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Preface

The main content of this book is based on the Ph.D. thesis of Prof. Jing Mao (the
first author of this book) submitted to University of Lisbon, Portugal and some of
his published joint-works (on Spectral Geometry) with collaborators (for instance,
the second and the third authors of this book, Prof. Isabel Salavssa, Prof. Pedro
Freitas, Prof. Q.-L. Wang, and so on).

In the first four chapters, we mainly consider eigenvalue problems of some self-
adjoint elliptic operators (e.g., the Laplace operator, the drifting Laplacian, the p-
Laplacian, the bi-harmonic operator, the bi-drifting Laplacian, the Paneitz operator,
and so on), which appeared in the study of Physics, on bounded connected domains
(with or without suitable boundary constraints). As we know, in the boundedness
setting, these operators have the discrete spectrum, and then one can try to estimate
elements (i.e., eigenvalues) in the discrete spectrum. Based on this fact, some new
physical isoperimetric inequalities, estimations for lower eigenvalues, and universal
inequalities have been shown to readers. Meanwhile, some latest progresses and
possible questions desired to study have also been mentioned. Chapters 3 and 4
were written by Prof. Feng Du. In December 2016, Prof. C.-X. Wu and Prof. Jing
Mao have made careful check and necessary revisions to the first manuscript of this
book.

In the last chapter, based on the first author’s research experience, we issue
several open problems which might be interesting to readers from three aspects
(i.e., spectral problems concerning quantum strips and quantum layers, connection
between curvature flows and eigenvalue problem, and eigenvalue problem in Finsler
geometry). Besides, some basic knowledge about warped products, which have been
used many times in this book, have been introduced in Appendix A.

The authors would like to thank the financial support in part by NSF of China
(Grant No. 11401131), Key Laboratory of Applied Mathematics of Hubei Province,
Faculty of Mathematics and Statistics of Hubei University.

Jing Mao
Faculty of Mathematics and Statistics of Hubei University
December, 2016
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Chapter 1

Introduction

Let Q be a bounded connected domain on an n-dimensional complete Riemannian
manifold (M, g). The so-called Dirichlet eigenvalue problem is to find all possible
real numbers ) such that there exists a nontrivial solution u to the boundary value
problem

Au+Au=0 in ,
{ u=20 on 99, (1.1)

where Au = div(Vu) is the Laplacian of u given by

TR, ~ 0 i U

" mz=1 e (,/det(gu)g 6z,-)
in a system of local coordinates {z1,...,z,} on M, with (g) = (g;;)~" the inverse
of the metric matrix. The desired real numbers A are called the eigenvalues of A.
For a given A, the space of solutions of (1.1) is a vector space, since the first equation
of (1.1) is linear in u. This vector space is called the eigenspace of A\. The non-zero
elements of each eigenspace are called eigenfunctions. Denote by L?(f2) the space of
all measurable functions f on Q satisfying

/ I£|2dQ < o0,
Q

with d2 the volume element of 2. We can define the usual inner product and induced
norm on L*(Q) by

f, Dy = /Q f9d,  IfI2 =, Dy

for f,g € L?(2). Under this inner product, L?(f2) is a Hilbert space. By the
boundary condition in (1.1) and the Green’s formula, it follows that A is a self-
adjoint operator on the Hilbert space L%(Q2). Furthermore, by the spectral theory of a
self-adjoint compact operator, we know that the Laplacian A in (1.1) has eigenvalues
listed by

0SAM <A< T oo,
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and each associated eigenspace has finite dimension (see, e.g., [30], p.169 or equiv-
alently, Theorem 1.6 below). A; (i > 1) is called the ith Dirichlet eigenvalue of A.
If A=0in (1.1), then together with the boundary condition u = 0 we know that u
vanishes identically. This contradicts the fact that u is nontrivial on . So, the low-
est Dirichlet eigenvalue )\ is strictly positive. By Rayleigh’s theorem and Max-min
principle (see, e.g., [30], p.16-17), we know that (1.1) has positive weak solutions u in
the space WO1 2(Q), the completion of the set C§°(R2) of smooth functions compactly

1

" 2
supported on 2 under the Sobolev norm ||u||12 = {/ (Jul® + |Vu|2)dQ} , and the
Q

first Dirichlet eigenvalue \; () can be characterized by

/ |Vu|2dQ
/ |u|?dS

Remark 1.1 (1) In fact, according to the different situations of boundary 852,
one can consider different eigenvalue problems of the Laplacian. If 9Q = & (ie.,
is compact without boundary), then one can consider the following closed eigenvalue
problem

= inf

u #0,u e Wy3(Q) p. (1.2)

Au+ u=0 in Q.

