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Chapter 1 Periodic Signals

1.1 Time-domain Descriptions

The fact that the great majority of functions which may usefully be considered as signals are
functions of time leads justification to the treatment of signal theory in terms of time and of
frequency. A periodic signal will therefore be considered to be one which repeats itself exactly
every T seconds,where T is called the period of the signal waveform;the theoretical treatment of
periodic waveforms assumes that this exact repetition is extended throughout all time, both past
and future. In practice, of course, signals do not repeat themselves indefinitely. Nevertheless, a
waveform such as the output voltage of a mains rectifier prior to smoothing does repeat itself very
many times,and its analysis as a strictly periodic signal yields valuable results. In other cases,
such as the electrocardiogram , the waveform is quasi-periodic and may usefully be treated as truly
periodic for some purpose. It is worth noting that a truly repetitive signal is of very little interest in
a communication channel, since no further information is conveyed after the first cycle of the
waveform has been received. One of the main reasons for discussing periodic signals is that a clear
understanding of their analysis is a great help when dealing with periodic and random ones.

A complete time-domain description of such a signal involves specifying its value precisely at
every instant of time. In some cases this may be done very simply using mathematical notation.
Fortunately, it is in many cases useful to describe only certain aspects of a signal waveform,or to
represent it by a mathematical formula which is only approximate. The following aspects might be
relevant in particular cases;

(1) the average value of the signal.

(2) the peak value reached by the signal.

(3) the proportion of the total time spent between value a and b.

(4) the period of the signal.

If it is desired to approximate the waveform by a mathematical expression,such techniques as
a polynomial expansion,a Taylor series,or a Fourier series may be used. A polynomial of order n
having the form

f(t) = ay + a;t + ayt’ + ast’® + - + a,t" (1-1)
may be used to fit the actual curve at (n +1) arbitrary points. The accuracy of fit will generally
improve as the number of polynomial terms increases. It should also be noted that the error
between the true signal waveform and the polynomial will normally become very large away from
the region of the fitted points, and that the polynomial itself cannot be periodic. Whereas a
polynomial approximation fits the actual waveform at a number of arbitrary points, the alternative

Taylor series approximation provides a good fit to a smooth continuous waveform in the vicinity of

—_ 3 —
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one selected point. The coefficients of the Taylor series are chosen to make the series and its
derivatives agree with the actual waveform at this point. The number of terms in the series
determines to what order of derivative this agreement will extend, and hence the accuracy with
which series and actual waveform agree in the region of the point chosen. The general form of the

Taylor series for approximating a function f(¢) in the region of the point is given by

f(t) :f(a) +(t—-a) x dfé:l) + (t 5!01)— X d__};(tza) PR (t ;!a)" 5 d"{l.(t:l)

(1-2)
Generally speaking,the fit to the actual waveform is good in the region of the point chosen, but

rapidly deteriorates to either side. The polynomial and Taylor series descriptions of a signal
waveform are therefore only to be recommended when one is concerned to achieve accuracy over a
limited region of the waveform. The accuracy usually decreases rapidly away from this region,
although it may be improved by including additional terms (so long as ¢ lies within the region of
convergence of the series). The approximations provided by such methods are never periodic in
form and cannot therefore be considered ideal for the description of repetitive signals.

By contrast the Fourier series approximation is well suited to the representation of a signal
waveform over an extended interval. When the signal is periodic,the accuracy of the Fourier series
description is maintained for all time,since the signal is represented as the sum of a number of
sinusoidal functions,which are themselves periodic. Before examining in detail the Fourier series
method of representing a signal, the background to what is known as the °frequency-domain’

approach will be introduced.

1.2 Frequency-domain Descriptions

The basic conception of frequency-domain analysis is that a waveform of any complexity may
be considered as the sum of a number of sinusoidal waveforms of suitable amplitude , periodicity,
and relative phase. A continuous sinusoidal function (sinwt) is thought of as a ‘ single frequency’
wave of frequency w radians/second, and the frequency-domain description of a signal involves its
breakdown into a number of such basic functions. This is the method of Fourier analysis.

