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Preface

Since the first edition of this book (1991), the interest for Brownian motion and
related stochastic processes has not abated in the least. This is probably due to
the fact that Brownian motion is in the intersection of many fundamental classes
of processes. It is a continuous martingale, a Gaussian process, a Markov process
or more specifically a process with independent increments; it can actually be
defined, up to simple transformations, as the real-valued, centered process with
stationary independent increments and continuous paths. It is therefore no surprise
that a vast array of techniques may be successfully applied to its study and we,
consequently, chose to organize the book in the following way.

After a first chapter where Brownian motion is introduced, each of the follow-
ing ones is devoted to a new technique or notion and to some of its applications
to Brownian motion. Among these techniques, two are of paramount importance:
stochastic calculus, the use of which pervades the whole book, and the powerful
excursion theory, both of which are introduced in a self-contained fashion and
with a minimum of apparatus. They have made much easier the proofs of many
results found in the epoch-making book of It6 and Mc Kean: Diffusion processes
and their sample paths, Springer (1965).

These two techniques can both be taught, as we did several times, in a pair
of one-semester courses. The first one devoted to Brownian motion and stochastic
integration and centered around the famous It6 formula would cover Chapters I
through V with possibly the early parts of Chapters VIII and IX. The second
course, more advanced, would begin with the local times of Chapter VI and the
extension of stochastic calculus to convex functions and work towards such topics
as time reversal, Bessel processes and the Ray-Knight theorems which describe
the Brownian local times in terms of Bessel processes. Chapter XII on Excursion
theory plays a basic role in this second course. Finally, Chapter XIII describes the
asymptotic behavior of additive functionals of Brownian motion in dimension 1
and 2 and especially of the winding numbers around a finite number of points for
planar Brownian motion. .

The text is complemented at the end of each section by a large selection of
exercices, the more challenging being marked with the sign * or even **. On
the one hand, they should enable the reader to improve his understanding of the
notions introduced in the text. On the other hand, they deal with many results
without which the text might seem a bit “dry” or incomplete; their inclusion in the
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text however would have increased forbiddingly the size of the book and deprived
the reader of the pleasure of working things out by himself. As it is, the text is
written with the assumption that the reader will try a good proportion of them,
especially those marked with the sign #, and in a few proofs we even indulged in
using the results of foregoing exercices.

The text is practically self-contained but for a few results of measure theory.
Beside classical calculus, we only ask the reader to have a good knowledge of
basic notions of integration and probability theory such as almost-sure and the
mean convergences, conditional expectations, independence and the like. Chapter
0 contains a few complements on these topics. Moreover the early chapters include
some classical material on which the beginner can hone his skills.

Each chapter ends up with notes and comments where, in particular, references
and credits are given. In view of the enormous literature which has been devoted
in the past to Brownian motion and related topics, we have in no way tried to
draw a historical picture of the subject and apologize in advance to those who
may feel slighted.

Likewise our bibliography is not even remotely complete and leaves out the
many papers which relate Brownian motion with other fields of Mathematics such
as Potential Theory, Harmonic Analysis, Partial Differential Equations and Geom-
etry. A number of excellent books have been written on these subjects, some of
which we discuss in the notes and comments.

This leads us to mention some of the manifold offshoots of the Brownian
studies which have sprouted since the beginning of the nineties and are bound to
be still very much alive in the future:

— the profound relationships between branching processes, random trees and
Brownian excursions initiated by Neveu and Pitman and furthered by Aldous,
Le Gall, Duquesne, ... .

— the important advances in thé studies of Lévy processes which benefited from
the results found for Brownian motion or more generally diffusions and from the
deep understanding of the general theory of processes developed by P. A. Meyer.
and his “Ecole de Strasbourg”. Bertoin’s book: Lévy processes (Cambridge
Univ. Press, 1996) is a basic reference in these matters; so is the book of Sato:
Lévy processes and infinitely divisible distributions (Cambridge Univ. Press,
1999), although it is written in a different spirit and stresses the properties of
infinitely divisible laws.

