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CHAFPTER 1

Some results from convex analysis

1.1 INTRODUCTION

This chapter summarizes primarily material reating to convex optimizaiion
problems in order to provide a suitable widerpinning for subsequent al-
porithiic developments. The problem domain is one in which convexity is
important (for example ihere is a sense in which linear programming is our

~rchetvps! problem), and which can be charneiarized fonmally as

min f{x) (1.1)

x5

where S is a prescribed convex set (the constraint set), and f is convex on
ScR". :

‘To motivate the kind of results to be considered, note that the structure of
S is clearly of relevance, and this leads directly to consideration of represen-
tation theorems for convex sets. These results have a direct and elegant
application to linear programming problems. The second class of results
concerns separation theorems and their direct relation to the characteriza-
tion of optimizing points. To see this, note that if the minimizing value in
(1.1) is f=F then

SN{x; f@<fi=@. (1.2)

As both sets involved are convex there exists a separating hyperplane, aad
from the equation of this hyperplane we can deduce necessary conditions for
an optimum (Kuhn-Tucker conditions). An interesting feature of this ap-
proach to characterizing optima is that it does not require { to be differenti-
able.

If xe§, f(x)>f then there exists a direction t at x such that x+yts§
provided vy >0 is small enough, and such that f decreases in the direction t.
Such a direction is called a direction of descent for f at x. Theorems of the
alternative arise naturally in this context as either a downhill direction exists
or x is an optimum. Convex functions need not be differentiable (an example
is |x] at x = 0), but a generalized set-valued derivative called the subdifferen-
tial can be defined if the epigraph of f, epi f, the convex set lying above the
graph of f in R®*!, possesses a nonvertical supporting hyperplane at x. The
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2 SOME RESULTS FROM CONVEX ANALYSIS

subdifferential is important in characterizing descent directions and in de-
veloping multiplier relations giving necessary conditions for x to be an
optimum. The related concept of the directional derivative of a convex
function will prove to be an important tool in analysing the structure of
polyhedral convex functions. Also, we note that considering the supporting
hyperplanes to epi f leads naturally to the conjugate convex function f*(u)
and to the idea of duality which greatly enhances the structural richness of
the problem setting. Finally, a brief description of descent methods for
minimizing a convex function is given.

1.2 CONVEX SETS

In this section necessary material on the representation of convex sets and
on separation theorems is developed. The key result on the existence of a
hyperplane separating two disjoint convex sets is used extensively in subse-
quent sections. It has direct application to the development of alternative
theorems and of necessary conditions for solutions of optimization problems.
The representation theorem states that a convex set, under certain mild
conditions, can be described completely in terms of quantities which have a
natural geometric importance (extreme points and directions of recession).
In the linear programming context this theorem has the direct interpretation
that the optimum must be obtained at a vertex of the feasible region (an
extreme point of this convex set), and that the problem can have a bounded
solution only if the directions of recession bear a particular relationship to
the objective function. Linear programming (discussed in Chapter 2) and the
problems discussed in Chapters 3 and 4 are all particular cases of problems
involving polyhedral convex functions. Polyhedral convexity occurs when
there are only a finite number of extreme points and directions of recession,
and the opportunity is taken here to develop some of the basic ideas.

Definition 2.1 The set S € R? is convex if
X,yeS D Ox+(1-0)yeS for 0=0=<1. 2.1)

Equivalently, § is convex if all finite convex combinations of points in § is
again in S. That’is,

eS8 i=12,...,m 2 A=1 A=0,lsm<oc ¥ AxeS
i—=1

i=1

(2.2)

Association with any set S is the set obtained by taking all convex combina-
tions of points of S in the sense expressed by (2.2). This set is called the
convex hull of S and is writien conv S.
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Example 2.1 Any function |-|| taking bounded values for finite X is a norm
if it satisfies the conditions:

M x>0, x+#0,
(i) Ix+yli<[xji+lyll, the triangle inequality, and

(iii) floxi=lallx].

Define S ={x; |x||<1}. Then it follows from (ii), (iii) that S is convex. Note
that S is balanced (xe S 2> —xe€ 8), and has a proper interior as ox/|lx|e §,
—~1=6=<1 for any x. It is instructive to sketch § when p=2 tor tne

particular cases 2

Wl=maxixl, {$ ) % b,

i=

corresponding to the maximum, Fuclidean, and !, norms respectively.

