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Introduction

The contents of this book are the result of work performed in the past three
years to provide some answers to questions raised by several colleagues work-
ing in astrophysics. Examining several transport processes in plasmas related
to dissipative effects in phenomena such as cooling flows, propagation of
sound waves, thermal conduction in the presence of magnetic fields, angu-
lar momentum transfer in accretion disks. among many, one finds a rather
common pattern. Indeed when values for transport coefficients are required
the overwhelming majority of authors refer to the classical results obtained
by L. Spitzer and S. Braginski over forty years ago. Further, it is also often
mentioned that under the prescribed working conditions the values of such
coefficients are usually insufficient to provide agreement with observations.

The methodology followed by these authors is based upon Landau’s pi-
oneering idea that collisions in plasmas may be substantially accounted for
when viewed as a diffusive process. Consequently the ensuing basic kinetic
equation is the Fokker-Planck version of Boltzmann’s equation as essentially
proposed by Landau himself nearly 70 years ago. Curiously enough the
magnificent work of the late R. Balescu in both Classical and Non-Classical
transport in plasmas published in 1988 and also based on the Fokker-Planck
equation is hardly known in the astrophysical audience. The previous work
of Spitzer and Braginski is analyzed with much more rigorous vision in his
two books on the subject.

With this background in hand the question that came to our minds is
why, if true, the full Boltzmann's equation had never been used in deal-
ing at least with the kinetic theory of dilute plasmas. In their well known
and comprehensive treatment on the kinetic theory of non-uniform gases,
Chapman and Cowling never developed the theory as they did with ordi-
nary gases. A further attempt was made in 1960 by W. Marshall in three
unpublished reports issued by the Harwell Atomic Energy Establishment in
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2 Introduction

Harwell, England. And also, none of all the authors in this field with the
sole exception of Balescu who did it partially, took the kinetic equation of
their choice to provide the microscopic basis of linear irreversible thermody-
namics therefore, providing, among many other results, a microscopic basis
of magnetohydrodynamics.

This is the main objective of this book. Starting from the full Boltzmann
equation for an inert dilute plasma and using the Hilbert-Chapman-Enskog
method to solve the first two approximations in Knudsen’s parameter we
construct all the transport properties of the system within the framework
of linear irreversible thermodynamics. This includes a systematic study of
all possible cross effects which except for a few cases dealt with by Balescu,
today to our knowledge, have never been mentioned in the literature. The
equations of magnetohydrodynamics, including the rather surprising results
here obtained for the viscomagnetic effects, for dilute plasmas may be then
fully assessed. We expect that this material will thus be useful to grad-
uate students and researchers involved in work with non-confined plasmas
specially in astrophysical problems.

July 2008 L.S. Garcia-Colin
L. Dagdug
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Chapter 1

Non-equilibrium
Thermodynamics

The main objective of this book is to place the kinetic theory of a dilute
plasma within the tenets of what is known as Classical (Linear) Irreversible
Thermodynamics (CIT). Since this subject is quite often beyond the aver-
age knowledge of the younger generation of physicists and physical chemists
we feel that it is useful to give a brief review of its basic concepts so that
the reader appreciates better how and why we are seeking the results to be
presented in the main text.

CIT, being a phenomenological theory is based essentially on four basic
assumptions, namely,

1. The local equilibrium assumption (LEA)
2. The validity of the conservation equations

3. The linear constitutive equations and positive definiteness of the un-
compensated heat (entropy production)

4. Onsagers’ reciprocity theorem

In what follows we shall discuss as thoroughly as possible the basic ideas
behind each assumption, leaving the reader to pursue more details in the
standard texts on the subject [1]-[7]. Let us start with the LEA. Consider
any arbitrary system which is not in thermodynamic equilibrium. For purely
didactical reasons the reader may think of a fluid enclosed in a volume V.
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6 1 Non-equilibrium Thermodynamics

