) Happily, many of these
ideas are also present in ComMoN Lise, and given its greater visibility, we chose
it instead. In particular. the availability of lexical closures has allowed us 10
re-implement a number of disparate ideas in a uniform manner.

One problem with ComMon Lisp is that it 1s not yet widely available. Most
implementations exist only on very large machines. While this situatton will
certutnly change in the next few years, we have tried to ameliorate the problem
tn two ways. First. we have used only a subset of ComMmon LisP in aur code.
Second. we have provided a glossary describing the subset we used.

In the Lisp chapters in Part 1 and in the Al topics in Part 2. five years' additional
experience has led us to provide completely new explanations. examples, and
implementations. The origina? chapter on alternative control structures, which
described the implementation of a variation of SCHEME. served two purposes: to
introduce some of the power behind lexically scoped languages with procedures
as first-class objects, and to give an example of how other languages with very
different control structures could be implemented in Lisp. Since CoMMON Lisp 1s
lexically scoped. there is no longer any need to treat that topic separatety. The
topic of contrul structure in SCHEME is now described briefly in a new chapter on
higher-order functions, continuations. and coroutines. Some of the flavor of
implementing interpreters can be gleaned from a new chapter on production
systems. (For more information on ScHEME and implementing a ScHEME inter-
preter, the interested reader is referred to Abelson and Sussman §2].)

The chapter on production systems illustrates several aspects of Al program-
ming. A production system is much easier to implement than a deductive
retriever, and correspondingly more limited in power. Production systems,
however, have proved 1o be very useful in the development of expert systems.,
which are the basis for most of the commercial AT work at the moment.

As before, the intended audience of Artificial Intelligence Programming
remains the advanced undergraduate or carly graduate student in Al. Although
the matcrial involved requires only modest knowledge of programming. the
student who has had the most experience m creating Al programs already will
understand best the benefits of the 1echniques described. In addition, in response
to the changing nature of Al in industry, we have changed the text to be a bil
more like a cookbhook. It has turned out that many people learning Al
programming are doing so on their own, either at home or at work. Many of them
prefer to begin with working pieces of code that they can then extend, rather than
inadequate pieces of code that are then corrected in the text and exercises. This
latter technique works in classrooms. but not in a self-study sitation. Therefore,
we have eliminated almost all figures with deliberately incorrect code. and added
an appendix with the answers 1o nearly all the exercises in the book. We have
also removed the chapters on the sample course project.

Preface xii

ACKNOWLEDGMENTS

We would like to thunk the teachers. siudents, and other programmers who
suggesicd changes (and supplied corrections!) to the first edition, as well as
revicwers who gave us criticisms prior to this revision. Thanks to Paul Hudak
and Bill Ferguson for comments on Chapter 7, and to Robert Farrell for
comments on Chapter 12. We are indebted to Bob Strong at Cognitive Systems
Inc. for reviewing the new edition, recommending improvements, and helping us
test the code. Answers to some of the exercises were written by Gregory
Parkinson and Rika Yoshii when they were students at UCH The Yale Artificial
intelligence Project and Cognitve Systems Inc. provided computer support for
the preparation of the new manuscripl. Finally. Chris Riesbeck would like to
dedicate this book to Maxinc.

Christopher K. Riesbeck
Jim Meehan

PREFACE TO THE FIRST EDITION

Artificial Intelligence (henceforth Al) is still a field where disagreement is
more common than solid theory. and interesting idcas more common than
polished programs. Yet there is slowly coming into being a small core of
accepted (though not universally accepted) theory and practice. This book 1s an
sttempt to gather together the “'practice” aspect of this ““core™ Al.

The **practice’” of Alis, of course. the writing of programs. Al problems are
usually ill-defined and the theories proposed are often too complex and
complicated to be verified by intuiiive or formal arguments. Sometimes the only
way to understand and evaluate a theory is to see what comes next. To find this
out. and to check for obvious inconsistencies and contradictions, we write
progrums that are intended to reflect our theories. If these programs work, our
theories are not proved. of course, but at least we pain some understanding of
how they behave. When the programs don't work (or we find ourselves unable
to program the theories a1 all), then we learn what we have yet to define or
re-define.