— in a somewhat similar fashion, the deep understanding of Brownian local times
has led to intersection local times which serve as a basic tool for the study of
multiple points of the three-dimensional Brownian motion. The excellent lecture
course of Le Gall (Saint-Flour, 1992) spares us any regret we might have of
omitting this subject in our own book. One should also mention the results on
the Brownian curve due to Lawler-Schramm-Werner who initiated the study of
the Stochastic Loewner Equations.

— stochastic integration and It6’s formula have seen the extension of their domains
of validity beyond semimartingales to, for instance, certain Dirichlet processes
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i.e. sums of a martingale and of a process with a vanishing quadratic varia-
tion (Bertoin, Yamada). Let us also mention the anticipative stochastie calculus
(Skorokhod, Nualart, Pardoux). However, a general unifying theory is not yet
available; such a research is justified by the interest in fractional Brownian
motion (Cheridito, Feyel-De la Pradelle, Valkeila, .. .)

Finally it is a pleasure to thank all those, who, along the years, have helped us
to improve our successive drafts, J. Jacod, B. Maisonneuve, J. Pitman, A. Adhikari,
J. Azéma, M. Emery, H. Follmer and the late P. A. Meyer to whom we owe so
much. Our special thanks go to J. F. Le Gall who put us straight on an inordinate
number of points and Shi Zhan who has helped us with the exercises.

Paris, August 2004 Daniel Revuz
Marc Yor
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Chapter 0. Preliminaries

In this chapter, we review a few basic facts, mainly from integration and classical
probability theories, which will be used throughout the book without further ado.
Some other prerequisites, usually from calculus, which will be used in some special
parts are collected in the Appendix at the end of the book.

§1. Basic Notation

Throughout the sequel, N will denote the set of integers, namely, N = {0, 1, .. .},
R the set of real numbers, Q the set of rational numbers, C the set of complex
numbers. Moreover R, = [0, oo[ and Q4 = QN R,. By positive we will always
mean > 0 and say strictly positive for > 0.

Likewise a real-valued function f defined on an interval of R is increasing
(resp. strictly increasing) if x < y entails f(x) < f(y) (resp. f(x) < f(y)).

If a, b are real numbers, we write:

a A b = min(a, b), a Vv b = max(a, b).
If E is a set and f a real-valued function on E, we use the notation
ff=rvo, fT==(fn0), Ifl=rfr+f,
WA= f:glf(x)l.

We will write a, | a (a, 1 a) if the sequence (a,) of real numbers decreases
(increases) to a.

If (E, &) and (F, %) are measurable spaces, we write f € & /9 to say that
the function f : £ — F is measurable with respect to & and %7 . If (F, %) is
the real line endowed with the o-field of Borel sets, we write simply f € & and
if, in addition, f is positive, we write f € &, . The characteristic function of a set
A is written 1,; thus, the statements A € & and 1, € & have the same meaning.

If £2 is a set and f;, i € I, is a collection of maps from £ to measurable
spaces (E;, &), the smallest o-field on £2 for which the f;’s are measurable is
denoted by o (fi,i € I). If & is a collection of subsets of £2, then o (%) is the
smallest o-field containing %”; we say that o (%) is generated by % . The o-field
o (fi,i € I) is generated by the family & = {f,.”l(A.-), A€ é&,.ie I}. Finally if
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&, 1 e I, is a family of o -fields on §2, we denote by \/; &; the o-field generated
by |J; &. It is the union of the o-fields generated by the countable sub-families
of &,iel.

A measurable space (E, &) is separable if & is generated by a countable
collection of sets. In particular, if E is a LCCB space i.e. a locally compact space
with countable basis, the o-field of its Borel sets is separable; it will often be
denoted by A (E). For instance, .%(R?) is the o-field of Borel subsets of the
d-dimensional euclidean space.

For a measure m on (£, &) and f € &, the integral of f with respect to m,
if it makes sense, will be denoted by any of the symbols

f £ dm, f F@)dm(x), / FEOmdn,  m(),  m, f),

and in case E is a subset of a euclidean space and m is the Lebesgue measure,
f f(x)dx.

If (£2, %, P) is a probability space, we will as usual use the words random
variable and expectation in lieu of measurable function and integral and write

E[X]=LXdP.

We will often write r.v. as shorthand for random variable. The law of the r.v. X,
namely the image of P by X will be denoted by Px or X(P). Two r.v.’s defined
on the same space are P-equivalent if they are equal P-a.s.

