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14.2

14

Advanced 1/0

Introduction

This chapter covers numerous topics and functions that we lump under the term
advanced I/O: nonblocking 1/0, record locking, 1/O multiplexing (the select and
poll functions), asynchronous 1/0O, the readv and writev functions, and
memory-mapped I/O (mmap). We need to cover these topics before describing
interprocess communication in Chapter 15, Chapter 17, and many of the examples in
later chapters.

Nonblocking /O

In Section 10.5, we said that system calls are divided into two categories: the “slow”
ones and all the others. The slow system calls are those that can block forever. They
include

* Reads that can block the caller forever if data isn’t present with certain file types
(pipes, terminal devices, and network devices)

* Writes that can block the caller forever if the data can’t be accepted immediately
by these same file types (e.g., no room in the pipe, network flow control)

¢ Opens that block until some condition occurs on certain file types (such as an
open of a terminal device that waits until an attached modem answers the
phone, or an open of a FIFO for writing only, when no other process has the
FIFO open for reading)

¢ Reads and writes of files that have mandatory record locking enabled

481
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Certain ioct1 operations

* Some of the interprocess communication functions (Chapter 15)

We also said that system calls related to disk I/O are not considered slow, even though
the read or write of a disk file can block the caller temporarily.

Nonblocking /0O lets us issue an I/O operation, such as an open, read, or write,

and not have it block forever. If the operation cannot be completed, the call returns
immediately with an error noting that the operation would have blocked.

Example

There are two ways to specify nonblocking I/O for a given descriptor.

If we call open to get the descriptor, we can specify the O_NONBLOCK flag
(Section 3.3).

2. For a descriptor that is already open, we call fcnt1 to turn on the O_NONBLOCK
file status flag (Section 3.14). Figure 3.12 shows a function that we can call to
turn on any of the file status flags for a descriptor.

Earlier versions of System V used the flag O_NDELAY to specify nonblocking mode. These
versions of System V returned a value of 0 from the read function if there wasn’t any data to
be read. Since this use of a return value of 0 overlapped with the normal UNIX System
convention of 0 meaning the end of file, POSIX.1 chose to provide a nonblocking flag with a
different name and different semantics. Indeed, with these older versions of System V, when
we get a return of 0 from read, we don’t know whether the call would have blocked or
whether the end of file was encountered. We'll see that POSIX.1 requires that read return -1
with errno set to EAGAIN if there is no data to read from a nonblocking descriptor. Some
platforms derived from System V support both the older 0 NDELAY and the POSIX.1
O_NONBLOCK, but in this text we'll use only the POSIX.1 feature. The older O_NDELAY is
intended for backward compatibility and should not be used in new applications.

4.3BSD provided the FNDELAY flag for fentl, and its semantics were slightly different.
Instead of affecting only the file status flags for the descriptor, the flags for either the terminal
device or the socket were also changed to be nonblocking, thereby affecting all users of the
terminal or socket, not just the users sharing the same file table entry (4.3BSD nonblocking 1/0O
worked only on terminals and sockets). Also, 4.3BSD returned EWOULDBLOCK if an operation
on a nonblocking descriptor could not complete without blocking. Today, BSD-based systems
provide the POSIX.1 0_NONBLOCK flag and define ENOULDBLOCK to be the same as EAGAIN.
These systems provide nonblocking semantics consistent with other POSIX-compatible
systems: changes in file status flags affect all users of the same file table entry, but are
independent of accesses to the same device through other file table entries. (Refer to Figures
3.7and 3.9.)

Let’s look at an example of nonblocking I/O. The program in Figure 14.1 reads up to
500,000 bytes from the standard input and attempts to write it to the standard output.
The standard output is first set to be nonblocking. The output is in a loop, with the
results of each write being printed on the standard error. The function clr £1 is
similar to the function set_f1 that we showed in Figure 3.12. This new function
simply clears one or more of the flag bits.
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#include "apue.h"
#include <errno.h>
#include <fentl.h>

char buf[500000];

int

main(void)

{
int ntowrite, nwrite; -
char *ptr;

ntowrite = read(STDIN FILENO, buf, sizeof(buf));
fprintf(stderr, "read %d bytes\n", ntowrite);

set_ f1(STDOUT FILENO, O NONBLOCK); /* set nonblocking */
ptr = buf;
while (ntowrite > 0) {

errno = 0;

nwrite = write(STDOUT_FILENO, ptr, ntowrite);
fprintf(stderr, "nwrite = %d, errno = %d\n", nwrite, errno);

if (nwrite > 0) {

ptr += nwrite;
ntowrite -= nwrite;

