


s R A TR 5 R T S S
¥EBZELXE

Topological Theory on Graphs
EHAME R

XE &

Hh E B BOR K2 A




HNERE

ARAETEWHIMERA S, TEE T UECHRN — A SWIE N
ZR, wnEHEiMER—SARXE, MEBEE. ME. A AEFHKR,
FrAlRBR T B EA ALK RN T T2 AR EM B EM . [,
W T — LA B AR, o R RS 58 Al F B B A1 2 b 22 07 T ) 2
WA

ABAEARREE ., MAKE, RERE. TRV 2ER L EERE
BHEMBIRER A TEM, WA T LABUTMB LIEES .

EBERRE (CIP) ¥iE

B #i +hEE > =Topological Theory on Graphs: J&3C/XIZfME. — GHE: +
H R AR K2 Rt 2008.9

(S ARB B AT R SRTHT R RA . PEBERAR KRR E)

“+—H BERELAESH

ISBN 978-7-312-02275-3

LE... ILX|--- IIL 36%h — A — B — BF9F — %5 IV, O157.5
o [ i A P 4348 CIP ¥ £ (2008) 56 136281 5

HAR A ERHEROR K H it
ZHAEAET &R 96 5, Migh: 230026
M4k http://press.ustc.edu.cn

ENRI & AEBEETRI A RFEAH

1T PEPBHERARKE

2% 2EHEHE

FA 710mm x 1000mm 1/16

ENgk 29.5

FH 400F

RR% 2008 4£9 A% 1K

E& 2008 4£9 H %8 1 K EN R

Eng% 1 200003

EM 88.007T




Preface

The subject of this book reflects new developments mainly by the
author himself in company with cooperators most of them his former
and present graduate students on the foundation established in Liu,
Y.P.[33-34]. The central idea is to extract suitable parts of a topo-
logical object such as a graph not necessary to be with symmetry, as
linear spaces which are all with symmetry for exploiting global proper-
ties in construction of the object. This is a way of combinatorizations
and further algebraications of an object via relationship among their
subspaces.

Graphs are dealt with three vector spaces over GF(2), the finite
field of order 2, generated by 0(dimensional)-cells, 1(dimensional)-cells
and 2(dimensional)-cells. The first two spaces were known from, e.g.,
Lefschetz, S.[2] by taking 0-cells and 1-cells as, respectively, vertices
and edges. Of course, a graph is only a 1-complex without two cells.

Since the fifties of last century, in Wu, W.J.[1] and Tutte, W.T.[4,
16], the chain groups generated by 0-cells and 1-cells over, respectively,
GF(2) and the real field were independently used for describing a
graph. And they both then after ten years adopted nonadjacent pair
of edges as a 2-cell for which the cohomology on a graph was allowed
to be established.

Their results especially in Wu, W.J.[1-6] enabled the present au-
thor to create a number of types of planarity auxiliary graphs induced
from the graph considered for the study of the efficiency of theorems
in Liu, Y.P.[1,2,19,22,42] as one approach. Another approach can be
seen in Liu, Y.P.[23-25,43].

More interestingly, two decades later than Liu, Y.P.[1], in Archdea-
con, D. and J. Siran[1] a theta graph(network) was used for charac-
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terizing the planarity of a given graph. The theta graph can be seen
to be a type of planarity auxiliary graph(network) because our pla-
narity auxiliary graphs are subgraphs of the theta graph. However, in
virtue of the order of theta network upper bounded by an exponential
function of the size of given graph and that of planarity auxiliary net-
work by a quadratic polynomial of the size of given graph, theorems
deduced from a theta network are all without efficiency while those
from a planarity auxiliary network are all with efficiency.

The effects of planarity auxiliary graphs are reflected in Chapters
8, 10, 11, 12 and 13 with a number of extensions.

On the other hand, in Liu, Y.P.[31] a graph was dealt with a set
of polyhedra via double covering the edge set by travels under .certain
condition so that travels were treated as 2-cells. These enable us
to discover homology and another type of cohomology for showing
the sufficiency of Eulerian necessary condition in this circumstance.
Further, all the results for the planarity of a graph in Whitney, H.[7]
on the duality, MacLane, S.[1-2] on a circuit basis and Lefschetz, S.[1]
on a circuit double covering have a universal view in this way. In fact,
our polyhedra are all on such surfaces, i.e., 2-dimensional compact
manifolds without boundary. If a boundary is allowed on a surface,
the Eulerian necessary condition is not always sufficient in general.
Some person used to have missing the boundary condition in Abrams,
L. and C.D. Slilaty[1].

