Universitext

Friedrich Sauvigny

Partial Differential Equations 2

Functional Analytic Methods

偏微分方程 第2卷

Springer

世界用出来版公司 www.wpcbj.com.cn Dokumian

Friedrich Seavigry

Partial Differential Equations 2

Franchised Indigit Methods

SECOND BY

ringer

STREET, SQUARE

Friedrich Sauvigny

Partial Differential Equations 2

Functional Analytic Methods

With Consideration of Lectures by E. Heinz

图书在版编目 (CIP) 数据

偏微分方程 = Partial Differential Equations. 第2卷:

英文/(德)索维尼(Sauvigny, F.)著.—影印本.

一北京:世界图书出版公司北京公司,2011.5

ISBN 978 -7 -5100 -3516 -6

Ⅰ. ①偏… Ⅱ. ①索… Ⅲ. ①偏微分方程—教材

一英文 IV. ①0175.2

中国版本图书馆 CIP 数据核字 (2011) 第 074504 号

书 名: Partial Differential Equations 2: Functional Analytic Methods

作 者: Friedrich Sauvigny

中 译 名: 偏微分方程 第2卷

责任编辑: 高蓉 刘慧

出版者: 世界图书出版公司北京公司

印刷者: 三河市国英印务有限公司

发 行: 世界图书出版公司北京公司(北京朝内大街 137 号 100010)

联系电话: 010-64021602, 010-64015659

电子信箱: kjb@ wpcbj. com. cn

开 本: 24 开

印 张: 17

版 次: 2011年06月

版权登记: 图字: 01-2011-1097

书 号: 978-7-5100-3516-6/0・871 定 价: 49.00 元

Friedrich Sauvigny
Brandenburgische Technische Universität Cottbus
Fakultät 1, Lehrstuhl Mathematik, insbes. Analysis
Universitätsplatz 3/4
03044 Cottbus
Germany
e-mail: sauvigny@math.tu-cottbus.de

Llibraray of Congress Control Number: 2006929533

Mathematics Subject Classification (2000): 35, 30, 31, 45, 46, 49, 53

ISBN-10 3-540-34461-6 Springer Berlin Heidelberg New York ISBN-13 978-3-540-34461-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com
© Springer-Verlag Berlin Heidelberg 2006

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fron the relevant protective laws and regulations and therefore free for general use.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the Mainland China only and not for export therefrom.

DEDICATED TO

THE MEMORY OF MY PARENTS

PAUL SAUVIGNY UND MARGRET, GEB. MERCKLINGHAUS.

Introduction to Volume 2 – Functional Analytic Methods

In this second volume, Functional Analytic Methods, we continue our textbook Partial Differential Equations of Geometry and Physics. From both areas we shall answer central questions such as curvature estimates or eigenvalue problems, for instance. With the title of our textbook we also want to emphasize the pure and applied aspects of partial differential equations. It turns out that the concepts of solutions are permanently extended in the theory of partial differential equations. Here the classical methods do not lose their significance. Besides the n-dimensional theory we equally want to present the two-dimensional theory — so important to our geometric intuition.

We shall solve the differential equations by the continuity method, the variational method or the topological method. The continuity method may be preferred from a geometric point of view, since the stability of the solution is investigated there. The variational method is very attractive from the physical point of view; however, difficult regularity questions for the weak solution appear with this method. The topological method controls the whole set of solutions during the deformation of the problem, and does not depend on uniqueness as does the variational method.

We would like to mention that this textbook is a translated and expanded version of the monograph by Friedrich Sauvigny: Partielle Differentialgleichungen der Geometrie und der Physik 2 – Funktionalanalytische Lösungsmethoden – Unter Berücksichtigung der Vorlesungen von E.Heinz, which appeared in Springer-Verlag in 2005.

In Chapter VII we consider – in general – nonlinear operators in Banach spaces. With the aid of Brouwer's degree of mapping from Chapter III we prove Schauder's fixed point theorem in $\S 1$; and we supplement Banach's fixed point theorem. In $\S 2$ we define the Leray-Schauder degree for mappings in Banach spaces by a suitable approximation, and we prove its fundamental properties in $\S 3$. In this section we refer to the lecture [H4] of my academic teacher, Professor Dr. E. Heinz in Göttingen.

