


Quadratic Form Theory
and Differential Equations

John Gregory

DEPARTMENT OF MATHEMATICS

SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE
CARBONDALE, ILLINOIS

1980

ACADEMIC PRESS.

A Subsidiary of Harcourt Brace goranovich. Publisiert
New York London Tol3Mo ¥ &¥dne San Francisco



CopYRIGHT © 1980, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC,
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7D

Library of Congress Cataloging in Publication Data

Gregory, John, Date
Quadratic torm theory and differential equations.

(Mathematics in science and engineering)
Bibliography: p.
Includes index.
1. Forms, Quadratic. 2. Differential equations,
Partial. 3. Calculus of variations. [. Title.
II. Series.
QA243.G73 512.9'44 80 520
ISBN 0-12-301450-6

PRINTED IN THE UNITED STATES OF AMERICA

80 81 82 83 987654321



Preface

Historically, quadratic form theory has been treated as a rich but misunder-
stood uncle. 1t appears briefly, almost as an afterthought, when needed to solve a
variety of problems. A partial list of such problems includes the Hessian matrix
in n-dimensional calculus; the second variational (Jacobi or accessory) problem
in the calculus of variations and optimal control theory; Rayleigh— Ritz methods
for finding eigenvalues of real symmetric matrices; the Aronszajn—- Weinstein
methods for solving problems of vibrating rods, membranes, and plates; oscilla-
tion, conjugate point, and Sturm comparison criteria in differential equations;
Sturm— Liouville boundary value problems; spline approximation ideas for nu-
merical approximations; Gershgorin-type ideas (and the Euler— Lagrange equa-
tions) for banded symmetric matrices; Schrodinger equations; and limit-point—
limit-circle ideas of singular differential equations in mathematical physics.

A major purpose of this book is to develop a unified theory of quadratic forms
to enable us to handle the mathematical and applied prohlems described above in
a more meaningful way. Our development is on four levels and should appeal to
a variety of users of mathematics. For the theoretically inclined, we present a
new formal theory of approximations of quadratic forms/linear operators on
Hilbert spaces. These ideas allow us to handle a wide range of problems. They
also allow us to solve these problems in a qualitative and quantitative manner
more easily than with more conventional methods. Our second level of develop-
mentis qualitative in nature. Using this theory, we can derive very general quali-
tative comparison results such as generalized Sturm separation theorems of dif-
ferential equations and generalized Rayleigh— Ritz methods of eigenvalues. Our
theory is also quantitative in nature. We shall derive in level three an approxima-
tion theory that can be applied in level four to give numerical algorithms that are
easy to implement and give good numerical results.
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X Preface

Our development will provide several bonuses for the reader. A major advan-
tage is that our numerical theory and algorithms are designed to be used with
high-speed computers. The computer programs are small and easy to implement.
They trade detailed analysis by and sophistication on the part of the user for large
numbers of computer computations that can be performed in fractions of milli-
seconds. Another advantage is that our four levels can be understood and used
(virtually} independently of each other. Thus our numerical algorithms can be
understood and implemented by users with little mathematical sophistication.
For example, for eigenvalue problems, we need no understanding of projection
operators. Hilbert spaces, convergence. Green’s functions, or resolvent opera-
tors. We need only the idea of the Euler— Lagrange equation, an idea that we can
obtain a discrete solution as a result of level one. a one-step—three-term differ-
ence equation, and an interval-halving procedure.

As with any mathematical theory. we shall leave the reader with several re-
search problems still unanswered. In the area of discrete mathematics, we
present for splines and for real symmetric banded or block diagonal symmetric
matrices a use that may stimulate further research. For those problems in optimal
control theory. we expect our methods, which give qualitative results, to give
quantitative results similar to those obtained for the calculus-of-variations case.
For the area of limit-point— limit-circle differential equations and singular differ-
ential equations (Bessel, Legendre, Laguerre), we expect our ideas to carry over
to this very important area of mathematical physics. For the area of differential
equations, we hope that our ideas on integral-differential equations can lead to
new ideas for oscillation theory for non-self-adjoint problems.