}
clr_ £1(STDOUT FILENO, O_NONBLOCK); /* clear nonblocking */

exit(0);

Figure 14.1 Large nonblocking write

If the standard output is a regular file, we expect the write to be executed once:

$ 1ls -1 /etc/services print file size
-rw-r--r-- 1 root 677959 Jun 23 2009 /etc/services

$ ./a.out < /etc/services > temp.file try a regular file first
read 500000 bytes

nwrite = 500000, errno = 0 a single write

$ 1s -1 temp.file verify size of output file
-rw-rw-r-- 1 sar 500000 Apr 1 13:03 temp.file

But if the standard output is a terminal, we expect the write to return a partial count
sometimes and an error at other times. This is what we see:
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$ ./a.out < /etc/services 2>stderr.out output to terminal
lots of output to terminal ...
$ cat stderr.out
read 500000 bytes
nwrite = 999, errno = 0

nwrite = -1, errno = 35
nwrite = -1, errno = 35
nwrite = -1, errno = 35
nwrite = -1, errno = 35
nwrite = 1001, errno = 0
nwrite = -1, errno = 35
nwrite = 1002, errno = 0
nwrite = 1004, errno = 0
nwrite = 1003, errno = 0
nwrite = 1003, errno = 0
nwrite = 1005, errno = 0
nwrite = -1, errno = 35 61 of these errors

nwrite = 1006, errno = 0
nwrite = 1004, errno = 0
nwrite = 1005, errno = 0
nwrite = 1006, errno = 0
nwrite = -1, errno = 35 108 of these errors

nwrite = 1006, errno = 0
nwrite = 1005, errno = 0
nwrite = 1005, errno = 0
nwrite = -1, errno = 35 681 of these errors

.
-

and so on ...
nwrite = 347, errno = 0

On this system, the errno of 35 is EAGAIN. The amount of data accepted by the
terminal driver varies from system to system. The results will also vary depending on
how you are logged in to the system: on the system console, on a hard-wired terminal,
on a network connection using a pseudo terminal. If you are running a windowing
system on your terminal, you are also going through a pseudo terminal device. o

In this example, the program issues more than 9,000 write calls, even though only
500 are needed to output the data. The rest just return an error. This type of loop, called
polling, is a waste of CPU time on a multiuser system. In Section 14.4, we'll see that I/O
multiplexing with a nonblocking descriptor is a more efficient way to do this.

Sometimes, we can avoid using nonblocking I/O by designing our applications to
use multiple threads (see Chapter 11). We can allow individual threads to block in I/O
calls if we can continue to make progress in other threads. This can sometimes simplify
the design, as we shall see in Chapter 21; at other times, however, the overhead of
synchronization can add more complexity than is saved from using threads.
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14.3

History

Record Locking

What happens when two people edit the same file at the same time? In most UNIX
systems, the final state of the file corresponds to the last process that wrote the file. In
some applications, however, such as a database system, a process needs to be certain
that it alone is writing to a file. To provide this capability for processes that need it,
commercial UNIX systems provide record locking. (In Chapter 20, we develop a
database library that uses record locking.)

Record locking is the term normally used to describe the ability of a process to
prevent other processes from modifying a region of a file while the first process is
reading or modifying that portion of the file. Under the UNIX System, “record” is a
misnomer; the UNIX kernel does not have a notion of records in a file. A better term is
byte-range locking, given that it is a range of a file (possibly the entire file) that is locked.

One of the criticisms of early UNIX systems was that they couldn’t be used to run
database systems, because they did not support locking portions of files. As UNIX
systems found their way into business computing environments, various groups added
support for record locking (differently, of course).

Early Berkeley releases supported only the flock function. This function locks
only entire files, not regions of a file.

Record locking was added to System V Release 3 through the fcntl function. The
lockf function was built on top of this, providing a simplified interface. These
functions allowed callers to lock arbitrary byte ranges in a file, ranging from the entire
file down to a single byte within the file.

POSIX.1 chose to standardize on the fent1 approach. Figure 14.2 shows the forms
of record locking provided by various systems. Note that the Single UNIX Specification
includes lockf in the XSI option.