Remark 2.1 Alternatively, given S satisfying the above requirements, a
norm can be defined by v

Ixlls =inf A,  xe€AS. (2.3)
If S is not balanced then the resulting function does not satisfy (iii) but is.
still convex. It is called a gauge function.

Definition 2.2 A hyperplane is the set of poinis

H(, v)={x;u"x=v}. (2.4)
It should be noted that H(u, v) separates R” into two distinct half-spaces

H¥@,v)={x;0"x>v}, (2.4a)
and ' )

H (u,v)={x;u’x=v}. ’ (2.4b)

Lemma 2.1 (Lemma of the separating hyperplane ~ simplest case). Let S be
a closed convex set in R® and X, a point not in S. Then there exists q
hyperplane H separating x, and S in the sense that S« H”, x,e H .

Proof Llet x, be any point in $. Then in the Euclidean vector norm
inf [lx~ xol2 </ix, - xoll7 =
x€$

The function ||z — x4l is continuous on the closed set §N{x; x—xyll,=<r} so
the minimum value for xe S is attained for x=x* (say). Let ye§ and
consider x*+ yz where z=y—x* and y>> 0. Then
¥ + vz xollz = I - xlZ + 2y’ (¢ - x4+ v fall3.
Letting v —> () gives
' (x* - x) =0, yeSs. (2.5)
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It follows that H(x* —x,, x*"(x* —x,)—€) is a suitable hyperplane for all
£ >0 small enough (¢ must be chosen smaller than |jx,— x*|i2).

Remark 2.2 Separa'ivn in this form is called strong separation, and there is
even a small enough bail about x* which excludes x,. A more subtle result is
also important. It can be proved by induction in finite-dimensional spaces,
but requires the Hahs-Banach theorem in more general situations.

Theorem 2.1 Let S. 7 be convex seis, and ST = . Then there exizsis a
hyperplane such that S - Fi *, T< H™. Equivalently we can find u suck that

inf a"x=sup u'x (2.6)

xS wxeT .

Remark 2.3 An imyoriant application corresponds to S an open convex
set, and xpeci S\S. 15 mecrem shows there is @ hvperplane through x, con-
taining S in H el - thar H o contains only boundary points of 5,

Definition 2.3 The hyperplane H in Remark 2.3 supports S at x,. Note that
there exists a supporting hyperplane at every finite boundary point of S.

Definition 2.4 The function

5*u|S)=supu'x 2.7

x€$

is called the support function for S.

If the supremum in (2.7} is attained at x,, then x, is a boundary point of S,
H(w, u'x,) supports S at x,, and S < H™. For compatibility with the support
function, unless otherwise indicated, the convention will be followed that if -
H supports S then S H™.

Definition 2.5 The point X, is an extreme point of S if and only if it cannot
be expressed as a point properly in the interior of the line ségment joining
two distinct points of ¢1 S. An extreme point which has the property that
there exists a hyperplane supporting § at x, such that

HNcl S = {x,} 2.8)

is called an exposed point. Exposed points are equivalent to extreme points if
the set of extreme points is finite.

Example 2.2 Consider S = {x; |x||<1}.

p 1/2
(a) If |ix]| = {E xf} then every point in cl S\int S is an extreme point.
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(b) If x|l = max |x;] then the extreme points of S have the form

1=i=<p

x= 6e, 6,=+1,i=1,2,...,p.

In each case note that any x€ S can be written as a convex combination of
extreme points. These are particular examples of a general result which will
now be developed.

Lemma 2.2 Let H support § at x. If y is an extreme point of H ﬂ S theny is
an extreme point of S.

Proof 1f HNS={y} then y is an extreme point of S. Thus we assume that
HNS=T, not a singleton, and that y is an extreme point of T but not of S.
Then we can find x,z in S but not in T such that

y=0x+(1—-0)z, 0<6<1.
Now ye H, but x,zcint H™. Thus
O=u'y—v=60(u"x—v)+(1- )"z —»)<0
This gives a contradiction.

Lemma 2.3 Let S be a closed, bounded, convex set. Then S has extreme
points.

Proof This is by induction with respect to dimension. If S is a singleton
then the result is immediate. Now assume S< RP, x, is a boundary point of
S, and H is a hyperplane supporting S at x,. It follows that HNS is
bounded, so that by the induction hypothesis it has extreme points. But
then, by Lemma 2.2, these points are extreme points of S.