Our concept of quadratic form theory began with the landmark Pacific Journal
of Mathematics paper by Professor Magnus Hestenes in 1951. For many years,
he was convinced that there should be a unified method for problems dealing
with a quadratic form J(x) on a Hilbert space .«/. A major part of his work
depends upon two nonnegative integer-valued functions s and n, which corres-
pond to the number of negative and zero eigenvalues of J(x). In subsequent
years, Hestenes and his students showed how this theory could be applied to
solve a multitude of applied problems.

In 1970 the author developed, in a Ph.D. thesis under Professor Hestenes at
the University of California, Los Angeles, an approximating theory of quadratic
forms J(x.o) defined on Hilbert spaces ¥ (o), where o is a parameter in a metric
space. In this and subsequent work, this approximation theory has been used to
solve the types of problems listed above. A major part of our work involves the
development and interpretation of inequalities concerning s(o) and n(o) as o
approaches a fixed member o, of the matrix space X..

In Chapter | we take a look backward at more classical methods and ideas of
quadratic forms. It may initially be read briefly for flavor and interest since this
material is not completely necessary for subsequent chapters. We begin this
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chapter with finite-dimensional quadratic forms. Many of these ideas will be new
to even the sophisticated reader and will appear in an infinite-dimensional con-
text in later parts of the text. The topics include the duality between quadratic
forms and symmetric matrices, stationary conditions of f: R” — RR', Rayleigh—
Ritz methods, and eigenvalues as comparison parameters. Scction 1.2 contains a
brief introduction to the calculus of varations and in particular the second varia-
tion. Of interest is that the Euler— Lagrange necessary conditions are differential
equations. In Section .3 we cover a general theory of integration by parts and
multiplier rules. Section 1.4 explores briefly the relationship between quadratic
forms and differential equations. Many examples are included, covering the sim-
pler second-order problems to the more difficult 2nth-order control theory or
partial differential equations.

Chapter 2 may also be initially read for flavor by all but the theoretical mathe-
matician since it contains our theoretical machinery and resuits. Section 2.1 con-
tains the basic Hilbert space material, which was given by Hestenes and which
forms the basis of our approximation theory. The majority of the material in
Section 2.2 is more general than needed for the remainder of this book. Section
2.3 is our fundamental theoretical section yielding nonnegative integer inequali-
ties. Briefly, if s(o) and n(o) correspond to the number of negative and zero
eigenvalues of a quadratic form or symmetric matrix, then for o *‘close to’” o
we obtain s(oy) = s(0) < 5(0) + n(o) < s(oy) + n(oy). This innocent-looking
inequality is used extensively throughout this book.

Chapter 3 is a complete discussion of the second-order problem, and the
reader is strongly advised to begin here. We have made a serious attempt to make
our ideas in this chapter conceptually clear and descriptive so as to be readily
understood. In a real sense, Chapter 3 is a book unto itself. The nontheoretical
parts may be undersiood by senior-level students in mathematics and the physical
sciences. Once grasped, the remainder of the book can at least be read for the
flavor of more general examples. Formal proofs have been postponed until the
last section of this chapter. We begin Chapter 3 with a discussion of the duality
of focal-point theory of quadratic forms and the oscillation theory of differential
equations. Section 3.2 contains approximation ideas and shows how to build
numerical solutions for differcntial equations. Sections 3.3 and 3.4 contain gen-
eral theories for eigenvalue problems. The unified setting yields numerical—
eigenvalue—focal-point thcories and results, as well as efficient and accurate
computer algorithms.

Chapter 4 contains thc most general ordinary-differential-system—quadratic-
form problem, namely, the self-adjoint 2nth-order integral-differential case be-
gun by Hestenes and Lopez. The exposition is primarily theoretical, but in Sec-
tion 4.4 we do give numerical ideas of higher-order spline approximations and
banded symmectric matrices. Section 4.1 contains the work of Lopez relating
quadratic forms and differential equations. Section 4.2 contains our approxima-
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tion theory. Section 4.3 presents a general comparison theory and results that are
applicable to a variety of problems.

