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Preface

This book is intended to serve as an introduction to computation in control
by an iterative, gradient, numerical method. This general approach is thought
to be important, since it permits one to attack problems in control without
an assumption of linearity. In effect it permits one to do for nonlinear systems
many of the things that have heretofore been possible only for linear systems.
The importance of being able to deal with nonlinear systems 1s readily
evident to anyone who has to deal with any real system. |
Fundamental in taking an iterative, gradient, numerical approach to
control problems is the assumption of an enormous computational capa-
bility, basically to intégrate the system differential equations involved.
The modern, large-scale, digital computer makes all this possible. There are
of course many different approaches to solving control problems with the
digital computer. The gradient approach is felt to be a good onesince itis a
simple, generally well understood method that permits the solution of a
truly large class of optimization problems, a class that extends well outS1de
the area of control. o
‘The general language and approach used here are those of elementary
functional analysis. This selection was made because it is very general and
because it is receiving increasing acceptance in a wide variety of fields. Also,
from a functional analysis standpoint the basic ideas in gradient methods
stand out with clarity and simplicity. |
The particular gradient method that is emphasmed and used here 15
conjugate gradient descent; it is by now a well known method and it exhibits
quadratic convergence while requiring very little more computation than

simple steepest descent. So far as convergence is concerned, it generally does
much better than steepest descent.

It may be noted by scanning the table of contents that there is very little
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said about constraints directly. This is done because it is felt that constraints
are a thicket that it is best not to get into deeply at the introductory level
intended here. The importance of constraints is recognized, however they
do tend to obscure the generally beautiful simplicity that one has with a
gradient approach. Also, in control problems constraints can and are often
handled as part of the nonlinearity of the dynamics. For instance, a magni-
tude constraint on a control input may be treated as a constraint on the
- control input or it may be treated as a saturation nonlinearity in series with
the control input. Another approach, and one used in the text, 1s to introduce

the constraints as penalty terms in thé criterion.
The text falls naturally into two parts. Chapters 1 to 3 treat the general

method of the iterative gradient approach. Here the general mathematical
tools are introduced and applied to the development of the underlying
- theorems on conjugate gradient descent. The second part discusses the
appitcation of the general methods, developed in the first three chapters,
‘specifically to problems in control. Those individuals interested only in
control applications may limit themselves to Chapters 4 to 6. On the other
“hand, those interested only in the theory of conjugate gradient descent may
limit themselves to the first three chapters. The author, of course, feels that
the two parts complement each other, and in general neither part can be fully
. appreciated without the other. | |

A few words concerning the level of rigor intended are also in order here.
In the first three chapters the basic mathematical tools are developed with
some care. In the second part, which deals with applications almost entirely,
a great deal of this care has been set aside with more emphasis placed on
obtaining and applying specific results. ' |

- The level of the text is that of a first-year graduate student in applied
- mathematics or engineering. No real background in control is assumed,
although this will be helpful in understanding and appreciating the choice
of criteria used and the initial guesses made in doing the examples. Every
method introduced fs illustrated by an example. There has been a real
attempt to choose an approach and to use mathematical tools that make the

‘material both appealing and accessible to an audience outside the control
field. ' | |

LAWRENCE HASDORFF

Clear Lake City, Texas
October 1975
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PART ONE

Chapter I

Introduction

1.1. STATEMENT OF THE GENERAL PROBLEM

Our object here is to lay a general foundation in optimization theory that
can be used to optimize the responses of the control systems that are con-
~ sidered subsequently. Our main aid is the digital computer, so our aim 1s to
develop a theory that anticipates the use of the computer.

~ To this end we postulate a mapping, or an operator, or a transformation,
or whatever from a Hilbert space J# to the real line #'. This shown in
Fig. 1.1. Let us call this operator F since it is a functional. F assigns to every
element x € 3 a real value F(x). Now any two elements x, and x, can be
ranked relative to one another depending on whether

F(x,) < F(x;)
or

F(x;) > F(x,) (1.1)

Of course if F(x,) = F(x,), then x, and x, rank equally. The functional F is
thus seen to be simply a device for ordering the elements of J#.

Figure 1.1 A functional F from Hilbert space J¢ to the real line #'.



4 Introduction

An additional and basic assump'tion here i1s that the functional F is a
continuous, smooth operator. Therefore if x moves around at some fixed
rate in ¢, F(x) does not change erratically or abruptly in %,

The Problem

With these basic assumptibns the basic ijroblem 1S NOW
To find x* in 5# such that: | -
F(x*) < F(x) (1.2)
for all x € 5 in a neighborhood of x*.