The representation theorem for bounded sets can now be given.

Theorem 2.2 A closed bounded convex set S in R is the closed convex hull
of its extreme points.

Proof Let § be the closed convex hull of the extreme points of S. Then
$< 8. Assume that § < S properly so that there exists a point X S stron;,iy
separated frorm 8. The separating hyperplane theciem now gives H(u, v)
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such that Sc H™,x¢ H*. Consider
Vo= 8*(“ , S)> [4

It follows from the definition of the support function that H(u, v,) supports
S. Also T'=H(u, »)) NS is closed and bounded. Thus, by Lemma 2.3, it has
an extreme point. By Lemma 2.2 this is also an extreme point of S. But by
construction it is strongly separated from §, giving a contradiction.

To extend this result to unbounded sets a further concept is needed in order
to describe the property that points can be arbitrarily far apart.

Definition 2.6 Let S be a convex set, and let t have the property that
xeS>x+AteS, A=0 (2.9)

then t is a direciion of recession for S. It is an extreme direction if it cannot
be represented as a convex combination of other directions (so that there

do not exist directions t; and constants A, =0, i=1,2,..., % such that
k

t= Y At; for any finite k). S is said to contain a line if both t and —t
i=1

are directions of recession.

It is not difficult to give examples of important convex sets containing
directions of recession.

Definition 2.7 LetbeR™ A:R”— R™ then
M={x; Ax=p} (2.10)

is an affine set or flat in R?.

Thus every hyperplane is an affine set, and every affine set is an intersection
of hyperplanes. An affine set can be represented as a translated subspace

M=x,+L (2.11)
where x, IS any point such that
Axo=b (2.12)
and
L={y;Ay=0} (2.13)

is a linear space. The dimension of M is the dimension of L = p —rank (A).

Remark 2.4 A form of the separation theorem that will be required is that
if M is an affine set, S convex, and SN M = (J, then there exists a separating
hyperplane containing M.
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+ Example 2.3 (a) Any element of L# 0 defines a direction of recession for
M. Any set of the form S+ L where S is convex and L a subspace has no
extreme points. (b) A convex set Cc RP is a cone pointed at x, if

yEC 2 xo+Ay—x)eC  VA=0. (2.14)

Thus y—x, is a direction of recession for y in C, y# x,, and x, is the only
point in C that can be an extreme point. In particular, it is contained in
every supporting hyperplane to C (either §*(u| C)=u"x, if v (y—x,) <0,
VyeC, or 8*(m| C) = +x). An important example is R} = {x; x; =0} which is
a cone pointed at 0. ‘

We now statc the extended representation theorem. The standard proofs of
this result use induction explicitly with respect to the dimension (in the proof
_of Theorem 2.2 this was hidden in the appeal to Lemma 2.3). This extended
“result is particularly important in providing a theoretical basis for linear
programming.

Theorem (Klee) A closed convex set in R containing no lines is the convex
hull of its extreme points and directions of recession. That is, given x€ S, then
there exist extreme points of S, 8,,8,,...,8,, and extreme directions of
recession, ty, t, ..., 4, such that

x—Zes+Zu (2.15)

i=1

where

Definition 2.8 If the set of extreme points and extreme directions is finite
then S is polyhedral. If S is bounded then it is a convex polyhedron or a
bounded convex polytope.

A convex polyhedron with a proper interior possesses a representation as
the intersection of a finite number of closed half-spaces. These are deter-
mined by the subsets of =p extreme points which-determine a hyperplane
such that the convex polyhedron is contained in one or the other of the
closed half-spaces so generated.

A convex set is a convex body if it has an interior point. If it does not
‘contain interior points then it is contained in some affine set.

Definition 2.9 The intersection of all affine sets containing S is called the
affine hull of S and is denoted aff S. It is the smallest affine set containing S.