Chapter 5 contains the elliptic partial differential equation theory begun by
Hestenes and Dennemeyer: this theory is contained in Section 5.1. The numeri-
cal construction of conjugate (or focal) surfaces for Laplacian-type partial differ-
ential equations, including eigenvalue results, is given in Section 5.2. In Section
5.3 we give a separation-of-variables theory for quadratic forms and new ideas
for block tridiagonal matrices.

Chapter 6 contains a general theory of quadratic control problems begun by
Hestenes and Mikami. In particular, in Section 6.1 we generalize the concepts of
oscillation, focal. and conjugate point to focal intervals and show how to count
and approximate them. The concept of abnormality is the key idea here, which
distinguishes conjugate-point (calculus-of-variations) problems and focal-inter-
val (optimal control theory) problems. In Section 6.2 we apply these ideas to
solutions of differential equations. In Section 6.3 we give two nontrivial exam-
ples to illustrate abnormality. Finally, in Section 6.4 we apply our approximation
ideas a second time to obtain an approximation theory of focal intervals.

It should be evident that we have been influenced by many distinguished
scholars whose works cover several centuries. We should like particularly to
acknowledge the work and guidance of Professor Magnus Hestenes in the begin-
ning of this effort. Quadratic form theory is only one of at least four major
mathematical areas that bear his stamp. To paraphrase one of our most illustrious
forefathers, *‘If we have seen further than others, it is because we have stood on
the shoulders of giants.’’ We should like to acknowledge Lewis Williams and
Ralph Wiikerson for their support in the generation of computer algorithms that
appear in this text. We acknowledge Joseph Beckenbach for his fine illustrations,
Sharon Champion for her expert typing and patience in reading handwritten
pages, and the author’s charming wife, Virginia, for her editorial corrections.
Finally, the author would like to thank Professor Richard Bellman for inviting
him to write this book at an early stage of its development, thus providing the
encouragement to complete the task.
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Chapter 0 A Few Introductory Remarks

On May 14, 1979, I had just arrived at the Technical University in
Wroclaw, Poland. My luggage and hence my notes had not yet arrived due
to the inefficiency of the American (not the Polish) airlines. There was a
scheduled Monday morning seminar, and 1 was asked if I should like to
speak, essentially on the spur of the moment. I replied, as one must in those
circumstances, “Of course.” It seems reasonable that the summary of such a
presentation before a charming though general audience, having some lan-
guage difficulties, might form an introduction to this book.

From the point of view of this book, the following diagram is fundamental:

Differential equations W Solution of differential
problem equations problem
(2) I (4) I

1
‘ Equivalent quadratic ‘ 3) ‘ Solution of quadratic
B form problem i ‘ form problem :

Usually, people working on differential equations proceed on path (1).
By this statement, we mean that they have their own methods 10 solve their
problems. Thus, a numecrical problem might call for divided difference
methods, while oscillation theory might call for Sturm theory type argu-
ments. Our approach will be to convert the differential equation into the
equivalent quadratic form, path (2): solve this quadratic form problem, path
{3); then convert back into the solution, path {4). These methods seem to re-
quire more steps. However, the steps are often easier to accomplish and are

1



2 0 A Few Introductory Remarks

more enlightening. We get better results, methods, and ease of applicability.
In addition, we have more flexibility and more ability to generalize to more
difficult problems with less additional effort.

Three example problem areas come to mind, and we shall quickly describe
them in the next few paragraphs, deferring a more thorough explanation
until Chapter 3. We ask the rcader to skim the next few paragraphs for the
cream and not be concerned about details. Equally important, we ask the
reader to note that these examples can be casily combined by our ideas, a
process not easily performed on path (1). We shall illustrate a numerical
oscillation eigenvalue theory of differential equations at the end of the next
few paragraphs.

Let L(x) be a linear self-adjoint, differential operator, and Q(x) be the
associated quadratic form, such as our most elementary infinite example

(1) L(x) = X"(t) + x(t) = 0,

(2a) () = [J (v = ¥,

and

(2b) 0x.3) = |7 [0 — x(op()] .