The effects of this theoretical thinking are reflected in Chapters
4,5,7 and 14.

Because of the clarification of the joint tree model of a polyhedron
in Liu, Y.P.[35-36] by the present author recently on the basis of Liu,
Y.P.[8-9], we are allowed to write a chapter for brief description of
the theories of surfaces and polyhedra each in Chapters 2 and 3 with
related topics in Chapters 6, 9 and 15.

Although quotient embeddings(current graph and its dual, voltage
graph) were quite active in constructing an embedding of a graph on
a surface with its genus minimum in a period of decades, this book
has no space for them. One reason is that some books have mentioned
them such as in White, A.T.[1], Ringel, G.[3] and Liu, Y.P.[33-34], etc.
Another reason is that only graphs with higher symmetry are suitable
for quotient embeddings, or for employing the covering space method
whence this book is for general graphs without such a limitation of
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symietry.

In spite of refinements and simplifications for known results, this
book still contains a number of new results such as in §5.2, the suffi-
ciency in the proof of Theorem 5.2.1, §9.4, §11.3-4, §13.1-2, §13.4-5
etc., only name a few. Researches were partially supported by NNSF
in China under Grants No.60373030 and No.10571013.

Y. P. Liu
Beijing
December 2007
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Chapter 1

Preliminaries

Throughout for the sake of brevity, the usual logical conventions
are adopted: disjunction, conjunction, negation, implication, equiva-
lence, universal quantification and existential quantification denoted,
respectively, by the familiar symbols:V, A, -, =, <, V and 3. And,
§z.y is for the section y in Chapter x.

In the context, (i.j.k) refers to item k of section j in chapter <.

A reference [k] refers to item k of the corresponding author(s) in the
bibliography where k is a positive integer to distinguish publications
of the same author(s).

1.1 Sets and relations

A set is a collection of objects with some common property which
might be numbers, points, symbols, letters or whatever even sets ex-
cept itself to avoid paradoxes. The objects are said to be elements of
the set. We always denote elements by italic lower letters and sets by
capital ones. The statement “ zis (is not) an element of M” is written
as ¢ € M(x ¢ M). A set is often characterized by a property. For
example

M = {z | z < 4, positive integer } = {1,2,3,4}.

The cardinality of a set M (or the number of elements of M if finite)
is denoted by | M |.

Let A, B be two sets. If ( Va) (a € A = a € B), then A is said
to be a subset of B which is denoted by A C B. Further, we may
define the three main operations: union, intersection and subtraction



2 Chapter 1  Preliminaries

respectively as AUB = {z | (x € A)V(z € B)}, ANB={z| (z €
A)AN(zx € B)}and A\B={z|(z € A) A (z ¢ B)}.

If BC A, then A\ B= A— B is denoted by B(A) which is said to
be the complement of B in A. If all the sets are considered as subsets
of €2, then the complement of A in Q is simply denoted by A. The
empty denoted by 0 is the set without element. For those operations
on subsets of ) mentioned above, we have the following laws.

Idempotent law VACQ, ANA=AUA = A.

Commutative law VA, BCQ, AUB=BUA;ANB = BNA.

Associative law VA, B,C C Q, AU(BUC) = (AU B) U C;
ANn(BNC)=(AnB)NnC.

Absorption law VA, BCQ, AN(AUB)=AU(ANB) = A.

Distributive law VA, B,C C Q, AU(BNC) = (AUB)N(AUC);
AN(BUC)=(ANB)U(ANCQC).

Universal bound law VACQ, 0NA=0, 0UA=A;QNA=
AQUA=Q.

Unary complement law VACQ, ANA=0; AUA = Q.

The unary complement law is also called the ezcluded middle law
in logic.

From the laws described above, we may obtain a large number
of important results. Here, only a few is listed for the usage in the
context.

Theorem 1.1.1 VA CQ,
(VX C)((ANX = A)V(AUX = X))
= A =

(1.1.1)
(VXgQ)((AmX:X)v(AuX:A))
= A=Q.
Theorem 1.1.2 VA, B CQ,
ANB=A& AUB=B. (1.1.2)

Theorem 1.1.3 VA, B,C CQ,
(ANB=ANC)A(AUB=AUC) & B=C. (1.1.3)
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Theorem 1.1.4 VA C Q,

A=A (1.1.4.)
Theorem 1.1.5 VA, B CQ,
AUB=ANB;ANB=AUB. (1.1.5)

From those described above, it is seen that § = Q and Q = 0.
Further, the symmetry (or duality) that any proposition related to
U,N,0,Q can be transformed into another by interchanging U and
N, and Q.