There are a number of reasons why signal representation in terms of a set of component
sinusoidal waves occupies such a central role in signal analysis. The suitability of a set of periodic
functions for approximating a signal waveform over an extended interval has already been
mentioned , and it will be shown later that the use of such techniques causes the error between the
actual signal and its approximation to be minimized in a certain important sense. A further reason
why sinusoidal functions are so important in signal analysis is that they occur widely in the
physical world and are very susceptible to mathematical treatment;a large and extremely important
class of electrical and mechanical systems,known as ‘ linear systems’ ,responds sinusoidally when
driven by a sinusoidal disturbing function of any frequency. All these manifestations of sinusoidal
function in the physical world suggest that signal analysis in sinusoidal terms will simplify the
problem of relating a signal to underlying physical causes,or to the physical properties of a system

— 4 —
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or device through which it has passed. Finally, sinusoidal functions form a set of what are called

‘ orthogonal function’ ,the rather special properties and advantage of which will now be discussed.

1.3 Orthogonal Functions

1.3.1 Vectors and signals

A discussion of orthogonal functions and of their value for the description of signals may be
conveniently introduced by considering the analogy between signals and vectors. A vector is
specified both by its magnitude and direction, familiar examples being force and velocity. Suppose
we have two vectors V| and V, ;geometrically,, we define the component of vector V| along vector
V, by constructing the perpendicular from the end of V| onto V,. We then have

V,=C,V,+V, (1-3)
where vector V, is the error in the approximation. Clearly, this error vector is of minimum length
when it is drawn perpendicular to the direction of V,. Thus we say that the component of vector V,
along vector V, is given by C,V, ,where C,, is chosen such as to make the error vector as small as
possible. A familiar case of an orthogonal vector system is the use of three mutually perpendicular
axes in co-ordinate geometry.

There basic ideas about the comparison of vectors may be extended to signals. Suppose we
wish to approximate a signal f; (¢) by another signal or function f, (t) over a certain interval
t; <t <t,; in other words

fi(r) =C,f, (1) for t, <t <t,

We wish to choose C, to achieve the best approximation. If we define the error function

£.(1) =£ (1) = Cpfy (1) (1-4)
it might appear at first sight that we should choose C}, so as to minimize the average value of f, (t)
over the chosen interval. The disadvantage of such an error criterion is that large positive and
negative errors occurring at different instants would tend to cancel each other out. This difficulty is
avoided if we choose to minimize the average squared-error, rather than the error itself ( this is
equivalent to minimizing the square root of the mean-squared error,or ‘r. m.s’ error). Denoting

the average of f2(t) by &,we have

6‘:
l'l

= (1) = Cufy(1) 12de (1-5)

) _tl n

Differentiating with respect to C,, and putting the resulting expression equal to zero gives the value

. . - 4
of C,, for which is a minimum®. Thus

dgn{tz _[lf [fi(e) = Cpfo(8) ] dt}

Expanding the bracket and changing the order of integration and differentiating gives
— 5 —
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Co = [ AR [ F3(0dr (1-6)

1.3.2 Signal description by sets of orthogonal functions

Suppose that we have approximated a signal f; (#) over a certain interval by the function
f5(t) so that the mean square error is minimized, but that we now wish to improve the
approximation. It will be demonstrated that a very attractive approach is to express the signal in
terms of a set of functions f, (¢) ,f;(t) ,f; (¢) ,etc. ,which are mutually orthogonal. Suppose the

initial approximation is

Ji(t) = Cpfy (1) (1-7)
and that the error is further reduced by putting
[i(t) = Cpfy (1) + Ciufs (1) (1-8)

where f,(#) and f;(¢) are orthogonal over the interval of interest. Now that we have incorporated
the additional term C,.f;(¢) ,it is interesting to find what the new value of C,, must be in order

that the mean square error is again minimized. We now have

f(0) = fi(t) = Cpfy(t) - Ciafs(2) (1-9)
and the mean square error in the interval ¢, <t <t, is therefore
1 2 . 2
&=y | LA = Cafi(t) = Cufs () 1 dr (1-10)
(2 - tl) g