For (1) we wish (o study conjugate or oscillation points relative to t = 0; that
is, point 1 such that there is a nontrivial solution of (1), denoted x(¢), such
that x(0) = x¢(4) = 0.(1) is the Euler—Lagrange equation of (2). It1s obtained
by integration by parts or a divergence theorem. Let () denote the col-
lection of smooth functions such that x(¢) is in #(/) implies x(0) = 0 and
X(1) = 0 on [/, b]. We shall see that A(4) is a subspace of a Hilbert space. For
(2), we wish to determine the signature s(2), that is, the dimension of % where
% is a maximal subspace of #(4) with respect to the property that x # 0in %
implies Q(x) < 0. That is, s(%) is the dimension of a negative space of #(4).
Let n(4) = dim{x in 2(4)| Q(x, y) = 0 for y in #(2)}. These two nonnegative
indices correspond, respectively, to the number of negative and zero eigen-
values of a real symmetric matrix.

Instead of finding the zeros of (1) subject to y(0) = 0, path (1), we convert
L(x) to Q(x), path (2), solve the signature s(;) for each 0 < 1 < b, path (3), and
finally use the result that for g in [0, 5],

3) s(ho) = Y. n(4).

A<y

Thus, s(4,) counts the number of oscillation points before t = /.
Similarly, the eigenvalue differential equation L(x;&) = x" + &x =0,
x(0) = x(m) is converted to a quadratic form

J(x;8) = J(x) — EK(x) = J: X2dt — ¢ fonxzdt.
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This time, s(¢) is the signature of J(x:;¢) on a smooth space of functions
defined on [0.7] vanishing at the end points. We solve this problem, path
(3); then establish the equivalence between an eigenvalue ¢, and the discon-
tinuity in s(&,), path (4).

Similarly, for numerical problems, we convert (1) to a quadratic form
(2a), in path (2). numerically approximate (2a) by a finite-dimensional qua-
dratic form, path (3), and then show that this approximation leads to a
numerical solution that converges to the desired result in a very strong,
derivative norm sense, path (4). As we have remarked before, our methods
allow us to combine these three problems in a relatively simple manner to
obtain a numerical oscillation theory of eigenvalues.



Chapter 1 Introduction
to Quadratic Forms
and Differential Equations

1.0 Introduction

The purpose of this chapter is to present to the reader much of the beauty
and many of the fundamental ideas of quadratic forms. This chapter is an
introduction to the remainder of this book. It may be read (and reread) for
interest and examples, or it may be skipped entirely by those who are only
interested in specific problems.

Section 1.1 treats the finite-dimensional case or equivalently a real sym-
metric matrix. Since most readers may be familiar with the usual ideas, we
have included several topics that illustrate important ideas which are not
commonly known nor understood. We believe even the expert will find these
topics of interest. The topics are: (a) the duality between finite-dimensional
quadratic forms and matrices; (b) optimal or stationary conditions of
f:R" —» R' and in particular second-order conditions (the Hessian); (c) the
(finite) Rayleigh—Ritz method for obtaining eigenvalues; and (d) eigenvalues
as comparison parameters.

Section 1.2 contains a brief introduction to the calculus of variations. Of
special interest is the second variation functional or the stationary value con-
ditions when the original functional is quadratic. The major idea is that the
necessary condition for quadratic functionals leads to a self-adjoint differ-
ential system of equations. Some interesting examples are given.

In Section 1.3 we explore the fundamental tool in our work, ie., inte-
gration by parts. We show that these ideas can be put on a sound mathe-
matical basis. Of special note is the use of multiplier rules.

In Section 1.4 we explore briefly the relationship between quadratic forms

4



1.1 The Finite-Dimensional Case 5

and differential equations. In particular, two indices of quadratic forms are
introduced and their relationship with solutions of differential equations
with boundary value problems are given for many interesting problem
settings. This section also contains many examples that the reader should
find helpful. We note that these indices correspond to the number of negative
and zero eigenvalues of a real symmetric (possibly infinite) matrix.