Then, by transition to linear operators in Banach spaces, we prove the fundamental solution-theorem of F. Riesz via the Leray-Schauder degree. At the end of this chapter we derive the Hahn-Banach continuation theorem by Zorn's lemma(compare [HS]).

In Chapter VIII on Linear Operators in Hilbert Spaces, we transform the eigenvalue problems of Sturm-Liouville and of H. Weyl for differential operators into integral equations in §1. Then we consider weakly singular integral operators in §2 and prove a theorem of I. Schur on iterated kernels. In §3 we further develop the results from Chapter II, §6 on the Hilbert space and present the abstract completion of pre-Hilbert-spaces. Bounded linear operators in Hilbert spaces are treated in §4: The continuation theorem, Adjoint and Hermitian operators, Hilbert-Schmidt operators, Inverse operators, Bilinear forms and the theorem of Lax-Milgram are presented. In §5 we study the transformation of Fourier-Plancherel as a unitary operator on the Hilbert space $L^2(\mathbb{R}^n)$.

Completely continuous, respectively compact operators are studied in §6 together with weak convergence. The operators with finite square norms represent an important example. The solution-theorem of Fredholm on operator equations in Hilbert spaces is deduced from the corresponding result of F. Riesz in Banach spaces. We particularly apply these results to weakly singular integral operators.

In § 7 we prove the spectral theorem of F. Rellich on completely continuous and Hermitian operators by variational methods. Then we address the Sturm-Liouville eigenvalue problem in § 8 and expand the relevant integral kernels into their eigenfunctions. Following ideas of H. Weyl we treat the eigenvalue problem for the Laplacian on domains in \mathbb{R}^n by the integral equation method in § 9. In this chapter as well, we take a lecture of Professor Dr. E. Heinz into consideration (compare [H3]). For the study of eigenvalue problems we recommend the classical treatise [CH] of R. Courant and D. Hilbert, which has also smoothed the way into modern physics.

We have been guided into functional analysis with the aid of problems concerning differential operators in mathematical physics (compare [He1] and [He2]). The usual content of functional analysis can be taken from the Chapters II §§ 6-8, VII and VIII. Additionally, we investigated the solvability of nonlinear operator equations in Banach spaces. For the spectral theorem of unbounded, selfadjoint operators we refer the reader to the literature.

In our compendium we shall directly construct classical solutions of boundary and initial value problems for linear and nonlinear partial differential equations with the aid of functional analytic methods. By appropriate a priori estimates with respect to the Hölder norm we establish the existence of solutions in classical function spaces.

In Chapter IX, §§ 1-3, we essentially follow the book of I. N. Vekua [V] and solve the Riemann-Hilbert boundary value problem by the integral equation

method. Using the lecture [H6], we present Schauder's continuity method in $\S\S4-7$ in order to solve boundary value problems for linear elliptic differential equations with n independent variables. Therefore, we completely prove the Schauder estimates.

In Chapter X on weak solutions of elliptic differential equations, we profit from the *Grundlehren* [GT] Chapters 7 and 8 of D. Gilbarg and N. S. Trudinger. Here, we additionally recommend the textbook [Jo] of J. Jost and the compendium [E] by L. C. Evans.

We introduce Sobolev spaces in §1 and prove the embedding theorems in §2. Having established the existence of weak solutions in §3, we show the boundedness of weak solutions by Moser's iteration method in §4. Then we investigate Hölder continuity of weak solutions in the interior and at the boundary; see §§5-7. Restricting ourselves to interesting classes of equations, we can illustrate the methods of proof in a transparent way. Finally, we apply the results to equations in divergence form; see §8, §9, and §10.

In Chapter XI, §§ 1-2, we concisely lay the foundations of differential geometry (compare [BL]) and of the calculus of variations. Then, we discuss the theory of characteristics for nonlinear hyperbolic differential equations in two variables (compare [CH], [G], [H5]) in § 3 and § 4. In particular, we solve the Cauchy initial value problem via Banach's fixed point theorem. In § 6 we present H. Lewy's ingenious proof for the analyticity theorem of S. Bernstein. Here, we would like to refer the reader to the textbook by P. Garabedian [G] as well.

On the basis of Chapter IV from Volume 1, Generalized Analytic Functions, we treat Nonlinear Elliptic Systems in Chapter XII. We give a detailed survey of the results at the beginning of this chapter.