Differentiating partially with respect to C,, to find the value of C,, for which the mean square error

is again minimized ,and changing the order of differentiation and integration,we have again
ty ty
Co = [ AW [ fi(0)d (1-11)
1 1

In other words, the decision to improve the approximation by incorporating an additional term
/(&) in does not require us to modify the coefficient, provided that £, (¢) is orthogonal to f,(#) in
the chosen time interval. By precisely similar arguments we could show that the value of C,; would
be unchanged if the signal were to be approximated by f; (¢) alone.

This important result may be extended to cover the representation of a signal in terms of a
whole set of orthogonal functions. The value of any coefficient does not depend upon how many
functions from the complete set are used in the approximation,and is thus unaltered when further
terms are included. The use of a set of orthogonal functions for signal description is analogous to
the use of three mutually perpendicular ( that is,orthogonal ) axes for the descﬁption of a vector in
three-dimensional space, and gives rise to the notion of a ‘signal space’. Accurate signal
representation will often require the use of many more than three orthogonal functions,so that we
must think of a signal within some interval ¢, <t <t, as being represented by a point in a
multidimensional space.

To summarize ,there are a number of sets of orthogonal functions available such as the so-
called Legendre polynomials and Walsh funetions for the approximate description of signal
waveform , of which the sinusoidal set is the most widely used. Sets involving polynomials in ¢ are
not by their very nature periodic, but may sensibly be used to describe one cycle (or less) of a

— 6 —
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periodic waveform ;outside the chosen interval , errors between the true signal and its approximation
will normally increase rapidly. A description of one cycle of a periodic signal in terms of sinusoidal
functions will, however, be equally valid for all time because of the periodic nature of every

member of the orthogonal.

1.4 The Fourier Series

The basis of the Fourier series is that a complex periodic waveform may be analysed into a
number of harmonically related sinusoidal waves which constitute an orthogonal set. If we have a

periodic signal f(¢) with a period equal to T,then f(¢) may be represented by the series

f(t) = A, + ZAncosnwlt + ZB,,sinnw,t (1-12)
n=1 n=1

where @, =27/ T. Thus (1) is considered to be made up by the addition of a steady level (4,) to
a number of sinusoidal and cosinusoidal waves of different frequencies. The lowest of these
frequencies is w, ( radians per second) and is called ‘the fundamental’ ;waves of this frequency
have a period equal to that of the signal. Frequency 2w, is called ‘the second harmonic’ ,3w, is

‘ the third harmonic’ ,and so on. Certain restrictions, known as the Dirichlet conditions, must be

dt over a complete period

placed upon f(¢) for the above series to be valid. The integral f ‘ f()

must be finite, and may not have more than a finite number of discontinuities in any finite

interval. Fortunately , these conditions do not exclude any signal waveform of practical interest.
1.4.1 Evaluation of the coefficients

We now turn to the question of evaluating the coefficients 4, ,A, and B,. Using the minimum

square error criterion described in foregoing text,and writing for the sake of convenience,we have

Ao = 5] Sl

A, = LJ’" f(x) cosnxdx (1-13)
-

B, = Lfﬂ f(x) sinnxdx
T -

Although in the majority of cases it is convenient for the interval of integration to be symmetrical
about the origin,any interval equal in length to one period of the signal waveform may be chosen.