Our Iinitial idea was to include a section on the Aronszajn-Weinstein
theory of eigenvalues for compact operators since classically these ideas pro-
vide one of the most beautiful uses of Hilbert space theory. However, with the
use of a computer we have developed numerical algorithms (Chapters 3 and
5) that surpass the computational algorithms of those classical methods in
speed, accuracy, and feasibility. The interested reader may consult Gould [12]
for the best explanation of these methods.

1.1 The Finite-Dimensional Case

In this section we treat four topics. Our criteria of which topics to include
and of the degree of each topic were based on a personal judgment, based
upon interesting ideas and what we feel is needed to understand quadratic
form theory and the remainder of this book. Whenever possible we shall avoid
technical details, results, and settings and use an expository style. The first
topic deals with the duality between real finite-dimensional quadratic forms
on R" and real symmetric matrices. The second topic deals with optimal or
stationary conditions of a function f:R" — R' and second-order necessary
conditions involving the symmetric matrix A (the Hessian) with elements
a;; = 0*f/0x,0x; evaluated at a stationary point. The third topic is the (finite)
Rayleigh-Ritz method for obtaining the eigenvalues of a real symmetric
matrix. Our fourth and last topic is the concept of eigenvalues as companion
parameters between a real symmetric matrix 4 and the identity, or more
generally another real symmetric matrix B. We have also added some ideas on
Lagrange multipliers for yet another view of eigenvalue theory and extremal
problems. In fact, as we shall indicate in subsequent sections and chapters,
this is often the correct, more practical view of eigenvalues.

We begin the first topic by assuming that # is a finite-dimensional, real
inner product space and Q(x) is a quadratic form defined on #. The re-
mainder of the book will be concerned with extending these concepts, along
with the “meaning” of nonpositive eigenvalues. to infinite-dimensional qua-
dratic forms Q(x) and Hilbert spaces #. Our model of # in dimension # is
usually R" and of Q(x) is x"Ax = (Ax, x), where 4 is an n x n real symmetric
matrix, x an n vector, and x" the transpose of x. For completeness, we include
some topics involving background material in the next few paragraphs.



6 1 Introduction to Quadratic Forms and Differential Equations

We assume that the reader is familiar with the definition of (#,R', + )
as a real vector space, . a subspace of #, linear combinations, linear in-
dependence and linear dependence, span, and basis. If # is a vector space, an
inner product on # is a function (-,-): # x # — R' such thatif x, y, zin #
and cin RY, then (x + y, z) = (x, 2} + (¥, 2), (cx, ¥) = ¢(x, p), (x,¥) = (), x), and
(x,x) > O with equality if and only if x =0 in #". The usual example is
(x,y) = ¥'x = a;b;, where repeated mdlces are summed x =(dy,...,a,)",
and y = (b,,....,b,)" in R". A — R such
that ||x|| is the positive square root of (x, \)

The following ideas are found in most standard texts, for example,
Hoffman and Kunze [32].

Theorem 1 If # is an inner product spuce, then for any x, yin # and c in
R we have
llextl = el I<ll
||| = 0, ||x|| = 0 if and only if x = 0,
i) Joe, )] < ] Al
(@) b+ ol < [l + [yl

Statement (i11) is the well-known Cauchy—Schwartz inequality, and (iv)
is the triangular inequality. We remark that both of these inequalities hold
in the more general case of a real symmetric matrix A associated with a
quadratic form Q(x) = (4x, x) if Q(x) is nonnegative, ie., x # 0 implies
Q(x) > 0. The inner product is the special case with A = I. We shall make
these concepts clearer below, but for now let Q(x, v) = (Ax, y) = (x, Ay) =
Q(y, x) be the bilinear form. Conditions (iil) and (iv) become, respectively,

(i) |Q(x, y)| < /O(X)VO(y),
(iv) O+ y) <O + O

Condition (iii)’ follows since for 4 real,

0<Q(x+ Ay)=Q(x + 2y, x + 4y)
= Q(x, x} + Q(4y, x) + Q(x,4y) + Q(4y, 1y)
= Q%) + 22Q(x, y) + 22Q(y).

