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In Praise of Computer Organization and Design: The Hardware/
Software Interface

“Textbook selection is often a frustrating act of compromise—pedagogy, content
coverage, quality of exposition, level of rigor, cost. Computer Organization and
Design is the rare book that hits all the right notes across the board, without
compromise. It is not only the premier computer organization textbook, it is a
shining example of what all computer science textbooks could and should be”

—Michael Goldweber, Xavier University

“I have been using Computer Organization and Design for years, from the very first
edition. This new edition is yet another outstanding improvement on an already
classic text. The evolution from desktop computing to mobile computing to Big
Data brings new coverage of embedded processors such as the ARM, new material
on how software and hardware interact to increase performance, and cloud
computing. All this without sacrificing the fundamentals.”

—Ed Harcourt, St. Lawrence University

“To Millennials: Computer Organization and Design is the computer architecture
book you should keep on your (virtual) bookshelf. The book is both old and new,
because it develops venerable principles—Moore’s Law, abstraction, common case
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates
them with contemporary designs.”

—Mark D. Hill, University of Wisconsin-Madison

“The new edition of Computer Organization and Design keeps pace with advances
in emerging embedded and many-core (GPU) systems, where tablets and
smartphones will/are quickly becoming our new desktops. This text acknowledges
these changes, but continues to provide a rich foundation of the fundamentals
in computer organization and design which will be needed for the designers of
hardware and software that power this new class of devices and systems.”

—Dave Kaeli, Northeastern University

“Computer Organization and Design provides more than an introduction to computer
architecture. It prepares the reader for the changes necessary to meet the ever-
increasing performance needs of mobile systems and big data processing at a time
that difficulties in semiconductor scaling are making all systems power constrained.
In this new era for computing, hardware and software must be co-designed and
system-level architecture is as critical as component-level optimizations.”

—Christos Kozyrakis, Stanford University

“Patterson and Hennessy brilliantly address the issues in ever-changing computer
hardware architectures, emphasizing on interactions among hardware and software
components at various abstraction levels. By interspersing I/O and parallelism concepts
with a variety of mechanisms in hardware and software throughout the book, the new
edition achieves an excellent holistic presentation of computer architecture for the post-
PC era. This book is an essential guide to hardware and software professionals facing
energy efficiency and parallelization challenges in Tablet PC to Cloud computing”

—TJae C. Oh, Syracuse University



Preface

The most beautiful thing we can experience is the mysterious. It is the
source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect
the current state of the field, as well as introduce the principles that are shaping
computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, energy, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing
specialty to understand both hardware and software. The interaction between
hardwareand softwareata variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore theadvice and rely on computer architects, compiler writers, and silicon
engineers to make their programs run faster or be more energy-efficient without
change, that era is over. For programs to run faster, they must become parallel.
While the goal of many researchers is to make it possible for programmers to be
unaware of the underlying parallel nature of the hardware they are programming,
it will take many years to realize this vision. Our view is that for at least the next
decade, most programmers are going to have to understand the hardware/software
interface if they want programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.
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About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
often called Patterson and Hennessy.) Our motivation in writing the earlier book
was to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeoffs. We used an approach
that combined examples and measurements, based on commercial systems, to
create realistic design experiences. Our goal was to demonstrate that computer
architecture could be learned using quantitative methodologies instead of a
descriptive approach. It was intended for the serious computing professional who
wanted a detailed understanding of computers.

A majority of the readers for this book do not plan to become computer
architects. The performance and energy efficiency of future software systems will
be dramatically affected, however, by how well software designers understand the
basic hardware techniques at work in a system. Thus, compiler writers, operating
system designers, database programmers, and most other software engineers
need a firm grounding in the principles presented in this book. Similarly,
hardware designers must understand clearly the effects of their work on software
applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions
of Computer Architecture were revised to remove most of the introductory

material; hence, there is much less overlap today than with the first editions of
both books.

Why RISC-V for This Edition?

The choice of instruction set architecture is clearly critical to the pedagogy of a
computer architecture textbook. We didn’t want an instruction set that required
describing unnecessary baroque features for someone’s first instruction set, no
matter how popular it is. Ideally, your initial instruction set should be an exemplar,
just like your first love. Surprisingly, you remember both fondly.

Since there were so many choices at the time, for the first edition of Computer
Architecture: A Quantitative Approach we invented our own RISC-style instruction
set. Given the growing popularity and the simple elegance of the MIPS instruction
set, we switched to it for the first edition of this book and to later editions of the
other book. MIPS has served us and our readers well.