Many waveform of practical interest are either even or odd functions of time. If f(t) is even
then by definition f(t) =f( —t) , whereas if it is odd f(¢t) = —=f( —t). If f(¢) is even and we
multiply it by the odd function sinnw,¢ the result is also odd. Thus the integrand for every B, is
odd. Now when an odd function is integrated over an interval symmetrical about ¢ =0, the result is

always zero. Hence all the B coefficients are zero and we are left with a series containing only

_—
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cosines. By similar arguments,if f(¢) is odd the A coefficients must be zero and we are left with a
sine series. It is indeed intuitively clear that an even function can only be built up from a number
of other functions which are themselves even,and vice versa.

We have already seen how the Fourier series is simplified in the case of an even or odd
function, by losing either its sine or its cosine terms. A different type of simplification occurs in the
case of a waveform possessing what is know as ‘ half-wave symmetry’. In mathematical terms,
half-wave symmetry exists when

f(t) = -f(t+T/2) (1-14)
In other words any two values of the waveform separated by 7/2 will be equal in magnitude and
opposite in sign. Generalizing, only odd harmonics exhibit half-wave symmetry, and therefore a
waveform of any complexity which has such symmetry cannot contain even harmonic components.
Conversely ,a waveform known to contain any second, fourth , or other harmonic components cannot
display half-wave symmetry.

Usually , we have always integrated over a complete cycle to derive the coefficients. However
in the case of an odd or even function it is sufficient,and often simpler,to integrate over only one
half of the cycle and to multiply the result by 2. Furthermore if the wave is not only even or odd
but also displays half-wave symmetry, it is enough to integrate over one quarter of a cycle and
multiply by 4. These closer limits are adequate in such cases the function that is being integrated
is repetitive , repeating twice within one period when the function is either even or odd,and four

times within one period when it also exhibits half-wave symmetry.
1.4.2 Choice of time origin,and waveform power

The amount of work involved in calculating the Fourier series coefficients for a particular
waveform shape is reduced if the waveform is either even or odd,and this may often be arranged
by a judicious choice of time origin (that is,shift of time origin). This shift has therefore merely
had the effect of converting a Fourier series containing only sine terms into one containing only
cosine terms; the amplitude of a component at any one frequency is, as we would expect,
unaltered. For a complicated waveform which is neither even nor odd, it must be expected to
include both sine and cosine terms in its Fourier series.

As the time origin of a waveform is shifted, the various sine and cosine coefficients of its
Fourier series will change , but the sum of the squares of any two coefficients A, and B, will remain
constant, which means that the average power of the waveform, a concept familiar to electrical
engineers, is unaltered.

The above ideas lead naturally to an alternative trigonometric form for the Fourier series. If
the two fundamental components of a waveform are

A,cosw,t and B, sinw,t
their sum may be expressed in an alternative form using trigonometric identities

B
A cosw,t + B sinw,t = '/(Af+3f)005(w,t—tan"A—')

1
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T B
=A/(Af+Bf)sm(w]t+tan_lA—') (1-15)
1
Thus the sine and cosine components at a particular frequency are expressed as a single cosine or

sine wave together with a phase shift. If this procedure is applied to all harmonic components of

the Fourier series,we get the alterative forms

f(t) = A, + iC"cos(mwlt -d¢,) or

f(t) = Ay + Y C,sin(nw,t +6,) (1-16)
V=1
where
= AL +B>; ¢, = tan"'B,/A,;0, = tan"'A,/B, (1-17)
Finally ,we note that since the mean power represented by any component wave is
(A2 +B%)/2 =C2 (1-18)

and the power represented by the term A, is simply A¢ ,the total average waveform power is equal

to
P = A2+——ZCZ (1-19)

But P may be expressed as the average value over one period of [ f(#) ] using the convention that

is considered to represent a voltage waveform applied across a 1 ohm resistor. Hence
172
2
P =4+ 220 = Tj_m[f(t)]dt (1-20)

This result is a version of a more general one known as Parseval’s theorem , and shows that the total
waveform power is equal to the sum of the powers represented by its individual Fourier
components. It is,however,important to note that this is only true because the various component

waves are drawn from an orthogonal set.
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