System Advisory | Mandatory | fentl | lockf | flock
SUS . . XSI
FreeBSD 8.0 . . ° .
Linux 3.2.0 . . . . .
Mac OS X 10.6.8 . . . .
Solaris 10 . . . . .

Figure 14.2 Forms of record locking supported by various UNIX systems

We describe the difference between advisory locking and mandatory locking later in
this section. In this text, we describe only the POSIX.1 fent1 locking.

Record locking was originally added to Version 7 in 1980 by John Bass. The system call entry
into the kernel was a function named locking. This function provided mandatory record
locking and propagated through many versions of System IIl. Xenix systems picked up this
function, and some Intel-based System V derivatives, such as OpenServer 5, continued to
support it in a Xenix-compatibility library.



486 Advanced 1/0 Chapter 14

fentl Record Locking

Let’s repeat the prototype for the fent1 function from Section 3.14.

#include <fcntl.h>

int fentl(int fd, int cmd, ... /* struct flock *flockptr */ );

Returns: depends on cmd if OK (see following), -1 on error

For record locking, c¢md is F_GETLK, F_SETLK, or F_SETLKW. The third argument
(which we'll call flockptr) is a pointer to an f1lock structure.

struct flock {

}i

short 1 type; /* F_RDLCK, F_WRLCK, or F_UNLCK */

short 1 whence; /* SEEK_SET, SEEK_CUR, or SEEK END */

off t 1 start; /* offset in bytes, relative to 1 whence */
off t 1 len; /* length, in bytes; 0 means lock to EOF */
pid t 1 pid; /* returned with F_GETLK */

This structure describes

The type of lock desired: F_RDLCK (a shared read lock), F_WRLCK (an exclusive
write lock), or F_UNLCK (unlocking a region)

The starting byte offset of the region being locked or unlocked (1_start and
1 whence)

The size of the region in bytes (1_1len)

The ID (1_pid) of the process holding the lock that can block the current
process (returned by F_GETLK only)

Numerous rules apply to the specification of the region to be locked or unlocked.

The two elements that specify the starting offset of the region are similar to the
last two arguments of the 1seek function (Section 3.6). Indeed, the 1_whence
member is specified as SEEK_SET, SEEK_CUR, or SEEK_END.

Locks can start and extend beyond the current end of file, but cannot start or
extend before the beginning of the file.

If 1_len is 0, it means that the lock extends to the largest possible offset of the
file. This allows us to lock a region starting anywhere in the file, up through and
including any data that is appended to the file. (We don’t have to try to guess
how many bytes might be appended to the file.)

To lock the entire file, we set 1_start and 1_whence to point to the beginning
of the file and specify a length (1_1len) of 0. (There are several ways to specify
the beginning of the file, but most applications specify 1_start as 0 and
1_whence as SEEK_SET.)
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We previously mentioned two types of locks: a shared read lock (1_type of
F_RDLCK) and an exclusive write lock (F_WRLCK). The basic rule is that any number of
processes can have a shared read lock on a given byte, but only one process can have an
exclusive write lock on a given byte. Furthermore, if there are one or more read locks
on a byte, there can’t be any write locks on that byte; if there is an exclusive write lock
on a byte, there can’t be any read locks on that byte. We show this compatibility rule in

Figure 14.3.
Request for
read lock | write lock -

no locks OK OK

Region currently has | ©N€ or more OK denied

& y read locks

one write denied denied
lock

Figure 14.3 Compatibility between different lock types

The compatibility rule applies to lock requests made from different processes, not to
multiple lock requests made by a single process. If a process has an existing lock on a
range of a file, a subsequent attempt to place a lock on the same range by the same
process will replace the existing lock with the new one. Thus, if a process has a write
lock on bytes 16—32 of a file and then tries to place a read lock on bytes 16—32, the
request will succeed, and the write lock will be replaced by a read lock.

To obtain a read lock, the descriptor must be open for reading; to obtain a write
lock, the descriptor must be open for writing.

We can now describe the three commands for the fentl function.

F_GETLK  Determine whether the lock described by flockptr is blocked by some other
lock. If a lock exists that would prevent ours from being created, the
information on that existing lock overwrites the information pointed to by
flockptr. If no lock exists that would prevent ours from being created, the
structure pointed to by flockptr is left unchanged except for the 1_type
member, which is set to F_UNLCK.