With this emphasis on programming. it becomes important that an Al
rescarcher have a wide library of programming tools avatlable. This is particu-
larly true because of the “‘level’" problem. That is, your theory describes what
to do at a fairly high level, but you need to tel! the machine what to do at a low
level. So a theory of, say, coherency in conversation, will in all probability say
nothing about pattern matching or cfficient data retrievai. It is not that these
topics are not worthy of their own theory. How people manage to retrieve
knowledge efficiently under a wide variety of circumstances is a fascinating

Xiv Freface

guestion. But if vou dare wormed about conversation, 1t is simply not vour
departiment. ')

The intent of this book is 1o give you a wide variety of commonly used tools
for programming Artificial Intelligence theories: discrimination nets, agendas,
deduction. data dependencies, backtracking, etc. By having these tools, we hope
you wilt find that your programs better reflect your intentions.

Alminst all ot the ideas that are described here are in common use, particularly
at the larger Artilicial Intelligence centers. But very few of them have ever been
writien down in one place There are a number of books that introduce you to
Lisp (although none of them are completely satisTactory), and there are a number
of books on theories und algorithms in Artificial Intelligence. Until now,
however, there have baen no bouoks that fill in the middle ground and present the
methods that all the old-timers know for getting from theory o practice. That is
what this book is all about.

The major problem in writing a book such as this is that of selection. In some
cases it is easy. It seems unhkely that anyone would seriously contest our
inclusion of discrimination nets, pattern miatching, or agendas. These techniques
have been used by many researchers in the field and in a vanety of problem
areas—from matural langusge comprehension o problem solving to medical
diagnosis. Flowever once one moves beyond this handful of topics, or even starts
getting specific about the type of pattern matching, or agenda, then consensus is
not so easy. So to some degree the selections made in this book are personal
ones. Of course, to say they are persenal is not to say they cannot be defended
on scientific grounds. but rather that the defense would take the form of an
extended debate on the nature of Al and where it is going. For exampte, data
dependencics reccive a chapter to themselves here in spite of the fact that they are
fairly new on the scene and bence relatively untested. at least compared to
something like unification pattern matching. Naturalty we try o show the
usefulness of these ideas, but only to show how the ideas are motivated, not to
defend particular approaches against competitors. Such a defense would be well
worth having. but it would be out of place in a text such as this.

Selection also implies that some things are omitted, and there are at least two
notable omissions from these chapters. One of these is inadvertent. The
techniques discussed here all come from what might be thought of as *‘abstract™
AL That is, if we think of Al programs on a spectrum from *‘concrete”” programs
which must deal with the real worltd in terms of sound and light input (or sound
and muscle output) to ““abstract’” programs which only deal with abstractions,
the techniques described here fall most paturally towards the abstract end. This
book does not have the space and the authors do not have the expertise to do
justice to the concerete end of things.

A second omission is quite deliberate. We have made no attempt to survey,
much less teach, the many Al languages {(CoNNIVER, Qa-4. KRL, etc.). This
stems from our conviction that at present there is no commonly agreed-upon set

Preface XV

of functions above the level of list processing which everyone would agree 18
useful in a wide vuriety of Al settings. Experience has shown that each major
project has found it necessary 1o build up its own tools, starting. typically. from
Lise. We do not see this <ituation as likely w change in the foreseeable future.
Hence rather than covenng the basice of the various Ianguages we have tied
inslead to explain the technigues which typscally tic behind these languages.,

The book is divided into two parts. Since almost all serious programming in
Artificial Intelligence is done i the Janguage Lise. Part 1 tells you how (o
improve your general abilitics a3 a Lisp programmer. {The [irst chapter covers|
most of the basic Lisp concepts needed tor the test of the book. We intend the
introductory material to cover all the concepts of Lisp needed later. but if you
have never programmicd in Lise before. we recommend that you spend some timme
writing simple Lise programs until you get a feel for the language.

The [second through seventhf chapters are concerned with the many features
found {or implementable in Lisp that make the language an attractive one to use
Many of the ideas that pass under the rubric of “*structured programming” will
be found here Although Lisp is almost as old as ForTRAN. ft is surprisingly
amenable to things fike lop-down programming and data types.

Part 2 conlains more advanced and complex techniques. Since thts book is
intended not just to be a deceription of ideas. but also o give you a chance w©
learn the craft of Artificial Intelligence. we present actual Lisr implenmentations
of all the ideas discussed. along with exercises which modify and extend the
code. These exercises are intended to muke you fumibiar, in & practical hands on
way, with the technigues involved. We hope that the excrcises will inspire vou
to experiment and learn on your own.

This boek is intended mainly for use as a texthook for an Al course in which
programining is emphasized. This could be cither an advanced or a fast
elementary course. The book might also be used as an auxiliary text for a systems
course: for this purpose, the chapters on macros, structured programming . and
alternative control structures would be most useful.