Having presented Jäger's maximum principle in § 1 , we develop the general theory in §§ 2-5 from the fundamental treatise of E. Heinz [H7] about nonlinear elliptic systems. An existence theorem for nonlinear elliptic systems is situated in the center, which is gained by the Leray-Schauder degree. In §§ 6-10 we apply the results to differential geometric problems. Here, we introduce conformal parameters into a nonanalytic Riemannian metric by a nonlinear continuity method. We directly establish the necessary a priori estimates which extend to the boundary. Finally, we solve the Dirichlet problem for nonparametric equations of prescibed mean curvature by the uniformization method. For this chapter, one should also study the *Grundlehren* [DHKW], especially Chapter 7, by U. Dierkes and S. Hildebrandt, where the theory of minimal surfaces is presented. With the aid of nonlinear elliptic systems we can also study the Monge-Ampère differential equation, which is not quasilinear any more. This theory has been developed by H. Lewy, E. Heinz and F. Schulz (vgl. [Sc]) in order to solve Weyl's embedding problem.

This textbook Partial Differential Equations has been developed from lectures, which I have been giving in the Brandenburgische Technische Univer-

sität at Cottbus since the winter semester 1992/93. The monograph, in part, builds upon the lectures of Professor Dr. E. Heinz, whom I was fortunate to know as his student in Göttingen from 1971 to 1978. As an assistant in Aachen from 1978 to 1983, I very much appreciated the elegant lecture cycles of Professor Dr. G. Hellwig. Since my research visit to Bonn in 1989/90, Professor Dr. S. Hildebrandt has followed my academic activities with his supportive interest. All of them will forever have my sincere gratitude!

My thanks go also to M. Sc. Matthias Bergner for his elaboration of Chapter IX. Dr. Frank Müller has excellently worked out the further chapters, and he has composed the whole TEX-manuscript. I am cordially grateful for his great scientific help. Furthermore, I owe to Mrs. Prescott valuable suggestions to improve the style of the language. Moreover, I would like to express my gratitude to the referee of the English edition for his proposal, to add some historical notices and pictures, as well as to Professor Dr. M. Fröhner for his help, to incorporate the graphics into this textbook. Finally, I thank Herrn C. Heine and all the other members of Springer-Verlag for their collaboration and confidence.

Last but not least, I would like to acknowledge gratefully the continuous support of my wife, Magdalene Frewer-Sauvigny in our University Library and at home.

Cottbus, in May 2006

Friedrich Sauvigny

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic Topology from a Homotopical Viewpoint

Aksoy, A.; Khamsi, M.A.: Methods in Fixed Point Theory

Aleuras, D.; Padberg M. W.: Linear Optimization and Extensions

Andersson, M.: Topics in Complex Analysis
Aoki, M.: State Space Modeling of Time Series

Arnold, V. I.: Lectures on Partial Differential Equations

Arnold, V. I.: Ordinary Differential Equations

Audin, M.: Geometry

Aupetit, B.: A Primer on Spectral Theory Bachem, A.; Kern, W.: Linear Programming Duality

Bachmann, G.; Narici, L.; Beckenstein, E.: Fourier and Wavelet Analysis

Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A Textbook of Graph Theory

Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations

Bapat, R.B.: Linear Algebra and Linear Models

Benedetti, R.; Petronio, C.: Lectures on Hyperbolic Geometry

Benth, F. E.: Option Theory with Stochastic Analysis

Berberian, S. K.: Fundamentals of Real Analysis

Berger, M.: Geometry I, and II

Bliedtner, J.; Hansen, W.: Potential Theory

Blowey, J. F.; Coleman, J. P.; Craig, A. W. (Eds.): Theory and Numerics of Differential Equations

Blowey, J.; Craig, A. (Eds.): Frontiers in Numerical Analysis. Durham 2004

Blyth, T. S.: Lattices and Ordered Algebraic Structures

Börger, E.; Grädel, E.; Gurevich, Y.: The Classical Decision Problem

Böttcher, A; Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P. S.: Excursions into Combinatorial Geometry

Boltyanskii, V. G.; Efremovich, V. A.: Intuitive Combinatorial Topology

Bonnans, J. F.; Gilbert, J. C.; Lemaréchal, C.; Sagastizábal, C. A.: Numerical Optimization