If & is a sub-o -field of %, the conditional expectation of X with respectto &,
if it exists, is written E[X | &]. If X = 1,4, A € %, we may write P(A | &). If
& =o0X;,iel)wealsowrite E{X | X;,i e IJor P (A | X;,i € I). As is well-
known conditional expectations are defined up to P-equivalence, but we will often
omit the qualifying P-a.s. When we apply conditional expectation successively,
we shall abbreviate E [E [X | %] | %] to E[X | % | %)

We recall that if £2 is a Polish space (i.e. a metrizable complete topological
space with a countable dense subset), % the o -field of its Borel subsets and if &
is separable, then there is a regular conditional probability distribution given & .

If u and v are two o-finite measures on (E, &), we write i lv to mean that
they are mutually singular, 4 <« v to mean that p is absolutely continuous with
respect to v and u ~ v.if they are equivalent, namely if 4 <« v and v « u. The

Radon-Nikodym derivative of the absolutely continuous part of y with respect to

v is written %‘f Lf and & is dropped when there is no risk of confusion.

§2. Monotone Class Theorem

We will use several variants of this theorem which we state here without proof.

(2.1) Theorem. Let . be a collection of subsets of 2 such that
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i) R2e,
i) ifA,B€ % and A C B, then B\A € ¥,
iit) if {A,} is an increasing sequence of elements of F then | J A, € .

If & O F where F is closed under finite intersections then & O o ().
The above version deals with sets. We turn to the functional version.

(2.2) Theorem. Let F# be a vector space of bounded real-valued functions on 2
such that

i) the constant functions are in 5,
ii) if {h,} is an increasing sequence of positive elements of F such that h =
sup,, h, is bounded, then h € 8.

If & is a subset of & which is stable under pointwise multiplication, then
contains all the bounded o (%)-measurable functions.

The above theorems will be used, especially in Chap. III, in the following
set-up. We have a family f;, i € I, of mappings of a set £2 into measurable spaces
(E;, &;). We assume that for each i € I there is a subclass .4 of &, closed under
finite intersections and such that 6 (%) = &;. We then have the following results.

(2.3) Theorem. Let A" be the family of sets of the form (\;, f,"'(A;) where A;
ranges through 4 and J ranges through the finite subsets of I1; then o(NV") =
o(fi,iel).

(2.4) Theorem. Let ¥ be a vector space of real-valued functions on $2, contain-
ing lg, satisfying property ii) of Theorem (2.2) and containing all the functions
lp for I' € A", Then, 5% contains all the bounded, real-valued, o (f:,i € I)-
measurable functions.

§3. Completion

If (E, &) is a measurable space and u a probability measure on &, the completion
&*# of & with respect to p is the o-field of subsets B of E such that there exist
By and B, in & with By C B C B, and u(B,\B)) = 0. If y is a family of
probability measures on &, the o-field

gr:ﬂgﬂ

ney

is called the completion of & with respect to y. If y is the family of all probability
measures on &, then &7 is denoted by &* and is called the o-field of universally.
measurable sets.

If & is a sub-o-algebra of & we define the completion of F in &V with
respect 1o y as the family of sets A with the following property: for each i € y,
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there is a set B such that AAB is in & and u(AAB) = 0. This family will be

denoted .7 ¥, the reader will show that it is a o-field which is larger than FY,
Moreover, it has the following characterization.

(3.1) Proposition. A4 set A is in Fr if and only if for every u € y there is a set
B, in % and two pu-negligible sets N, and M,, in & such that

B,\N,CACB,UM,.
Proof. Left to the reader as an exercise. a]

The following result gives a means of checking the measurability of functions
with respect to o-algebras of the 7 -type.

(3.2) Propeosition. Fori = 1,2, let (E;, &;) be a measurable space, y; a family of
probability measures on & and 5% a sub-o-algebra of &"'. If f is a map which
is both in /%, and A /IR and if f(u) € vy, for every u € y, then f is in
? n /.7 n

Proof. Let A be in ﬁ;’". For u € yy, since v = f(u) is in y,, there is a set
B, € % and two v-negligible sets N, and M, in & such that

BAN, CACB,UM,.