ACKNOWLEDGMENTS

The first edition of this book was the outgroswth of 4 graduate course given by
the authors in the spring of 1978 at Yale University for students in the Artificial
Intelligence Project of the Yale Computer Science Department. We would like to
acknowledge Roger Schank who originated the idea of the course. We'd also like
to thank Dave Barstow and Waller Stutzman for their detailed commenfs on the
‘complete manuseript. Laury Miller and Glenn Edelson for their comments on the
introductory chapters, and Jon Doyle for his comments on the chapter on data
dependencies.

The Yale Artificial Intelligence Project is funded by the Advanced Rescarch
Projects Agency of the Department of Defense and the Office of Naval Research.

XVi Preface

During the writing of [the first edition of] this buok, Eugene Charntak and
Christopher Riesbeck were supported by the Advanced Research Projects
Agency monitored under the Office of Naval Research under contract
NOOO14-75-C-1111.

tugene Charniak
Christopher K. Riesbeck
Drew V. McDermott

Contents

Preface

PART I:

Xi

LISP PROGRAMMING

1. LISP REVIEW

11
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

Data Struciures 1

Program Structures 2
Primitive Operations on S-expressions
Tree Structures 10

Lists 12

Mapping Functions 14
{LAMBDA Expressions 15
Atoms 17

Inside Lisp 18

Equality 23

Local versus free variables 25
Lisp style 27

Keywords 29

More lambda-list keywords 32

2. MACROS AND READ-MACROS

2.1
2.2
2.3

Read-Macros 33
The Backquote Read-Macro 34
Terminating read-macros 39

8

33

vi Contents
2.4 Macros 39
2.5 Generating new symbols 45
2.6 BIND: A Macro For Special Variables 47
3. DATA STRUCTURES AND CONTROL STRUCTURES
IN LISP
3.1 The Need for Data Types 48
3.2 The Conservative Approach to Type Definition 50
3.3 The Liberal Approach 51
3.4 The Radical Approach 53
3.5 Control Structures 55
3.6 Basic control structure 96
3.7 Local functions; FLET and LABELS 56
3.8 Interrupting the normal flow 58
3.9 Redirecting the flow of control: GO 59
3.10 ITERATE 60
311 DO 83
3.12 Heration and lists: the mapping functions 64
3.13 Defining the FOR-macro 69
3.14 CATCH and THROW 74
315 UNWIND-PROTECT 74
3.16 BIND 75
3.17 Conclusion 82
4. INPUT/QUTPUT IN LISP
41 Streams 84
4.2 READ-CHAR, READ-LINE, and BEAD 85
4.3 PRIN1, PRINC, and TERPRI 88
44 PRINT, PPRINT, and FORMAT 88
45 The MSG Macro 80
4.6 Separating IO from Your Functions 93

5. COMPILING YOUR PROGRAM AND YOUR
PROGRAM'S PROGRAM

5.1
52
53
54
85
56
57

What is Compilation? 97
Implications for Al Programs 99
Example: Regular Expressions 100
What the Lisp Compiler Does 101
Compiler Declarations 105

Macros in Compiled Code 107
Variables in Compiled Code 107

48

83

97

Contents vii

5.8 Lexical Scoping Versus EVAL and SET 108
59 Ignored Variabies 110

6. DATA-DRIVEN PROGRAMMING AND OTHER

PROGRAMMING TECHNIQUES 111
6.1 Data-driven Proegramming 111
6.2 Association Lists, Property Lists, and Hash Tables 112
6.3 Reimplementing MSG 16
6.4 Data-Driven Programming as an

Organizaticnal Device 119

6.5 Set Operations on Lists 121
6.6 Headed Lists and Queues 123

7. HIGHER-ORDER FUNCTIONS, CONTINUATIONS,

AND COROUTINES 127
7.1 Passing Procedures In and Out 127
7.2 Continuations and Taii-Recursion 129
7.3 Continuations and Multiple Vatues 132

. 7.4 Coroutines 136
7.5 Continuations and Control Flow:

CALL-WITH-CURRENT-CONTINUATION 142

7.6 Problems with Continuation Passing 147

PART It: Al PROGRAMMING TECHNIQUES

8. SHMPLE DISCRIMINATION NETS 149
8.1 The General Discrimination Net 149
8.2 Database Discrimination Nets—Lists of Atoms 153
8.3 Database Discrimination Nets—General
S-expressions 157
84 Implementing Discrimination Trees with
Continuations 161