It should be noted here that the problem is minimization. We can as well
consider maximization by simply exchanging — F for F and this is done in the
sequel when a maximization problem arises.

-~ Also, it can be appreciated that it would be better to choose as the problem
- finding the x* such that (1.2) is satisfied for all x € #. That is, our problem
states that we are secking a relative minima when it would be better to seek an
absolute minima. There is really no short, good explanation for this since one
usually does want the absolute minimum. Suffice it to say that seeking the
absolute minimum extends the problem beyond the range of the gradient
methods studied here. From a practical standpoint, the relative minima

techniques are usually sufficient for the control problem for which the theory
1s intended.

The Method of Attack

The basic method used here for finding a minimizing argument x* of F in 5,
termed descent, consists of the following steps:

I. Mak:ing an initial guess. |
2. Constructing a sequence x,, X{, X5, ... such that

Flxiy1) < Flx) | (1.3)

The sequence is extended until (1) no x;, ; can be found such that (1.3) is
satisfied or (2) until the sequence {x;} approaches a limit. In case 1 x; = x*
and 1n case 2 x* is the limit of the sequence. It is seen that we obtain either
x* or a value very near x*.

This basic method has been chosen because it is particularly adaptable to
the use of the computer. One has only to program the computer to find x; , 1
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from x;. The computer generally accomplishes the iteration very well for
our control problems. And, though this method does introduce additional
problems, it does avoid many of the problems of the more direct methods.

Thus it can be understood why a Hilbert space has been chosen as the
space in which a minimizing argument for F is sought The distinguishing
features of a Hilbert space are as follows:

L. 1t s linear.
-2. 1t 1s complete.
3. It has a scalar product.

- 1. Werecall ihat if a space is linear and if x, and x, are in the space, then
the element y = ax, + bx, is also in the space (a and b are scalar constants).
Therefore our series is constructed so that

xi+l =_xi + afzi : (1.4)

where z; is also a member of the space under consideration and «; is a scalar
constant. Thus x;, , 1s also a member of the space under consideration and
the whole sequence is in the space. | _

2. A space is complete if every cauchy sequence in the space has a limit
in the space. If we wish to construct a sequence that approaches a limit,
it is desirable to have that limit in the space in.which we are working,

3. The scalar product (see Chapter 2 for a definition of the scalar product)
is very fundamentally involved in the way the direction of step is chosen in
going from x; to x; ., (1.e,, choosing z; to be used in 1.4). How the scalar prod-
uct comes into play becomes obvious in the following sections where
expansion of a functional (such as F) about a given point is discussed.

Our pian for the chapters ahead is as follows:

Part One: To lay the mathematical foundation required and to develop the
general algorithm to be used in constructing the sequence that is to converge
on the solution to the general minimization problem stated above.

Part Two: To specialize the theory of Part One to the case of optimization
of the inputs to a control system. Specifically we consider a control system
whose dynamics are given by

X = f(x, u) (1.5)

where x € #”, u is in Hilbert space #, and f'is a vector-valued function on
X" x . The initial time t, and final time ¢ . are assumed to be given. Theé cost

of operating this system over the time interval [t,, ¢ /] is assumed to be given
by

cost = J = P(x(t,)) (1.6)
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where ¢ is a real-valued function on .#". The cost 1s thus a function of the
final state reached. The problem then is to find e # using the general
method developed in Part One, that produces minimum cost. The u consider-
ed can take many specific forms. It may be a set of initial conditions, an input
control function that may take on several different forms, or a set of par-
ameters, or it may be combinations of these.

Part Three: To use the techniques developed in Parts One and Two to.
attack the still more specialized problem of controller design for the class of
control systems considered in Part Two.



Chap ter 2

Basic Mathematical Concepts

2.1. SOME FUNDAMENTAL DEFINITIONS

We consider here definitions of the fundamental mathematical quantities
and terms and introduce the notation that is used in all subsequent work.
Ourbasic problem is finding the minimizing argument of a functional on a
Hilbert space. Let us begin by defining the terms needed.