Definition 2.10 The relative interior of the convex set S (ri ) is
: riS={x;xcaff S, 3e>035eB(x)Naff S= S} (2.16)



where the Kronecker delta 8, is defined by

L=y ‘
bij = (1.2.11)
0(#/)
The set of vectors {x; € R"|i = 1....,mim <n}is a linearly indcpendent set if
and only if

'_'3 v
Yoex, =0 (1.2.12)
i=1 v
implies that ¢; =0 (i =1, .. .. m).and is linearly dependent otherwise. A set of vec-
tors fy; ER™Mi=1... .. m:.m 2 v} spans or generates the linear space R" if an only if

every vector x € R™ is expressible in the form
m
x =Y oy (1.2.13)

A basis for the linear space R" is a linearly independent set of vectors in R" which
spans R". The set of vectors {e; ER"|i=1,...,n} where

® T '
e = [0,....0.1,0....,0]" (=1..... n) (1.2.14)
in which e; has all components equal to zero save the ith which is equal to unity,
clearly forms a basis for R" since if x = [xy... .. x,}7 then
X = Y X (1.2.15)
i=1

It can be shown that every basis for R” contains exactly n vectors, and that every
set of n orthogonal vectors in R" excluding 0 forms a basis for R™. An orthonormal
basis for R™ is a set of n orthonormal vectors. For example, {e,. . . ., €,} defined by
(1.2.14) is an orthonormal basis for R™. ' _

Given any basis for K", an orthenormal basis for R™ may be constructed by using

the Gram-Schmidt procedure. Let fu,. .. .. u, } be a basis for R" and let v;, w;
(i=1,....n)be generated recursively from
v
¥y = W) W ! (12]6d)

- (VT‘H)UZ

i-1

7 v
vi =u— Y (Whugwy, w; = —wtp (=200, n) (1.2.16b)
k=1 (Vi V,-)
Then it is easy to show (Exercise 1.2.7) that
wiw; = 8, (j=1..... n) (1.2.17)
so that AT w, } is an orthonormal basis for R™

A set S C R" is a subspace of the linear space R™ if and orly if for each pair x, x"
of vectors in S, the vector ax’ + Bx” is also in S where &, f are any real numbers. As
with R"™. the dimensionality 71 of a subspace S of R" is the number of vectors in any
basis for §. Clearly m < n. let fy, €R"|i=1..... m} be a basis for the m-dimen-
sional subspace § of R". Then clearly an orthonormal basis for S can be constructed by
using the Gram--Schmidt procedure (1.2.16). where i runs from 2 tom.

8
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Exercise 2.1 )
() A ciosed convex sut g the intersecton of vbhe closad harispaces comtam-
ing it
(i) Let Cy, C; be convex sets, then

[
i

.
[

AC, €, fandonyif 67| C)ma

TN R R UL DS S RGP
Y T8 2;}:-‘,\,‘4& ey

(it} Let § be the sat determined b

x+y=2 1,
10y - x=—1
~y+10x=-1

Determine its extreme points and directions of recessicn Also determme
the hyperplanes supporting S at each extreme point.

1.3 THEOREMS OF THE ALTERNATIVE

Alternative theorems are important in function minimization as they permit
the formalization of the alternatives that either the current point is optimal
or there exists a direction in which the function can be reduced.

Separation theorems are the main analytic device used in this section. This
is well illustrated by the first result which is perhaps the simplest form of
alternative theorem and gives a criterion for the consistency of a system of
linear inequalities.

Theorem 3.1 Let S be a closed convex set. Then either the system of
inequalities

u't<0, teS, . 3.1

is consistent or

0eS.

Proof The inequality (3.1) states that §*(m|S)<0 so that 0 is strongly
separated from S.

Remark 3.1 This result has meaning when S is not convex. Either (3.1)
holds or O econv S.

Perhaps the most celebrated theorem of the alternative is known as Farkas’
lemma, and it plays a key role in developing multiphier conditions charac-
terizing optimality in mathematical programming probiems. Here the sep-
aration theotem is applied to the particular case i which § is the cong
pencrated by convex rombinations of the rows of 1 muivrx A The resuliing
cane s potvhedral oy the ses of extreme dirertians o clrardy ooy Bwrees theard
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the row dimension of A. Such a ~cne is also called finitely generated. A key
preliminary result is that a finitely generated cone is closed.

Lemma 3.1 Let the cone C be finitely generated by a,,1a,, . ..,4,. That is,
C={x;3)\i20,i=1,2,.<.,max‘—*ZA,a,—] (3.2)
i=1

Then C is closed.

Proof C is convex by definition. However, the closure result is complicated
if C contains lines. To exclude this case let L be the linear space generated
by the lines in C, and introduce coordinates into L, L* such that

C=LxL*NnC (3.3)

As L is closed the result entails showing that the cone L+ C (which by
construction does not contain lines) is closed. Thus there is no restriction in
considering only this case (L*NC is clearly finitely generated).