The set B, = f~'(B,) belongsto %, the sets N, = f~'(N,) and M,, = f~1(M,)
are p-negligible sets of &; and

B,\N, C f7'(A) C BL,UM,.

This entails that f~'(A) € Z "', which completes the proof. o

§4. Functions of Finite Variation and Stieltjes Integrals

This section is devoted to a set of properties which will be used constantly through-
out the book.

We deal with real-valued, right-continuous functions A with domain [0, oo[.
The results may be easily extended to the case of R. The value of A in ¢ is denoted
A; or A(r). Let A be a subdivision of the interval [0,/] withO =14 <# < ... <
t, = t; the number |A| = sup; |t;11 — 4] is called the modulus or mesh of A. We
consider the sum

Z IA’:H A’r

If A’ is another subdivision which is a refinement of A, that is, every point #; of
A is a point of A’, then plainly §2' > S2.
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(4.1) Definition. The function A is of finite variation if for every t

S; = sup S,A < +o00.
a

The functiont — S, is called the total variation of A and S, is the variation of A on
[0, t). The function S is obviously positive and increasing and if lim,_, o, S; < +00,
the function A is said to be of bounded variation.

The same notions could be defined on any interval [a, b]. We shall say that a
function A on the whole line is of finite variation if it is of finite variation on any
compact interval but not necessarily of bounded variation on the whole of R.

Let us observe that C'-functions are of finite variation. Monotone finite func-
tions are of finite variation and conversely we have the

(4.2) Proposition. Any function of finite variation is the difference of two increas-
ing functions.

Proof. The functions (S + A)/2 and (S ~ A)/2 are increasing as the reader can
easily show, and A is equal to their difference. o

This decomposition is moreover minimal in the sense that if A = F — G where
F and G are positive and increasing, then (S + A)/2 < F and (S — A)/2 < G.

As a result, the function A has left limits in any ¢ € ]0, cof. We write A,_ or
A(t-) for lim,y, A; and we set Ag— = 0. We moreover set AA, = A, — A,_; this
is the jump of A in ¢.

The importance of these functions lies in the following

(4.3) Theorem. There is a one-to-one correspondence between Radon measures
on (0, oo[ and right-continuous functions A of finite variation given by

A, = pu([0, 1]).

Consequently A, = n({0, z[) and AA, = p({t}). Moreover, if 1£({0}) = 0, the
variation S of A corresponds to the total variation |u| of u and the decomposition
in the proof of Proposition (4.2) corresponds to the minimal decomposition of u
into positive and negative parts.

If f is a locally bounded Borel function on Ry, its Stieltjes integral with
respect to A, denoted

f fidA;, f fF(s)dA(s) or f(s)dA;
0 [}

10.7]
is the integral of f with respect to u on the interval ]0, 7). The reader will observe
that the jump of A at zero does not come into play and that f; dA; = A, — Ap. If
we want to consider the integral on [0, ], we will write flo, 0 f(s)dA;. The integral
on ]0, r] is also denoted by (f - A),. We point out that the map ¢ — (f - A), is
itself a right-continuous function of finite variation.

A consequence of the Radon-Nikodym theorem applied to © and to the
Lebesgue measure A is the
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(4.4) Theorem. A function A of finite variation is A-a.e. differentiable and there
exists a function B of finite variation such that B’ = 0 A-a.e. and

t .
A‘ = Bt +/ A;ds‘.
0

The function A is said to be absolutely continuous if B = 0. The corresponding
measure w4 is then absolutely continuous with respect to A.

We now turn to a series of notions and properties which are very useful in
handling Stieltjes integrals.

(4.5) Proposition (Integration by parts formula). If A and B are two functions
of finite variation, then for any t,

t 14
AB, = AgBo + f AdB. + / B._dA..
0 0

Proof. If u (resp. v) is associated with A (resp. B) both sides of the equality
are equal to p ® v([0, 1]?); indeed fol A dB; is the measure of the upper triangle
including the diagonal, fo' B;_d A, the measure of the lower triangle excluding the
diagonal and A¢By = 1 ® v({0, 0}). 0

To reestablish the symmetry, the above formula can also be written

t 1
A,B, =f A,_dB, +/ B,_dA,+)  AA,AB,.
0 0 =
The sum on the right is meaningful as A and B have only countably many dis-
continuities. In fact, A can be written uniquely A, = A¢ + Y ._ AA; where A€
is continuous and of finite variation.
The next result is a “chain rule” formula.