For A, B C Q, an injection (or 1 - to - 1 correspondence ) between
A and B is amapping a : A — BsuchthatVa,b € A, a # b= afa) #
a(b). A surjection between A and B is a mapping §: A — B such
that (Vb € B)(Ja € A)(B(a) = b). If a mapping is both an injection
and a surjection, then it is called a bijection. Two sets are said to be
isomorphic if there is a bijection between them. Two isomorphic sets
A and B, or write A ~ B, are always treated as the same. Of course,
for finite sets, it is trivial to justify if two sets are isomorphic by the
fact: VA, BCQ, A~B&| Al|=| B

For a set M, let M x M = {< z,y >| Vz,y € M} which is said to
be the Cartesian product of M. Here, < z,y »#< y,x > in general.

A binary relation R on M is a subset of M x M. The adjective
“binary” of the relation will often be omitted in the context. If the
relation R holds for z,y € M , then we write < z,y =€ R, or zRy.
An order, denoted by =, is a relation R which satisfies the following
three laws:

Reflective law VYV € M, xRz.
Antisymmetry law Vz,y € M,zRy AyRz = = =y.
Transitive law Vz,y,z € M,zRy AN yRz = zRx.

The set M with the order < is said to be a poset (or partial order
set) denoted by (M, X).

Theorem 1.1.6 In a poset (M, <), Vai,29, -, 2, € M,

T1 3222 R XL > T =Tp="*=Tn. (1.1.6)
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The theorem is sometimes called the anti-circularity law. If a re-
lation only satisfies Reflective law and Transitive law but not Anti-
symmetry law, then it is called the quasi-order which is denoted by
e <. A set M with e < is said to be a quoset denoted by (M, e <).

Theorem 1.1.7 Any subset S of a quoset (M, e <), is itself a
quoset with the restriction of the quasi-order to S.

If a quasi-order R on M satisfies the symmetry law described be-
low, then it is called an equivalent relation, or simply an equivalence
denoted by ~.

Symmetry law Vz,y € M, zRy = yRx.

For the equivalence ~ on M, we are allowed to define the set
(M) ={y | Yy € M,y ~ z} which is said to be the equivalent class
for x € M. The set which consists of all the equivalent classes is called
the quotient set of (M, ~) denoted by M/ ~. In a quoset (M, e <),
let ~4~ be defined by

VI, y € M,x ~es y < (z0 < y) A (yo < ). (1.1.7)

Then, it is easily seen that ~,< is an equivalence on M and that (M/
~e<, ® <) is also a quoset.

Theorem 1.1.8 A quoset (M,e <) is a poset if, and only if,
M/ ~e<= M, or say, it satisfies the anti- circularity law.

In a poset (M, <), we define the strict inclusion, denoted by <, of
the order by the anti-reflective law: —x € M,z < x and the transitive
law: (z < y) A (y < 2) = = < z while noticing that z < y & (z <
y)V(z =y). If an order < on M satisfies the alternative law described
below, then it is called a total order, or a linear order.

Alternative law Vz,ye M, x A y=y < x.

A set with a total order is said to be a chain. The length of a
chain with n elements is defined to be n — 1. From Theorem 1.1.7 and
the definitions, we may have

Theorem 1.1.9 Any subset of a poset is a poset and any subset
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of a chain is a chain.

The converse of a relation R on M is, by definition, the relation
R*: Vz,y € M,zR*y < yRz. It is obvious from inspection of the
three laws for order to have

Theorem 1.1.10 (Duality principle) The converse of any order
is itself an order.

In a poset (M, <), there may have an element a: Vz € M,a = z.
Because of Antisymmetry law, such an element, if it exists, is a unique
one which is called the least element denoted by O. In dual case, the
greatest element, if it exists, denoted by I. The elements O and I,
when they exist, are called universal bound of the poset.

Theorem 1.1.11 A chain has the universal bounds if it is finite.

In a poset (M, =), anelement a € M : Vx € M,z 2a=z=ais
called a minimal element. Dually, a mazimal element is defined as
aeM: VxeMa=z=>a=r1I.

Theorem 1.1.12 Any finite nonempty poset (M, <) has minimal
and maximal elements.