9. AGENDA CONTROL STRUCTURES 166
9.1 Introduction 166
8.2 Best-First Tree Search 166
9.3 Coroutines and Agendas 171
9.4 Design Alternatives for Agendas 176
9.5 Generated Lists 177

10. DEDUCTIVE INFORMATION RETRIEVAL 182
10.1 Introduction 182

viil Contents

10.2
10.3
104
105
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.16

Database-defined Predicates 183

Connectives, Variables, and Inference Rules

Existential Quantification 187

Coming to Terms 188

Issues 189

Deductive Retrieval 190

A Unification Algorithm 195

A Deductive Retrigver 202

Forward Chaining 213

Programming with Logic 215

Extending the Retriever 218

Deductive Retrieval versus Theorem Proving

Pattern Matchung 224

The Pros and Cons of Deductive Information
Retrieval 226

11. DISCRIMINATION NETS WITH VARIABLES

11.1
1.2
11.3

Pian Retrieval 231
Fetching Facts 235
Variations on the Discrimination Net Theme

12. PRODUCTION SYSTEMS

121
12.2

123
12.4
125
126
12.7
128
12.9

Representation of Rules in XPS 249

Representation of Working Memory Elements
in XPS 250

Establishing the Conflict Set 251

Conlflict Resolution in XPS 251

The Implementation of XPS 254

An Example 266

nprovements to XPS 271

XPS and OPS5 272

Deductive Retrieval and Production Systems

13. SLOT AND FILLER DATA BASES

131
13.2
13.3
13.4
13.5
13.6
13.7

Expanding Property List Facilities 276
An Introduction to XRL 277
IF-ADDED Methods 287

Pattern Matching in XRL 288
Indexing Forms 294

Retrieving Forms 296

Extending XRL 298

183

223

240

275

230

248

276

Contents ix

14. CHRONOLOGICAL BACKTRACKING 304
141 introduction 304
14.2 A Basic Transtion Network Grammar without
Backup 305
14.3 Representing an ATN Network in Lisp 308
144 An ATN without Backiracking 312
145 Backiracking In ATNs—A State-Saving Approach 320
t4.6 Backtracking with a Transition-Saving Approach 327
14.7 Defining the ATN with Continuations 328
148 Using Problem-Solving Techniques 332
15. DATA DEPENDENCIES AND REASON MAINTENANCE
SYSTEMS 337
151 The Need for Reason Maintenance 337
15.2 Data-Dependency Clauses 338
156.3 Data-Dependency Network Graphs 339
154 Labeling Data-Dependency Networks 339
15.5 Propagating Labels from New Clauses 341
15.6 Incompieteness of the RMS Algorithm 343
157 Retracting Clauses and Delabeling Nodes 345
15.8 The Implementation of an RMS 347
159 The Eight Queens Problem 355
15.10 Dependency-directed Backiracking 367
15.11 Finding Nogoods 372
15.12 Subsuming Ciauses a78
15.13 Dealing with Interruptions 379
15.14 RMS 1o Lisp Communications 385
Appendix 1: A Glossary of Commaon Lisp Functions 389

Answers to Selected Exercises 441

Bibliography

495

Author Index 505
Index of Defined Lisp ltems 507
Subject Index 515

Lisp REVIEW

Lise has pokenyiy beon catied “the most mtethgent way o miue g compuas
tharh that o s 1o grear comphimens becase 1 transars te il rlersor o
Bbe aten o b csastLd o smhe: of our Mt gified 2l Buma e i thindan
prvsnsshy in-posa bie thoughss

Edwce i_)!]k\[l'.i

Listowas the world's first elogam FNZUAEC, 0 130 8ense B s o e
parsiienicus base with rich possibilities for extepaon Lk hs heen wiplicd
mainly o problems of symbolic manipulation and amiticial wntelivpence, parth
because manipulating symbaols s <o ey in Lasp. and paity becanse Al
progiammers tend o be Juzy and undisciplined. like piloty wie refuse 1o bile o
flight plan belore tuhing off” and Lisps interactive structure allows them o get
away with this

1.1 Data Structures

Lisy data struciures are called US-eapressions. T The § stands jor sym
holic ™ In this text, the termy *S-expression”” and Texpression’” are wsed
interchangeably. An S-expression is

boamwmber. e g 15, written as an optional phis or tmmus sign. followed
by vne or more digits.