It’s been 20 years since we made that switch, and while billions of chips that use
MIPS continue to be shipped, they are typically in found embedded devices where
the instruction set is nearly invisible. Thus, for a while now it's been hard to find a
real computer on which readers can download and run MIPS programs.

The good news is that an open instruction set that adheres closely to the RISC
principles has recently debuted, and it is rapidly gaining a following. RISC-V, which
was developed originally at UC Berkeley, not only cleans up the quirks of the MIPS



instruction set, but it offers a simple, elegant, modern take on what instruction sets
should look like in 2017.

Moreover, because it is not proprietary, there are open-source RISC-V simulators,
compilers, debuggers, and so on easily available and even open-source RISC-V
implementations available written in hardware description languages. In addition,
there will soon be low-cost hardware platforms on which to run RISC-V programs.
Readers will not only benefit from studying these RISC-V designs, they will be able
to modify them and go through the implementation process in order to understand
the impact of their hypothetical changes on performance, die size, and energy.

This is an exciting opportunity for the computing industry as well as for
education, and thus at the time of this writing more than 40 companies have joined
the RISC-V foundation. This sponsor list includes virtually all the major players
except for ARM and Intel, including AMD, Google, Hewlett Packard Enterprise,
IBM, Microsoft, NVIDIA, Oracle, and Qualcomm.

It is for these reasons that we wrote a RISC-V edition of this book, and we are
switching Computer Architecture: A Quantitative Approach to RISC-V as well.

Given that RISC-V offers both 32-bit address instructions and 64-bit address
instructions with essentially the same instruction set, we could have switched
instruction sets but kept the address size at 32 bits. Our publisher polled the faculty
who used the book and found that 75% either preferred larger addresses or were
neutral, so we increased the address space to 64 bits, which may make more sense
today than 32 bits.

The only changes for the RISC-V edition from the MIPS edition are those
associated with the change in instruction sets, which primarily affects Chapter 2,
Chapter 3, the virtual memory section in Chapter 5, and the short VMIPS example
in Chapter 6. In Chapter 4, we switched to RISC-V instructions, changed several
figures, and added a few “Elaboration” sections, but the changes were simpler than
we had feared. Chapter 1 and the rest of the appendices are virtually unchanged.
The extensive online documentation and combined with the magnitude of RISC-V
make it difficult to come up with a replacement for the MIPS version of Appendix
A (“Assemblers, Linkers, and the SPIM Simulator” in the MIPS Fifth Edition).
Instead, Chapters 2, 3, and 5 include quick overviews of the hundreds of RISC-V
instructions outside of the core RISC-V instructions that we cover in detail in the
rest of the book.

Note that we are not (yet) saying that we are permanently switching to RISC-V. For
example, in addition to this new RISC-V edition, there are ARMv8 and MIPS versions
available for sale now. One possibility is that there will be a demand for all versions for
future editions of the book, or for just one. We'll cross that bridge when we come to it.
For now, we look forward to your reaction to and feedback on this effort.

Changes for the Fifth Edition

We had six major goals for the fifth edition of Computer Organization and Design
demonstrate the importance of understanding hardware with a running example;
highlight main themes across the topics using margin icons that are introduced

vii
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early; update examples to reflect changeover from PC era to post-PC era; spread
the material on I/O throughout the book rather than isolating it into a single
chapter; update the technical content to reflect changes in the industry since the
publication of the fourth edition in 2009; and put appendices and optional sections
online instead of including a CD to lower costs and to make this edition viable as
an electronic book.

Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5, and
6 are found on both paths, no matter what the experience or the focus. Chapter 1
discusses the importance of energy and how it motivates the switch from single
core to multicore microprocessors and introduces the eight great ideas in computer
architecture. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming
languages. Chapter 3 is for readers interested in constructing a datapath or in
learning more about floating-point arithmetic. Some will skip parts of Chapter 3,
either because they don’t need them, or because they offer a review. However, we
introduce the running example of matrix multiply in this chapter, showing how
subword parallels offers a fourfold improvement, so don’t skip Sections 3.6 to 3.8.
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews,
and Section 4.12 gives the next performance boost for matrix multiply for those
with a software focus. Those with a hardware focus, however, will find that this
chapter presents core material; they may also, depending on their background,
want to read Appendix A on logic design first. The last chapter, on multicores,
multiprocessors, and clusters, is mostly new content and should be read by
everyone. It was significantly reorganized in this edition to make the flow of
ideas more natural and to include much more depth on GPUs, warehouse-scale
computers, and the hardware-software interface of network interface cards that
are key to clusters.
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The first of the six goals for this fifth edition was to demonstrate the importance
of understanding modern hardware to get good performance and energy efficiency
with a concrete example. As mentioned above, we start with subword parallelism
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance
in Chapter 4 by unrolling the loop to demonstrate the value of instruction-level
parallelism. Chapter 5 doubles performance again by optimizing for caches using
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by
using thread-level parallelism. All four optimizations in total add just 24 lines of C
code to our initial matrix multiply example.