Booss, B.; Bleecker, D.D.: Topology and Analysis

Borkar, V.S.: Probability Theory

Brunt B. van: The Calculus of Variations

Bühlmann, H.; Gisler, A.: A Course in Credibility Theory and Its Applications

Carleson, L.; Gamelin, T. W.: Complex Dynamics

Cecil, T. E.: Lie Sphere Geometry: With Applications of Submanifolds

Chae, S. B.: Lebesgue Integration

Chandrasekharan, K.: Classical Fourier Transform

Charlap, L. S.: Bieberbach Groups and Flat Manifolds

Chern, S.: Complex Manifolds without Potential Theory

Chorin, A. J.; Marsden, J. E.: Mathematical Introduction to Fluid Mechanics

Cohn, H.: A Classical Invitation to Algebraic Numbers and Class Fields

Curtis, M. L.: Abstract Linear Algebra

Curtis, M. L.: Matrix Groups

Cyganowski, S.; Kloeden, P.; Ombach, J.: From Elementary Probability to Stochastic Differential Equations with MAPLE

Dalen, D. van: Logic and Structure

Da Prato, G.: An Introduction to Infinite-Dimensional Analysis

Das, A.: The Special Theory of Relativity: A Mathematical Exposition

Debarre, O.: Higher-Dimensional Algebraic Geometry

Deitmar, A.: A First Course in Harmonic Analysis

Demazure, M.: Bifurcations and Catastrophes

Devlin, K. J.: Fundamentals of Contemporary Set Theory

DiBenedetto, E.: Degenerate Parabolic Equations

Diener, F.; Diener, M.(Eds.): Nonstandard Analysis in Practice

Dimca, A.: Sheaves in Topology

Dimca, A.: Singularities and Topology of Hypersurfaces

DoCarmo, M. P.: Differential Forms and Applications

Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups

Dumortier, F.: Qualitative Theory of Planar Differential Systems

Edwards, R. E.: A Formal Background to Higher Mathematics Ia, and Ib

Edwards, R. E.: A Formal Background to Higher Mathematics IIa, and IIb

Emery, M.: Stochastic Calculus in Manifolds

Emmanouil, I.: Idempotent Matrices over Complex Group Algebras

Endler, O.: Valuation Theory

tion

Erez, B.: Galois Modules in Arithmetic

Everest, G.; Ward, T.: Heights of Polynomials and Entropy in Algebraic Dynamics

Farenick, D. R.: Algebras of Linear Transformations

Foulds, L. R.: Graph Theory Applications Franke, J.; Härdle, W.; Hafner, C. M.: Statistics of Financial Markets: An Introduc-

Frauenthal, J. C.: Mathematical Modeling in Epidemiology

Freitag, E.; Busam, R.: Complex Analysis Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles

Fuks, D. B.; Rokhlin, V. A.: Beginner's Course in Topology

Fuhrmann, P. A.: A Polynomial Approach to Linear Algebra

Gallot, S.; Hulin, D.; Lafontaine, J.: Riemannian Geometry

Gardiner, C.F.: A First Course in Group Theory

Gårding, L.; Tambour, T.: Algebra for Computer Science

Godbillon, C.: Dynamical Systems on Surfaces

Godement, R.: Analysis I, and II

Goldblatt, R.: Orthogonality and Spacetime Geometry

Gouvêa, F. Q.: p-Adic Numbers

Gross, M. et al.: Calabi-Yau Manifolds and Related Geometries

Gustafson, K. E.; Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices

Gustafson, S. J.; Sigal, I. M.: Mathematical Concepts of Quantum Mechanics

Hahn, A. J.: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups

Hájek, P.; Havránek, T.: Mechanizing Hypothesis Formation

Heinonen, J.: Lectures on Analysis on Metric Spaces

Hlawka, E.; Schoißengeier, J.; Taschner, R.: Geometric and Analytic Number Theory

Holmgren, R. A.: A First Course in Discrete Dynamical Systems

Howe, R., Tan, E. Ch.: Non-Abelian Harmonic Analysis

Howes, N. R.: Modern Analysis and Topology

Hsieh, P.-F.; Sibuya, Y. (Eds.): Basic Theory of Ordinary Differential Equations

Humi, M., Miller, W.: Second Course in Ordinary Differential Equations for Scientists and Engineers