If x =0 or y =0, we have equalily in (iii)’. The fact that the quadratic func-
tion of A has no roots or one double root implies the discriminant “B — 44AC”
of the quadratic formula is nonpositive; otherwise we would obtain (wo real
values of 4, and hence f(4) = 2°Q(y) + 4[2Q(x, y)] + Q(x) is negative for
some A= A,. Thus B? — 4A4C = 4Q%(x, y) — 4Q(x)Q(y) <0, and hencc
Q%(x, y) < Q(x)Q(y). If Q(x) > 0, equality holds if and only if x + Ay =0.
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For (iv), Q(x + ) = Q() + 20(x, ) + Q()) < Q(x) + 2Q(x, y)| + Q(y) <
Qx) + 2J0()/0(1) + Q1) = (OK) + /Q()2. Since Q(x + y) > 0 we
may take square roots of both sides to obtain (iv). By “dropping the Q" we
obtain the usual proofs of (iii) and (iv) in Theorem 1.

The vector x is orthogonal to y if (x, y) = 0. The vector x is orthogonal to &'
(a subset of ) if (x, y) = O for all y in &. & is an orthogonal set if (x, =0
for all x5 y in . % is an orthonormal set if ¥ is an orthogonal set and
l|Ix|| = 1 for all x in ¥. The Gram-Schmidt orthogonalization process
provides that if {x,,x,,...,x,} are n linearly independent vectors,
there exists an orthonormal set of vectors {y,,v,,...,y,} such that
span{x,,...,x,) =span{y,...,y/, where 1 < k < n. The vectors { v} are
defined inductively by y, = x,/||lx,f| and y,.., = z,.s 1 /||zm 1], where (as-
suming y,, .. ., y, have been found)

m

(1) Sl = Xy — Z (Xpm+ 1> Vi

k=1

In fact, z,, is the solution to the projection or best approximation problem
illustrated by Fig. 1.

Ym+

$ y7SPan {X,,“-.Xm} =spanfy;, ",y,,;i\

Zm+l

\ ) - Rt—

Fig. 1

If # is a vector space over R'. then L: # — # is a linear operator if x, v
in # and ¢ in B imply L(ex + 1) = cL(x) + L(y). It is well known (but
bothersome to state precisely) that there is an isomorphism between the set
of linear operators L(.# ) and the set .4, of n x n matrices, where .# is an
n-dimensional vector space.

However, before we move on, let us illustrate the above definitions and

concepts by assuming # = {x(1) = ao + a1 + a,t* + a;t*}, where g, in
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R'(k =0,1,2,3) with L = D, the derivative operator. Choosing the standard
basis {1,1.1%, £} of # with coordinates @ = (a,,a,,a,,a3)" in B, we note
that
D(1) =0 =01 + 0r + 0t + 01,
D(t)=1 =11+ 0t + 0t* + 0t°,
)
)=

D(t?) = 2t = 01 + 21 4+ 0¢* + 017,
D(?) = 3t = 0t + Or + 3t* + 0Of’.
Thus D, is identified with the 4 x 4 matrix
01 0 0
00 20
M=10 0 0 3/
0000
while D(—3x + 4x%) = —3 + 8x since
01 00 0 -3
00 2o0|(-3] [ 8
00 0 3 4 0
0O 0 0 O 0 0

Note that D(t*) determine the components of the columns of M.
Similarly, this four-dimensional space becomes an inner product space if
we define either

(X, y)l = aobo -+ a1b1 + a2b2 + a3b3
or

(9 = [ pox(yyd,

where
X(t) = ag + ait + ayt? + ast®
V() = bg + byt + byt? + by,

and p(t) > 0 and integrable. Note that if x(f) = t and y(t) = (3, then x(t) is
orthogonal to y(t) using ( , ),, but x(¢) is not orthogonal to y(®) using ( , ),
since in this case with p(t) = 1 for example,

()= [ Oy dr =10t = %0

x|, = /% since

][5 = (x,x), = fjl Pdt =40, =

Similarly ||x||, = /1 - 1 = 1, while

wito