The second goal was to help readers separate the forest from the trees by
identifying eight great ideas of computer architecture early and then pointing out
all the places they occur throughout the rest of the book. We use (hopefully) easy-
to-remember margin icons and highlight the corresponding word in the text.to
remind readers of these eight themes. There are nearly 100 citations in the book. No
chapter has less than seven examples of great ideas, and no idea is cited less than five
times. Performance via parallelism, pipelining, and prediction are the three most
popular great ideas, followed closely by Moore’s Law. Chapter 4, The Processor, is
the one with the most examples, which is not a surprise since it probably received
the most attention from computer architects. The one great idea found in every
chapter is performance via parallelism, which is a pleasant observation given the
recent emphasis in parallelism in the field and in editions of this book.

The third goal was to recognize the generation change in computing from the
PC era to the post-PC era by this edition with our examples and material. Thus,
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6
describes the computing infrastructure of the cloud. We also feature the ARM,
which is the instruction set of choice in the personal mobile devices of the post-
PC era, as well as the x86 instruction set that dominated the PC era and (so far)
dominates cloud computing.

The fourth goal was to spread the I/O material throughout the book rather
than have it in its own chapter, much as we spread parallelism throughout all the
chapters in the fourth edition. Hence, I/O material in this edition can be found in
Sections 1.4,4.9,5.2, 5.5, 5.11, and 6.9. The thought is that readers (and instructors)
are more likely to cover I/O if it’s not segregated to its own chapter.

This is a fast-moving field, and, as is always the case for our new editions, an
important goal is to update the technical content. The running example is the ARM
Cortex A53 and the Intel Core i7, reflecting our post-PC era. Other highlights
include a tutorial on GPUs that explains their unique terminology, more depth on
the warehouse-scale computers that make up the cloud, and a deep dive into 10
Gigabyte Ethernet cards.

To keep the main book short and compatible with electronic books, we placed
the optional material as online appendices instead of on a companion CD as in
prior editions.

Finally, we updated all the exercises in the book.

While some elements changed, we have preserved useful book elements from
prior editions. To make the book work better as a reference, we still place definitions
of new terms in the margins at their first occurrence. The book element called



“Understanding Program Performance” sections helps readers understand the
performance of their programs and how to improve it, just as the “Hardware/Software
Interface” book element helped readers understand the tradeoffs at this interface.
“The Big Picture” section remains so that the reader sees the forest despite all the
trees. “Check Yourself” sections help readers to confirm their comprehension of the
material on the first time through with answers provided at the end of each chapter.
This edition still includes the green RISC-V reference card, which was inspired by
the “Green Card” of the IBM System/360. This card has been updated and should be
a handy reference when writing RISC-V assembly language programs.

Instructor Support

We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture slides, and other
materials are available to instructors who register with the publisher. In addition,
the companion Web site provides links to a free RISC-V software. Check the
publisher’s Web site for more information:

textbooks.elsevier.com/9780128122754

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at codRISCVbugs@
mkp.com or by low-tech mail using the address found on the copyright page.

This edition is the third break in the long-standing collaboration between
Hennessy and Patterson, which started in 1989. The demands of running one of
the world’s great universities meant that President Hennessy could no longer make
the substantial commitment to create a new edition. The remaining author felt
once again like a tightrope walker without a safety net. Hence, the people in the
acknowledgments and Berkeley colleagues played an even larger role in shaping
the contents of this book. Nevertheless, this time around there is only one author
to blame for the new material in what you are about to read.
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A special thanks also goes to Mark Smotherman for making multiple passes to
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We wish to thank the extended Morgan Kaufmann family for agreeing to
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and Nate McFadden: I certainly couldn’t have completed the book without them.
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The contributions of the nearly 150 people we mentioned here have helped
make this new edition what I hope will be our best book yet. Enjoy!

David A. Patterson
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