Let us now partition this volume in small cells such that the number of
particles in each cell with coordinates 7, 7+ dr" at time ¢ contains enough
particles to be considered as a continuum but small compared with the total
number of particles in the system, say N. The LEA asserts that within each
cell a thermodynamic equilibrium state prevails. For instance, if n(7,t) is
the particle density in the cell characterized by its position 7 at time ¢ and
T(7,t) the temperature inside the cell, any other thermodynamic quantity,
for instance the entropy s(7,t) will be related to n(7,¢) and T'(7,t) as

s(7,t) = s[n(7,t), T(7,1)] (1.1)

precisely by the same relationship that holds for these variables in the equi-
librium state. The local equation of state for an ideal gas would read

p(T,t) = n(7, t)kgT(T, 1) (1.2)

kg being Boltzmann’s constant. And so on.

These equations bring us in a natural way to the second assumption.
Think of a monatomic fluid for the moment in the absence of sources and
sinks. If we chose to describe the states of this fluid by the “natural” vari-
ables, the local particles density n(7,t), the local hydrodynamic velocity
u(r,t) (or mu(7,t) its momentum) and the local energy density e(7,t) these
variables will satisfy clearly, conservation equations. Use of this fact and
Eq. (1.1) with e(7,t) instead of T'(7,t) plus the standard techniques of ordi-
nary calculus lead us in a straightforward fashion to an equation describing
the evolution of the local entropy s(7,t). In fact if p(7,t) = mn(7,t), m being
the mass of the particles, one finds that,

%ﬁ-div J,=0 (1.3)
which is a balance type equation for ps. J,, the entropy flux, gives the
amount of entropy flowing through the boundaries to the system and o, the
uncompensated heat or entropy production, measures the entropy generated
inside the system due to the dissipative processes. Its existence goes back
to Clausius who indeed identified it with the uncompensated heat which
should arise from dissipation. Its analytical expression was first identified by
T. de Donder in chemical reactions and later brought into its present form
by Meixner. Indeed, in the derivation of Eq. (1.3) one finds that

o= Z?,{D?& = —% -grad T — %'? g (gra.od 1)° — —;;TdiV'lT (1.4)



1 Non-equilibrium Thermodynamics 7

where 7;‘ and ?i denote the fluxes and their corresponding forces respec-
tively, and ©® the contraction of tensors of equal rank. The second equality
illustrates its nature for an ordinary monatomic fluid. J, is the heat flow
vector and the momentum flow ‘7 is split into its symmetric traceless part

7" and its trace 7. Eq. (1.4) clearly fulfills Clausius’ predictions.

These results bring us to the third assumption. The conservation equa-
tions for a monatomic fluid are the set of five differential equations for the
state variables p, @ and e but contain fourteen unknowns, these variables plus
the three components of j:, plus the six independent components of the stress
tensor 7 assumed to be symmetric. We thus need nine additional equations
to express J, and 7" in terms of the independent variables. Notice that
T(7,t) may be introduced through the LEA since e(7,t) = e(n(7,t), T(7,t)).
These additional equations known in the literature as the “constitutive equa-
tions” are completely foreign to thermodynamics. They may be extracted
from experiment or from a microscopic theory. If we now assume (assump-
tion 3) that the relationship between fluxes and forces is linear so that in
general,

71‘ = ZLik?k, (1.5)

we may obtain a complete set for the time evolution equations of the local
state variables. For a monatomic fluid, Eq. (1.5) reduces to

J, = —kgrad T Fourier (1.6)
& % ag
T = —n(grad @) Naviere-Newton
T=—(divud

As it is shown in any standard text on the subject, when Eqgs. (1.6) are
substituted into the conservation equations one gets a set of non-linear, sec-
ond order in space, first order in time differential equations for n, @ and
T known as the Navier-Stokes-Fourier equations of hydrodynamics. These
equations require the knowledge of a local equation of state (c.f. Eq. (1.1)),
of the transport coefficients «, the thermal conductivity, 7, the shear viscos-
ity, and (, the bulk viscosity in addition to well defined boundary and initial
conditions to seek for a solution.

In spite of its centennial age these equations still pose immense problems
to mathematical physicists and hydrodynamicists in finding stable solutions
8].