F_SETLK  Set the lock described by flockptr. If we are trying to obtain a read lock
(1_type of F_RDLCK) or a write lock (1_type of F_WRLCK) and the
compatibility rule prevents the system from giving us the lock
(Figure 14.3), fcntl returns immediately with errno set to either
EACCES or EAGATIN.

Although POSIX allows an implementation to return either error code, all four
implementations described in this text return EAGAIN if the locking request cannot
be satisfied.

This command is also used to clear the lock described by flockptr (1_type
of F_UNLCK).
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F_SETLKW This command is a blocking version of F_SETLK. (The W in the command
name means wait.) If the requested read lock or write lock cannot be
granted because another process currently has some part of the requested
region locked, the calling process is put to sleep. The process wakes up
either when the lock becomes available or when interrupted by a signal.

Be aware that testing for a lock with F_GETLK and then trying to obtain that lock
with F_SETLK or F_SETLKW is not an atomic operation. We have no guarantee that,
between the two fcntl calls, some other process won’t come in and obtain the same
lock. If we don’t want to block while waiting for a lock to become available to us, we
must handle the possible error returns from F_SETLK.

Note that POSIX.1 doesn’t specify what happens when one process read locks a range of a file,
a second process blocks while trying to get a write lock on the same range, and a third
processes then attempts to get another read lock on the range. If the third process is allowed to
place a read lock on the range just because the range is already read locked, then the
implementation might starve processes with pending write locks. Thus, as additional requests
to read lock the same range arrive, the time that the process with the pending write-lock
request has to wait is extended. If the read-lock requests arrive quickly enough without a lull
in the arrival rate, then the writer could wait for a long time.

When setting or releasing a lock on a file, the system combines or splits adjacent
areas as required. For example, if we lock bytes 100 through 199 and then unlock byte
150, the kernel still maintains the locks on bytes 100 through 149 and bytes 151 through
199. Figure 14.4 illustrates the byte-range locks in this situation.

== B
|
I
i
I
File after locking bytes 100 through 199
e A
- [ I
I I
I I
I I
owel e o L Ak
| . |
100 149 151 199
File after unlocking byte 150

Figure 14.4 File byte-range lock diagram

If we were to lock byte 150, the system would coalesce the adjacent locked regions
into a single region from byte 100 through 199. The resulting picture would be the first
diagram in Figure 14.4, the same as when we started.
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Example — Requesting and Releasing a Lock

To save ourselves from having to allocate an flock structure and fill in all the elements
each time, the function lock_reg in Figure 14.5 handles all these details.

#include "apue.h"
#include <fcntl.h>

int
lock reg(int fd, int cmd, int type, off t offset, int whence, off t len)
{ .

struct flock lock;

lock.l type = type; /* F_RDLCK, F_WRLCK, F_UNLCK */

lock.l_start = offset; /* byte offset, relative to 1 _whence */
lock.1l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.l len = len; /* #bytes (0 means to EOQOF) */

return(fentl(fd, cmd, &lock));

Figure 14.5 Function to lock or unlock a region of a file

Since most locking calls are to lock or unlock a region (the command F_GETLK is rarely
used), we normally use one of the following five macros, which are defined in apue.h
(Appendix B).

#define read lock(fd, offset, whence, len) \

lock reg((fd), F_SETLK, F_RDLCK, (offset), (whence), (len))
#define readw_ lock(fd, offset, whence, len) \

lock_reg((fd), F_SETLKW, F_RDLCK, (offset), (whence), (len))
#define write lock(fd, offset, whence, len) \

lock reg((fd), F_SETLK, F_WRLCK, (offset), (whence), (len))
#define writew_lock(fd, offset, whence, len) \

lock _reg((fd), F_SETLKW, F _WRLCK, (offset), (whence), (len))
#define un_lock(fd, offset, whence, len) \

lock reg((fd), F_SETLK, F_UNLCK, (offset), (whence), (len))

We have purposely defined the first three arguments to these macros in the same order
as the 1seek function. O

Example — Testing for a Lock

Figure 14.6 defines the function lock_test that we'll use to test for a lock.

#include "apue.h"
#include <fentl.h>

pid_t
lock_test(int fd, int type, off t offset, int whence, off t len)
{