As in the case of the Dirichlet eigenvalue problem, it is not difficult to get that —A
only has the discrete spectrum and all the eigenvalues can be listed increasingly
also. However, in this case, the first closed eigenvalue A§(f2) satisfies \§(2) = 0 and
the corresponding eigenfunction should be nonzero constant function. Moreover, by
Rayleigh’s theorem and Max-min principle, the first nonzero closed eigenvalue \§ ()
can be characterized as follows

/ IVul2d0
=infd 8 u#O,uGWl’z(ﬂ),/ ud =0},
/ |u|2dS2 o

where W12(Q) is the completion of the set C§°(f2) of smooth functions under the

Sobolev norm ||ul|1,2, and the constraint / ud) = 0 should be assured because of
Q

Courant’s minimum principle. If 9Q # &, except the Dirichlet eigenvalue problem,
one can consider the Neumann eigenvalue problem

Au+Au=0 in £,

(1.3)
@ =0 on 01},
ov
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where v is the outward unit normal vector field on 052, and the mized eigenvalue
problem

Au+du=0 in Q,

u=0 on 92 — N, 6—u:O on N, 14
ov

where N is an open submanifold of 8Q. Clearly, in (1.3) and (1.4), —A only has
the discrete spectrum and all the eigenvalues can be listed increasingly. But by the
boundary conditions and the maximum principle of second-order partial differential
equations (PDEs for short), we know that the first Neumann eigenvalue A\ ()
satisfies AlY(Q2) = 0 with nonzero constant function as its eigenfunction, and the
first mixed eigenvalue AM (Q2) must be positive, i.e., AM (Q) > 0. Moreover, the first
nonzero Neumann and mixed eigenvalues are the infimums of the Rayleigh’s quotient

|Vu|?dQ

in different functional spaces.
|u|?d
Q

(2) One can consider the following nonlinear Dirichlet eigenvalue problem

Apu+ AufP~2u =0 in Q,
{ u=0 on 09, (1.5)
where Apu = div(|Vu[f~2Vu) is the p-Laplacian with 1 < p < oo, and Q is a
bounded domain on an n-dimensional Riemannian manifold (M, g). In local coordi-
nates {x1,...,&,} on M, we have

Apy = ——— = | 1/det(gi;) g% |Vul|? —) § 1.6
P /det(gij) i§=21 ox; J) | I 6:17_1' ( )

n I3 ‘.
where [Vul®* = |Vu|2 = 3 'g“%%‘j, and (g¥) = (gs;)”" is the inverse of the
i,j=1 '

metric matrix. Clearly, the p-Laplacian is a generalization of the linear Laplacian.
Although many results about the linear Laplacian (p = 2) have been obtained,
many rather basic questions about the spectrum of the nonlinear p-Laplacian remain
to be solved. A well-known result about the above nonlinear eigenvalue problem
states that it has a positive weak solution, which is unique modulo the scaling,
in the space Wy'*(2), the completion of the set C3°(2) under the Sobolev norm

llullip = { / (Jul? + |Vu|p)dﬂ}p. For a bounded simply connected domain with
0

sufficiently smooth boundary in Euclidean space, one can get a simple proof of this
fact in [15]. Moreover, the first Dirichlet eigenvalue A;,(Q2) of the p-Laplacian can
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be characterized by

IVu["dQ
Ap(Q)=infd 28— u #0,u e WyP(Q) p. (1.7)

/ |u|PdQ

(3) In fact, except the Laplace and the p-Laplace operators, one can also con-
sider eigenvalue problems for other elliptic operators (such as, the drifting Lapla-
cian, the bi-harmonic operator, the bi-drifting Laplacian, the Paneitz operator, the
poly-harmonic operator, and so on) on bounded connected domains, which will be
investigated in the following chapters.

Optimal domains in isoperimetric inequalities relating eigenvalues to geometrical
quantities such as volume and surface area quite often display some degree of sym-
metry. In many instances, this symmetry is actually the maximal possible, such as
in the Rayleigh-Faber-Krahn and the Szego-Weinberger inequalities, corresponding
to Dirichlet and Neumann boundary conditions for Euclidean domains, respectively.
It is thus quite natural that symmetrization plays a fundamental role in this as-
pect of spectral theory and is at the heart of many isoperimetric inequalities of this
type. The Rayleigh-Faber-Krahn inequality, for instance, is a consequence of the fact
that Schwarz symmetrization does not increase the Dirichlet integral while leaving
the L? norm unchanged. Even in some cases where the minimiser is not one but
two balls, this symmetrization plays a role, as happens not only in the case of the
second Dirichlet eigenvalue, but also when other restrictions are enforced—see, for
instance, [21] and [71].