' A Linear Space

A space & is a collection of elements; it is said to be linear if x, € &, x, € ¥
then (ax, + bx,)€% where a and b are scalar constants. We see in
particular that if x € %, then ax € & and so are —x € & and 0 € &, which
correspond to a = — 1 and a = 0, respectively. We shall in general adhere
to the convention of denoting spaces by script capitals and elements of
spaces by italic lowercase letters. ,

Examples of linear spaces are the real numbers, denoted by R'. Real,
n-dimensional euclidean space is denoted by #", and the space of continuous
functions over an interval of the real line [a, b], by %, 5. Examples of
collections of elements that are not linear spaces are any finite set, any
proper subset of #", and the numbers in the interval [0, 1].

The Scalar Product

A scalar product on a space & is an operation that assigns a real number to
every pair of elements in . If the scalar product of two elements x, y € & 1

denoted by {x, y), the scalar product has the following properties:
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1. {x,yd e R for x, ye &.

T2 X, ) = Y, X).
3. (ax + bz, y> = a{x, y> + b{z, y) (linear, where a and b are
scalar constants).

4. {x,x>>01fx #0.
5. {0, x> = 0 where 0 is the null element. | (2.1)

Examples of scalar products are as follows:

1. In #*, ordinary multiplication.
2. In #" where

X1 V1
X2 ¥2
X = . y == .
Xn Vn
(x, ¥y = in}’i ' (2.2)
i=1 -

3. In b, with elements x(¢t) and j(¢)

b ' _
{x,y) = J‘x(t)y(t) dt - (2.3)

Scalar Product Norm

The norm, is, obviously, a measure of the magnitude (or length) of an element
in a space. For spaces on which a scalar product is defined, the most con-

venient and usual definition of norm for a typical element x, written | x|, 1s

Hxll V&> (2.4)

This is the norm used in this text, since all interest centers on the Hilbert space,
which by definition has a scalar product Some examples of scalar product
norms are as follows:

1. For x € &', |x|| = |x|

172
2. Forxe .@“, Ix] = ( Z xf)
i=1

| | b 12
3. For x € €y, pp, Ixll = [f x2(t) dt]

We say two elements x and y of a space are orthogonal if {x, y> = 0.




Some Fundamental Definitions . 9
Two Norm Inequalities o _- -

Two very useful inequalities involving norms are Schwarz’s inequality and
the triangle inequality. Schwarz’s inequality for two elements x and y from a
scalar product space is

[<x, 21 < Ix]L- iyl (2.5)
The triangle inequality is
Ix + yll < lxll + Iyl (2.0)

We offer no proof for these inequalities; any elementary text in functional
analysis (see, for example, [1] or [2]) or linear spaces should have one.
These inequalities, shown in Fig. 2.1, have a good geometrical interpretation
in %2 It should be realized from the figure that the inequalities hold as
well in 2" for the plane on which Fig. 2.1 is drawn can simply be taken as the
plane in #" determined by the two vectors (elements) x and y. As a simple
exercise, these two inequalities may be shown to hold in £, #”, and €, ;.

A Cluster Point

‘A point or element y is a cluster point of a sequence {x,} if every € nei_ghbor-
hood of y contains an infinite number of members of the sequence. This

means in our case, given any ¢ > 0 there are an infinite number of x, for
which -

”y " xn" <E&

where we assume the norm is as defined by (2.4). A cluster point is also com-

monly called a limit point if it is in the space in which the sequence occurs. Ifa
sequence has a cluster point y in the sequence space, it is obvious that there
is a sub-sequence that has limit y in the conventional sense of the limit.

—

A Complete Space

A space % 1s said to be complete if every sequence in that space with
cluster point y has y € &. One might assume that every linear space that hasa
scalar product defined upon it and a corresponding norm as in (2.4) would
be complete. This is true for the very important practical case of 2" with
scalar products .as in (2.2) and norm as in (2.4). However an important
exception, that is, a linear, scalar-product space that is not complete, is
€ o.5) With scalar product as in (2.3) and corresponding norm as in (2.4).



10 Basic Mathematical Concepts

<, y>l=lx - llyli-cos 8 < llx il - Uy
{a)

Hx +y Il Hxll+ Iy |

(b) ,
Figure 2.1 (a) Schwarz’s inequality in #2. (b) Triangle inequality in #2.

To see this, we consider the functions in F ig. 2.2. Let us consider the sequence

of functions {x,(t)} € €, . It is obvious how to extend the sequence of

continuous functions of which x,(z), x,(t), X3(t), and x,(t) are the starting
members so that

| b
| f [M0) — x (0] dt < ¢