2. awvmbof, e.g.. FOO. wntten as a letter followed by £ero or more letters
or digits,

\

e Charniak, Riesbeck, McOermott, Meehan

3 asring.eg., "This is a string”", wntten as a double quote,
followed by zero ur more characters, followed by another double quote.

4. acharacter, e.g.. #>.9, written as a sharp sign, followed by a backslash,
tollowed by a character. (Numbers, symbols. strings. and characters are
called atiems. There are other kinds of atoms. We will see them in later
chapters.)

5.a list of S-expressions. e.g., (A B) or (IS5 TALL
(FATHER BILL)). written as a left parenthesis. followed by zero or
more S-expressions. followed by a right parenthesis.

Parentheses are more significant in Lise than they are in most other
programming languages. Parentheses are virtually the only punctuation marks
available in Lisp programs. They are used o indicate the structure of S-
expressions. For example. (A) is a list of one element, the symbol &, ((A))
is also a list of one etement, which is in tura a list of one element, which is the
symbal A. Notice also that the left and right parentheses must balance. That is,
a well-formed S-expression has a right parenthesis to close off each left
parenthesis.

1.2 Program Structures

Syntax: The syntax of a Lisp program is simple: Every S-expression is a
syitactically legal program! That is. any given data structure could be executed
as @ program. Most of them. however, fail on semantic grounds.

Semantics: The tunction that executes S-expressions (and hence defines the
semantics of Lisp) is called EVAL. EVAL takes one S-expression and returns
another S-expression. The second expression js called the value of the first
expression. We notate this as expression = value.

The rules for evaluation are fairly sunple. .

Ruie 1: If the expression is a aumber. a string. a character, the symbol T or
the symbal NIL. then its value is itself. So § = 5.

Rule 2: 1f the expression 1§ a fist of the form

{function arg, . . . arg))

then the value is found by first evaluating each argument (arg; to arg,), and
then catling function with these values. For the moment. all our functions are
named by symbals For exampie. the symbols + (for addition) and * (for
multiplication) name functions that are defined in Lise for doing arithmetic.

(+ 13 2 > 17
{#* 3 5} > 15
{(+ (# 3 3) 2) => 17

e

1. LISP Review 3

Note that in order to evaluate the last expression. each argument has to he
evaluated fust. Since the first argument s itself a list. {* 3 3). Rule 2 is
apphed again. and the arguments. 3 and 5, are evaluated. By Rule 1. they
evaluate to themselves. They are passed to the mubtiplication procedure, *,
which returns 15, Similarly. 2 evaluates o ttself. and 15 and 2 are passed to +.
which returns the number 17

Rutle 3: [the cxpression is a fist of the torm

Creserved-word argy ... argg)
then the value depends compictely on the definition of reserved-word The
drguments may or may not be evaluated. Reserved words are named by symbols,
just as functions are

One such reserved word is SETS SETR s used for pssigning values to
symbols, {SETQ <vmbaol expression) causes symbaf to be “*hound o™ {or “set
" or assigned™) the value of expression. The value of expression is returned
as the value of the SETO (1.e., the value that the SE T @-expression produces).

For exampte. {SETQD X {+ 13 1)) sets % ta 16,

Rule 4: If the expression is a svmhol. then its value is the fast value that has
been assigned to it. [f no value has been assigned. then an ertor occurs. So if ¥
18 bound to 16, then X = 6. These are the four rujes employed by the EVAL,
which is part of the Lise mterpreter. The interpreter is a program that you run.
You type an S-expression and it prints back another S-expression. This second
S-expression is the value of the one you typed in. (If something goes wrong, an
error message iy printed instead of a value).

Lisp programs don't always need to be compiled like ALGOL or FORTRAN
programs. That is. vou do not have to take a file of LisP text. convert it into
mternal machine code. and then run the machine code. Instead. you can type
Lisp text to the interpreter, which evaiuates it and types the result back at you as
more Lisp text.

While interpreting means that programs run slower. 1t also usually means that
you always have your expressions available during execution for inspection and
modification. Lisp can support very powerful debugging and editing facilities for
this reason.

The *“top-level™™ loop of the Lisp interpreter can be written in a4 ALGOL-like
language as

BEGIN

LOOP: EXP 1= READ (INPUT)3
VAL := EVAL (EXP):
FRINT (VAL ., QUTPUT) 3
GO TO Laoop

END §
This is usnally referred to as the READ-EVAL -PRINT loop. AN three
functions are available to the user — that is. when you write a fuaction that uses

