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Preface

Random signals (stochastic signals) are also known as random processes (stochas-
tic processes). It is a quantitative description of the dynamic relationship of a series
of random events. Random research and other branches of mathematics such as po-
tential theory, differential equations, the mechanics and theory of complex functions,
and so on, are closely linked in natural science, engineering science and social science
research in every field of random phenomena is an important tool. Random signal re-
search has been widely used in areas such as weather forecasting, statistical physics,
astrophysics, management decision-making, economic mathematics, safety science,
population theory, reliability and many fields such as computer science often use ran-
dom process theory to establish mathematical models.

In the study of random processes, people accidently came to describe the inher-
ent law of necessity and to describe these laws in probability form, realizing that
the inevitability is the charm of this discipline.

The theoretical basis of the whole discipline of stochastic processes was laid by
Kolmogorov and Dub. This discipline first originated from the study of physics, such
as by Gibbs, Boltzmann, Poincare and others studying statistical mechanics, and later
Einstein, Wiener, Levy and others with the pioneering work of the Brownian move-
ment. Around 1907, Markov studied a series of random variables with specific
dependencies, which were later called Markov chains. In 1923, Wiener gave the
mathe-matical definition of Brown’s movement, and this process is still an important
research topic today.

The general theory of stochastic processes is generally considered to have begun
in the 1930s. In 1931, Kolmogorov published the Analytical Methods in Probability The-
ory. In 1934, Khintchine published The theory of smooth process, which laid the
theoretical basis of the Markov process and the stationary process. In 1953, Dub pub-
lished the famous “random process theory,” systematically and strictly describing the
basic theory of random processes. At this point, the stochastic process developed into
a systematic scientific theory.

In our daily lives, because of the presence of noise and interference, the signal we
receive is no longer a clear signal, but a random process; usually we call this a random
signal. A random signal is a kind of signal that is prevalent in the objective world. It
is very important for college students in the information technology field to have a
deep understanding of the statistical characteristics and to master the corresponding
processing and analysis methods. Therefore, random signal analysis is an important
basic course in the field of electronic information. Through the study of the course,
students are taught to understand the basic concepts of random signals, to master the
basic theory of random signals, statistical characteristics and analytical methods, to
learn “statistical signal processing” or “signal detection and valuation,” with
other follow-up courses which lay a solid foundation for future developments.
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The book was written on the basis of the textbook Random Signal Analysis com-
piled by Professor Zhang Qianwu from Xidian University, which absorbed the expe-
rience of similar teaching materials in brother colleges and universities, and which
was finalized after a number of discussions in the project group. The textbook
charac-teristics can be summarized as follows.

(1) Focus on the construction of the whole knowledge system in the field of signal
processing.

From the point of view of the knowledge system, the mathematical basis of random
signal analysis is “higher mathematics,” “probability theory,” and “linear algebra,” and
a professional background from “signals and systems,” and the following courses are
“statistical signal processing,” or “signal detection and estimation.” Therefore, it
con-tinues to strengthen students’ foundation of mathematical analysis and the known
basic concept of signal analysis, basic principles and basic analysis and processing
methods, and at the same time helps students to understand the application of ran-dom
signal analysis methods to signal detection and parameter estimation with noise in the
background. The textbook emphasizes the knowledge system and the structure of signal
processing in its entirety, so as to avoid students learning and understanding random
signal processing in isolation.

(2) Continuous random signal and discrete random sequence analysis.

Traditional random signal analysis materials mostly focus on the description, char-
acterization and analysis of continuous stochastic process, often ignoring the intro-
duction of discrete random sequences, so that the students taking this course can only
carry out theoretical analysis and derivation and cannot use computers for simulation
and emulation. However, making full use of computers to process and analyze random
signals, on the one hand, is benef cial for students to obtain an intuitive understand-
ing, and, on the other hand, is helpful for students to apply their knowledge, truly
combining theoretical research and practical applications. Therefore, in the course of
compiling the textbook, the analysis of the discrete random sequence was also taken
into consideration in detail while the continuous random process is analyzed.

(3) The combination of theoretical analysis and experimental practice.

Random signal analysis is a practical course, and most current textbooks only focus
on theoretical teaching instead of experimental practice. This textbook will design
the corresponding experimental content for each chapter, so that students can under-
stand and grasp basic concepts, basic principles and basic methods through computer
simulation experiments. ;

(4) Introduction of the latest research results.
Random signal analysis of existing teaching material is mainly limited to the charac-
terization and analysis of stationary random processes lacks a description of nonsta-



Preface ===V

tionary random processes and related analysis of random processes after passing non-
linear systems. With the advancement of modern signal processing, nonstationary,
aperiodic, non-Gaussian and nonlinear stochastic signal processing problems have
led to a lot of research results; these results should be the basis of a preliminary under-
standing of today’s undergraduates. Therefore, this textbook will devote a chapter to
the introduction of time-frequency analysis and basic knowledge of wavelet analysis.