Hurwitz, A.; Kritikos, N.: Lectures on Number Theory

Huybrechts, D.: Complex Geometry: An Introduction

Isaev, A.: Introduction to Mathematical Methods in Bioinformatics

Istas, J.: Mathematical Modeling for the Life Sciences

Iversen, B.: Cohomology of Sheaves

Jacod, J.; Protter, P.: Probability Essentials

Jennings, G. A.: Modern Geometry with Applications

Jones, A.; Morris, S.A.; Pearson, K.R.: Abstract Algebra and Famous Inpossibilities Jost, J.: Compact Riemann Surfaces

Jost, J.: Dynamical Systems. Examples of Complex Behaviour

Jost, J.: Postmodern Analysis

Jost, J.: Riemannian Geometry and Geometric Analysis

Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced

Analysis on the Real Line

Kelly, P.; Matthews, G.: The Non-Euclidean Hyperbolic Plane

Kempf, G.: Complex Abelian Varieties and Theta Functions

Kitchens, B. P.: Symbolic Dynamics

Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE

Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments

Kostrikin, A. I.: Introduction to Algebra

Krasnoselskii, M. A.; Pokrovskii, A. V.: Systems with Hysteresis

Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction

Kyprianou, A.: Introductory Lectures on Fluctuations of Lévy Processes with Applications