If C does not contain lines then

Y aa=0> =0, i=12,....m
i=1

for if this is not the case then A, >0 for some k so that both a, and
o A
—8& = Z X‘a‘
ik Mk

are in C, showing that C contains a line. It follows that x is bounded if and
only if the A; in every representation of x are bounded, and closure is an
immediate consequence.

. Theorem 3.2 (Farkas' lemma) Let A:R°—R", a bé such that

Ax=0>a'x=0. (3.4)
Then there exists y=0e R" (ye R};) such that
T=yTA. (3.5)

Proof This proceeds by constructing the cone

C= {z; z= Z /\.iai, I\,‘ ?0, ]/ = p‘(A), i= 1, 2, N n} (3.6)
i=1

and assumes that a ¢ C. The separating hyperplane theorem is then used to

give a contradiction, for by Lemma 3.1 C is closed so that a must be

strongly separated from C. Choose the separating hyperplane to support C
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so that it passes through z=0. Then |
C<=H (u,0), acH*

But then choosing x=—u in (3.4) gives a contradiction.

Remark 3.2 The idea of the alternative may be clearer if the result is put
slightly differently. It says that exactly one of the pairs of systems

() ATy=b, y=0,
and ‘
) Ax=(), b™x <0,

can have a solution.

An alternative route to this result makes use of the polar to C. This is the
cone

C*={y;y'x<0,V¥xeC} : 3.7)
The chief properties of the polar cone are summarized below.

(a) C* is a closed convex cone.

(b) If C,<C, then C%c CH.

() C**=C if and only if C is a closed convex cone.

(d) C*=(clconv C)*, the polar cone of the closure of the convex hull of C.
(e) If A is a linear space then A-= A*,

(f) If C, and C, are convex cones then

CiNCE=(C,+Cy* (3.8)
Farkas lemma follows from (3.8) for if C, is given by (3.6), and C, is

" generated by a, then (3.4) gives

CiezC

(S 3

so that
CT =C% nC’{ =(C,+ Cz)*

and the result follows by taking polars and using (c).

Theorem 3.2 can be generalized substantially to pariial orders defined on
functions taking values in cones (a=b if a —b € C), to operators on normed
linear spaces, and to convex (not or;ly linear) operators. The following result
is typical. :

Theorem 3.3 Let C be a convex cone in R", S < R convex, and A: R’ —
R". Then exactly one of the systems

1] Axeint C, xeS, (3.9)
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and
(i) (v'A)S< Ry, 0#veC* (3.10)

has a solution.

Proof 1t is clear that (i) and (ii) cannot both have a solution. If (i) has no
solution then AS and int C are disjoint. But then the separating hyperplane
theorem guarantees an H(u, 0) such that ASc H™, int C< H*. But this
implies that

W'AS =0, u'w>0, Vweint C

so that ue C* and u solves (ii). This completes the proof of the theorem as
either (i) has a solution or not, and if it does not then (i1) has a solution by
the above argument.

Exercise 3.1
(i) Prove the properties (a)~{f) for polar cones.
(ii) Restate Farkas’ lemma for cone-valued operators.

‘(iii) Prove Molzkin's theorem: 1et A:R*—->R", B:R° > R™ T<R" a

closed convex cone, S< R™ a convex cone with int S# . Then exactly
one of the following systems has a solution

(a) ~-AxeT, -Bxeint S (3.11)
(b) viB+w'A =0, weT*, O#veS*. ‘ (3.12)
(iv) Deduce Farkas’ lemma as a special case of Motzkin's theorem.
(v} Show that either
Fxs3Ax=¢,
Or

3vaA'v=0, vie=1.

Exercise 3.2 lLet A:RP—-R" and X={x; Ax=b}. The constraint

p.(A)x=b; 18 redundant if X is unchanged by deletion of this inequality.

(i) What is the maximum possible value of dim (X N{p,(A)x=b;}).

(ity Use Farkas lemma to determine conditions for a constraint to be
redurdant.

Distinguish between the cases that the constraint hyperplane contains or

does not contain points of the feasible region X.

1.4 CONVEX FUNCTIONS

All the problems considered in Chapters 2 to 5 can be reduced to that of
menimizing particalar convex functions (frequently even polyhedral convex
fractioes) Convesity 1s oo strong assumption (for example, points at which a
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