The book is divided into six chapters: Chapter 0 is an introduction, which reviews
and summarizes the basic knowledge of probability theory and introduces random
variables and their related digital features and characteristic functions, as well as
other knowledge points. Chapter 1 introduces the basic concept of random signals. It
discusses their basic characteristics and methods to describe them, complex stochas-
tic process. The discrete-time stochastic process is also detailed, and the normal
stochastic process and its spectral analysis and white noise process are introduced as
well. Chapter 2 introduces the linear transformation of the stationary stochastic
process, and reviews the linear transformation and linear system. Moreover, the
process of differential and integral of random process is also introduced therein. The
stochastic process is analyzed by continuous and discrete-time systems. White noise
is analyzed by a linear system and the method of solving the probability density after
the linear transformation of the random process. In Chapter 3, we discuss the stationary
narrowband stochastic process and frst introduce the analytical process and Hilbert
transform, narrowband stochastic representation, and the analytic complex stochas-
tic process. We then discuss the probability density of the envelope and phase of the
narrowband normal process and the probability density of the square of its envelope.
Chapter 4 discusses the nonlinear transformation method of stationary random pro-
cess, including the direct method, transformation and the analysis of the stochastic
process through limiters and the method of calculating the signal-to-noise ratio at
the output of the nonlinear system are also detailed. The characteristic description
and analysis method of the nonstationary stochastic process is given in Chapter 5.
First, the defnition and description of the nonstationary stochastic process are in-
troduced, and then the correlation function and power spectral density are discussed. Fi-
nally, the analysis method of the nonstationary stochastic process in modern signal
processing, such as Wigner—Ville distribution and wavelet analysis are introduced.
The book incorporates a large number of examples and illustrations, and at the end
of each chapter there are enough exercises for practice.

The book was completed by associate Professor Yang Jie and Liu Congfeng.
Ongbwa Ollomo Armelonas, an international student of Xidian University, has made
great efforts in the translation process of this book. The authors express their ap-
preciation to Fu Panlong, Yin Chenyang, Yun Jinwei, Liu Chenchong, Sha Zhaoqun,
Su Juan, and Hou Junrong for translating and correcting Chapters 0, 1, 2, 3, 4, 5 and
the Appendix, respectively. The preparation process of this book was encouraged,
helped and supported by the Xi’an University of Posts & Telecommunications and
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Xidian University colleagues. The Science Press strongly supports in the publication
of this book; Pan Sisi and other editors dedicated a lot of energy to the book and the
authors wish to express their heartfelt appreciation of this.

Because of the limited knowledge of editors, the book’s errors and omissions
are inevitable. Readers are encouraged to offer criticism and suggest corrections.

The Editors
2017.08
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0 Introduction

0.1 Probability space

In the probabilistic part of engineering mathematics, probabilities have been defined
for both classical and geometric profiles. In the classical model, the possible results
of the test are limited and have the same probability; for the geometric generaliza-
tion, although the possible outcome of the experiment is infinite, it is still required to
have some of the same probability. However, a large number of random test results in
practical problems do not belong to these two types, so it is necessary to give a defi-
nite probability definition to the general stochastic phenomenon. In 1933, the Russian
mathematician Kolmogorov combined his predecessors’ research results, gave the ax-
iomatic system of probability theory, and defined the basic concepts of events and
probabilities, and probability theory became a rigorous branch of mathematics.

0.1.1 Randomized trials

In the probability theory, random test is a test with randomness under given condi-
tions; E is generally used to represent randomized trails. Several random trials are
presented below.

E,: toss a coin, observe the positive H or the negative 7 that appears.

E,: throw a die, observe the points that appear.

E;: a point is arbitrarily thrown on the (0, 1) interval of the real axis.

E,: pickoneoutofa batchofbulbsandtest itslifespan.

The above examples of several experiments have common characteristics. For exam-
ple, the test E; has two possible results, H or 7, but we do not know whether it is A or
T before throwing. This test can be repeated under the same conditions. There are six
possible outcomes for the test E,, but it is not possible to determine which outcome
will occur before throwing the die, and this test can be repeated under the same
conditions. Another example is the test £,; we know the lamp life (in hours) ¢ > 0 but
cannot determine how long its life is before the test. This test can also be repeated
under the same conditions. To sum up, these tests have the following characteristics:
(1) They can be repeated under the same conditions.

(2) There is more than one possible outcome of each trial, and all possible results of

the test can be identif ed in advance.
(3) No outcome can be determined before each trial.

In the probability theory, the experiment with these three characteristics is called a
random experiment.
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0.1.2 Sample space

For randomized trials, although the results of the tests cannot be predicted before each
test, the set of all possible outcomes of the test is known. We refer to the set of all
possible outcomes of stochastic test E as the sample space of random test E, and each
possible test result is called a basic event, showing that the sample space consists of
all the basic events of stochastic test E.

For example, in the random test E1, “positive H” and “negative T” are the basic
events. These two basic events constitute a sample space.

In the random experiment E, the respective points “1”, “2”, “3”, “4”, “5” and “6”
are the basic events. These six basic events form a sample space.

In the random experiment E3, each point in the (0, 1) interval is a basic event,
and the set of all points (i.e., the (0, 1) interval) constitutes a sample space.

Abstractly, the sample space is a collection of points, each of which is called a
sample point. The sample space is denoted by Q = {w}, where w represents the sample
point, as defined below.

Definition 0.1.1. Set the sample space Q = {w}, a set of some subsets specified .Z, if
Z satisfies the following properties:

1) Qe £

(2 ifAe #,thenA=0-A ¢ Z.

(3) ifAxe #,k=1,2,...,then 2, Ak € &.

That said, .# is a Boral event domain or a ¢ event domain. A subset of each sample
space Q2 in the Boral event domain is called an event.

In particular, the sample Q is called a certain event, and empty @ is called an
impossible event. ’

In the example of the three sample. spaces above, each sample point is a basic
event. However, generally it is not required that sample points be basic events.

0.1.3 Probability space

The statistical definition of probability and the classical probability definition have
been mentioned in probability theory. The following describes the axiomatic defini-
tion of probability. This definition is abstracted from the specific probability definition
described above, while retaining some of the characteristics of the specific probability
definition. The probability of an event is a number corresponding to a subset of 2 in
Borel field £, which can be considered as the aggregation function.

Definition 0.1.2 (the axiomatic definition of probability). Set a set function in the
Borel field .# of the sample space Q. If P(A) satisfies the following conditions:

(1) non negativity: VA € #, we have P(A) > 0;

(2) polarity: P(Q) = 1;