Lang, S.: Introduction to Differentiable Manifolds

Luecking, D. H., Rubel, L. A.: Complex Analysis. A Functional Analysis Approach

Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms

Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic

Marcus, D. A.: Number Fields

Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis

Matoušek, J.: Using the Borsuk-Ulam Theorem

Matsuki, K.: Introduction to the Mori Program

Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2

Mc Carthy, P. J.: Introduction to Arithmetical Functions

McCrimmon, K.: A Taste of Jordan Algebras

Meyer, R. M.: Essential Mathematics for Applied Field

Meyer-Nieberg, P.: Banach Lattices

Mikosch, T.: Non-Life Insurance Mathematics

Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra

Moise, E. E.: Introductory Problem Courses in Analysis and Topology

Montesinos-Amilibia, J. M.: Classical Tessellations and Three Manifolds

Morris, P.: Introduction to Game Theory

Nikulin, V. V.: Shafarevich, I.R.: Geome

Nikulin, V. V.; Shafarevich, I. R.: Geometries and Groups

Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics

Øksendal, B.: Stochastic Differential Equations

Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions

Poizat, B.: A Course in Model Theory

Polster, B.: A Geometrical Picture Book

Porter, J. R.; Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces

Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization

Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry

Rautenberg, W.; A Concise Introduction to Mathematical Logic

Rees, E. G.: Notes on Geometry

Reisel, R. B.: Elementary Theory of Metric Spaces

Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods

Ribenboim, P.: Classical Theory of Algebraic Numbers

Rickart, C. E.: Natural Function Algebras

Roger G.: Analysis II

Rotman, J. J.: Galois Theory

Rubel, L. A.: Entire and Meromorphic Functions

Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors

Runde, V.: A Taste of Topology

Rybakowski, K.P.: The Homotopy Index and Partial Differential Equations

Sagan, H.: Space-Filling Curves

Samelson, H.: Notes on Lie Algebras

Sauvigny, F.: Partial Differential Equations 1

Sauvigny, F.: Partial Differential Equations 2

Schiff, J. L.: Normal Families

Sengupta, J. K.: Optimal Decisions under Uncertainty

Séroul, R.: Programming for Mathematicians

Seydel, R.: Tools for Computational Finance

Shafarevich, I. R.: Discourses on Algebra

Shapiro, J.H.: Composition Operators and Classical Function Theory

Simonnet, M.: Measures and Probabilities

Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry

Smith, K. T.: Power Series from a Computational Point of View

Smoryński, C.: Logical Number Theory I. An Introduction

Stichtenoth, H.: Algebraic Function Fields and Codes

Stillwell, J.: Geometry of Surfaces

Stroock, D. W.: An Introduction to the Theory of Large Deviations

Sunder, V.S.: An Invitation to von Neumann Algebras

Tamme, G.: Introduction to Étale Cohomology

Tondeur, P.: Foliations on Riemannian Manifolds

Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli

Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems

Weintraub, S.H.: Galois Theory Wong, M. W.: Weyl Transforms

Xambó-Descamps, S.: Block Error-Correcting Codes

Zaanen, A.C.: Continuity, Integration and Fourier Theory

Zhang, F.: Matrix Theory

Zong, C.: Sphere Packings

Zong, C.: Strange Phenomena in Convex and Discrete Geometry

Zorich, V. A.: Mathematical Analysis I

Zorich, V. A.: Mathematical Analysis II

Contents of Volume 1 – Foundations and Integral Representations

I Differentiation and Integration on Manifolds

- §1 The Weierstraß approximation theorem
- §2 Parameter-invariant integrals and differential forms
- §3 The exterior derivative of differential forms
- §4 The Stokes integral theorem for manifolds
- 85 The integral theorems of Gauß and Stokes
- §6 Curvilinear integrals
- §7 The lemma of Poincaré
- §8 Co-derivatives and the Laplace-Beltrami operator
- §9 Some historical notices to chapter I

II Foundations of Functional Analysis

- §1 Daniell's integral with examples
- §2 Extension of Daniell's integral to Lebesgue's integral
- §3 Measurable sets
- §4 Measurable functions
- §5 Riemann's and Lebesgue's integral on rectangles
- §6 Banach and Hilbert spaces
- §7 The Lebesgue spaces $L^p(X)$
- §8 Bounded linear functionals on $L^p(X)$ and weak convergence
- §9 Some historical notices to chapter II

III Brouwer's Degree of Mapping with Geometric Applications

- §1 The winding number
- §2 The degree of mapping in \mathbb{R}^n
- §3 Geometric existence theorems
- §4 The index of a mapping
- §5 The product theorem
- §6 Theorems of Jordan-Brouwer

xiv Contents of Volume 1

IV Generalized Analytic Functions

- §1 The Cauchy-Riemann differential equation
- §2 Holomorphic functions in \mathbb{C}^n
- §3 Geometric behavior of holomorphic functions in C
- §4 Isolated singularities and the general residue theorem
- §5 The inhomogeneous Cauchy-Riemann differential equation
- §6 Pseudoholomorphic functions
- §7 Conformal mappings
- §8 Boundary behavior of conformal mappings
- §9 Some historical notices to chapter IV

V Potential Theory and Spherical Harmonics

- §1 Poisson's differential equation in \mathbb{R}^n
- §2 Poisson's integral formula with applications
- §3 Dirichlet's problem for the Laplace equation in \mathbb{R}^n
- §4 Theory of spherical harmonics: Fourier series
- §5 Theory of spherical harmonics in n variables

VI Linear Partial Differential Equations in \mathbb{R}^n

- §1 The maximum principle for elliptic differential equations
- §2 Quasilinear elliptic differential equations
- §3 The heat equation
- §4 Characteristic surfaces
- §5 The wave equation in \mathbb{R}^n for n = 1, 3, 2
- §6 The wave equation in \mathbb{R}^n for $n \geq 2$
- §7 The inhomogeneous wave equation and an initial-boundary-value problem
- §8 Classification, transformation and reduction of partial differential equations
- §9 Some historical notices to the chapters V and VI

Contents of Volume 2 – Functional Analytic Methods

VII	Operators in Banach Spaces		1
	§1	Fixed point theorems	1
	§2	The Leray-Schauder degree of mapping	12
	§3		18
	§4	Linear operators in Banach spaces	22
	§5	Some historical notices to the chapters III and VII	29
VIII	Lin	ear Operators in Hilbert Spaces	31
	§1		31
	§2	Singular integral equations	45
	§3	The abstract Hilbert space	54
	§4	Bounded linear operators in Hilbert spaces	64
	$\S 5$	Unitary operators	75
	§6	Completely continuous operators in Hilbert spaces	87
	§7	Spectral theory for completely continuous Hermitian operators 1	03
	§8	The Sturm-Liouville eigenvalue problem	10
	§9	Weyl's eigenvalue problem for the Laplace operator	17
	§ 9	Some historical notices to chapter VIII	25
IX	Lin	ear Elliptic Differential Equations	27
	§1	The differential equation $\Delta \phi + p(x,y)\phi_x + q(x,y)\phi_y = r(x,y)$ 1	27
	$\S 2$	The Schwarzian integral formula	
	§3	The Riemann-Hilbert boundary value problem1	36
	$\S 4$	Potential-theoretic estimates	44
	§ 5	Schauder's continuity method	56
	§ 6	Existence and regularity theorems	61
	§7	The Schauder estimates	69
	§8	Some historical notices to chapter IX	85