A mapping 7 : M — N from a poset (M, <) to a poset (I, <) is
called order- preserving, or isotone if it satisfies

Ve,y € M, z <y < 7(x) 2 7(y)- (1.1.8)
Further, if an isotone 7 : M — N satisfies
Vz,y € M,7(z) X 1(y) =z 2y, (1.1.9)

then it is called an isomorphism. Two posets (M, =) and (N, =X)
are said to be isomorphic, that is (M, =) = (N, =X), if there is an
isomorphism between them. All isomorphic posets are treated as the
same. However, it is not trivial as for sets to justify if two posets are
isomorphic in general.

An upper bound of a subset X of a poset (M, <) is an element
a: Vx € X,z < a. The least upper bound ( or Lu.b.) is an upper
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bound b : a < b = a = b, where a is another upper bound of X.
Dually, a lower bound and the greatest lower bound( g.l.b.). The
length of a poset is the l.u.b. of the lengths of chains in the poset. A
lattice is a poset any two = and y of whose elements has a g.l.b. or
meet denoted by x Ay and an l.u.b. or join denoted by zVy. A lattice
L = (M,=;V,A) is complete if each of its subset X has an L.u.b. and
a g.l.b.. Moreover, we have known that all finite length lattices are
complete.

Let 22 be the set which consists of all subsets of Q. From §1.1, we
may see that (29, C;U,N) is a lattice. In fact, we have

Theorem 1.1.13 A poset is a lattice if, and only if, it satisfies
the idempotent, commutative, associative and absorption laws.

Two lattices (M, =;V,A) and (N, =<;V, A) are isomorphic if there
is an isomorphism 7 between (M, <) and (M, <) such that, Vz,y € M,

(t(zVy)=71() V1Y) A(T(zAy) =7(2) AT(Yy)). (1.1.10)

Of course, it is nontrivial as well to justify if two lattices are isomorphic
in general.

1.2 Partitions and permutations

A partition of a set X is such a set of subsets of X that any two

subsets are without common element and the union of all the subsets
s X.

Theorem 1.2.1 A partition P(X) of a set X determines an
equivalence on X such that the subsets in P(X) are the equivalent
classes. O

Let P(X) - {plap2" : ')pk1} and Q(X) = {Qh(h,' : ‘7Qk2} be two
partitions of X. If for any g¢;, 1 < j < ky, there exists a p;, 1 <1i < ks

such that g; C p;, then Q(X) is called a refinement of P(X) and P(X),
an enlargement of Q(X) except only for P(X) = Q(X). The partition
of X with each subset of a single element, or only one subset which is
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X in its own right is, respectively, called the 0-partition, or 1-partition
and denoted by 0(X), or 1(X).

Theorem 1.2.2 For a set X and its partition P(X), the 0-
partition 1(X) (or 1-partition 1(X)) can be obtained by refinements
(or enlargements) for at most O(log|X|) times in the worst case.

Proof In the worst case, it suffices to consider P(X) = 1(X)(or
0(X)) and only one more subset produced in a refinement. Because of

21+log X _ 1

124924 . . n 4 2leIX] =
+24+22 4+ + -

—o(x]),  (121)

the times of refinements(or enlargements) needed for getting 0(X) (or
1(X)) is O(log|X|). The theorem is obtained. O

For two partitions P = {p1,p2,-*-,ps} and Q = {q1,q2, - - -, q:} of
a set X, the family intersection of P and @ is defined to be

PnQ=U{mNa,pNag, ,piNa} (1.2.2)
i=1
Actually, {p; N q1,p; N g2, --,pi N g} for i = 1,2,---,1 are partitions
of p;.

Theorem 1.2.3  The family intersection satisfies the commuta-
tive and associate laws. And further, P N @ is a refinement of both P
and Q. O

A permutation of a set X is a bijection of X to itself. Because ele-
ments in a set are no distinction, they are allowed to be distinguished
by natural numbers as X = {z1,2,---}, or simply X = {1,2,---}.
So, a permutation of set L = {1,2,---,l} can be expressed as

1 2 3 .- 1
( 7;1 /1:2 ,L'3 S 7;[ ) . (1.2.3)

If i; = j for all 1 < j < [, the the permutation is call the identity.
From Theorem 1.1.4, the identity is unique.

Theorem 1.2.4 Let 7 be a permutation of set L = {1,2,---,1},
then for any ¢ € L there is an integer n > 0 such that p"i = 7.