<t

(4.6) Propeosition. If F is a C'-function and A is of finite variation, then F(A) is
of finite variation and

F(A) = F(Ao) + f F'(A;)dAs+ ) (F(A,) — F(A;2) — F'(A:2)AA,).
0

s<t

Proof. The result is true for F(x) = x, and if it is true for F, it is true for x F(x)
as one can deduce from the integration by parts formula; consequently the result
is true for polynomials. The proof is completed by approximating a C'-function
by a sequence of polynomials. D

As an application of the notions introduced thus far, let us prove the useful
(4.7) Proposition. If A is a right continuous function of finite variation, then

Y, =Yo] ] (1 + AA,) exp (A7 — Aj)

s<t

is the only locally bounded solution of the equation

13
Y ,=Y +/ Y,_dA;.
0
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Proof. By applying the integration by parts formula to Yo [],., (1 + AA;) and
exp ( fo' dAj) which are both of finite variation, it is easily seen that Y is a solution
of the above equation.

Let Z be the difference of two locally bounded solutions and M, = sup, , | Zs|.

It follows from the equality Z, = fol Z,_dA; that |Z,| < M,S, where S is the
variation of A; then, thanks to the integration by parts formula

4
1Zi| < M, f S;-dS, < M,S%/2,
0
and inductively,
M, [! ,
1Z:] = ;,—f S;_dS; < M, ;" /(n +1)!
> Jo

which proves that Z = 0. m}

We close this section by a study of the fundamental technique of time changes,
which allows the explicit computation of some Stieltjes integrals. We consider
now an increasing, possibly infinite, right-continuous function A and for s > 0,
we define

Cs =inf{t: A, > s}
where, here and below, it is understood that inf{@} = +o00. We will also say that
C is the (right-continuous) inverse of A.

To understand what follows, it is useful to draw Figure 1 (see below) showing
the graph of A and the way to find C. The function C is obviously increasing so
that

Cs— =1limC,
uts
is well-defined for every s. It is easily seen that
Cs_ =inf{t: A, > s}.

In particular if A has a constant stretch at level s, then C, will be at the right end
and C;_ at the left end of the stretch; moreover C;_ # C; only if A has a constant
stretch at level s. By convention Cy- = 0.

(4.8) Lemma. The function C is right-continuous. Moreover A(C;) > s and
A, =inf{s : C; > t}.

Proof. That A(C;) > s is obvious. Moreover, the set {A; > s} is the union of the
sets {A, > s + ¢} for &€ > 0, which proves the right continuity of C.
If furthermore, C; > ¢, then t ¢ {u : A, > s} and A, < s. Consequently,
A; <inf(s : Cs > t}. On the other hand, C(A,) > ¢ for every ¢, hence C (A;4;) >
t + ¢ > t which forces
Ay > infls : C; > 1}

and because of the right continuity of A

A, >inf{s: C; >t} O
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Remarks. Thus A and C play symmetric roles. But if A is continuous, C is still
only right-continuous in general; in that case, however, A (C;) = s but C (A) > s
if 5 is in an interval of constancy of A. As already observed, the jumps of C
correspond to the level stretches of A and vice-versa; thus C is continuous iff
A is strictly increasing. The right continuity of C does not stem from the right-
continuity of A but from its definition with a strict inequality; likewise, C;_ is left
continuous.

We now state a “change of variables™ formula.

(4.9) Proposition. [f f is a positive Borel function on [0, oo,

x
[ fa)dA, =/ F(CHY e, <onpds.
[0,00] 0

Proof. If f = 1jp,,), the formula reads

oo
Av = / l(cjs,,)ds
1]

and is then a consequence of the definition of C. By taking differences, the equality
holds for the indicators of sets Ju, v], and by the monotone class theorem for any f
with compact support. Taking increasing limits yields the result in full generality.

0

In the same way, we also have

/0 FwdA, = / FC o<, <o0rds.
0