However, Schwarz and other similar symmetrization procedures are mostly Eu-
clidean techniques, and do not extend to manifolds in general. But, as stated above,
this is not to say that symmetry does not play a similar fundamental role in isoperi-
metrical eigenvalue inequalities on manifolds. This can be seen, for instance, from
Hersch’s result for two-dimensional spheres [86], which states that among all sur-
faces with the same area which are homeomorphic to 2, the round sphere (canonical
metric) maximises the first nontrivial eigenvalue.

The purpose of Chapter 2 is to develop the usage of symmetrization techniques
in the case of manifolds, allowing us to derive comparison isoperimetric inequalities
there. To this end, we shall consider a symmerization procedure based on curvature.
More precisely, given a complete n-manifold M and a point p in M such that we
have lower and upper bounds for the radial Ricci and sectional curvatures within
a geodesic disk of radius rg, which depend only on the distance ¢ to the point p,
we build two spherically symmetric manifolds centered at a point p* and whose
curvatures are determined by the respective bounds. In this way, we are then able
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to obtain that the first eigenvalue with Dirichlet boundary conditions is bounded
from above and below by the first Dirichlet eigenvalue on geodesic disks centered at
p* on these two manifolds—see Theorems 2.8 and 2.14 for the precise statements of
these results.

Now, we would like to recall the history of radial curvature briefly and also
mention some comparison theorems for radial curvature partially. It was the first
time that Klingenberg introduced the notion of radial curvature in [101] to study
compact Riemannian manifolds with radial curvatures pinched between 1/4 and 1.
After that, mathematicians have been paying attention to the radial curvatures. In
general, the reference manifolds for comparison theorems are space forms. However,
Elerath [69] employed a Von Mangoldt surface of revolution (i.e., a complete surface
of revolution homeomorphic to Euclidean plane whose Gaussian curvature is non-
increasing along each meridian) Z C R3 with nonnegative Gaussian curvature as
the reference surface to prove the generalized Toponogov comparison theorem (we
write GTCT for short) successfully for complete open Riemannian manifolds with
radial curvatures bounded from below by that of Z. For complete open Riemannian
manifolds whose radial Ricci curvatures are bounded from below by a nonnegative
smooth function ((¢) of the distance parameter w.r.t. some point (as described in
Definition 2.2), together with other constraints for {(t), Abresch proved the GTCT
in [1] (these special manifolds were called “asymptotically non-negatively curved”
manifolds therein). Of course, there are other types of GTCT, which we do not
need to also mention here. From these facts, we know that mathematicians have
investigated manifolds with radial curvatures bounded by some continuous function
of the distance parameter (of the original manifolds), and generalized some classical
comparison theorems.

Theorems 2.8 and 2.14 may be seen as extensions of Cheng’s bounds for the
first eigenvalue, where the comparison is made between a geodesic disk on M and
those on spaces of constant curvature which are obtained by taking lower and upper
bounds of the curvature [50,51]. More precisely, Cheng has proved the following
conclusions.

Theorem 1.2 ([50]) Suppose M is a complete Riemannian manifold and Ricci
curvature of M = (n — 1)k, with dimM = n. Then, for xo € M we have

A1 (B(zo,7m0)) < A1 (Va(k,m0)),

and equality holds if and only if B(xg,ro) is isometric to Vy(k,ro), where B(xq,ro)
denotes the open geodesic ball with center zo and radius ro on M, and V,(k,7o) is a
geodesic ball with radius o in the n-dimensional simply connected space form with
constant curvature k; moreover, A\1(-) denotes the first Dirichlet eigenvalue of the
Laplacian on the corresponding geodesic ball.
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Theorem 1.3 ([51]) Let M be a complete Riemannian manifold all of whose
sectional curvatures are less than or equal to a given constant k, and dimM = n.
Then, for p € M and 6 > 0 for which B(p,d) is within the cut-locus of p, we have

)\1 (B(p’ 5)) 2 )\1 (Vn(kva)) )

where symbols B(-,+), Vi (:,+), and \1(+) have the same meanings as those in Theorem
1.2.

The starting point behind Theorems 2.8 and 2.14 is twofold. On the one hand,
it should be possible to replace the constant curvature spaces in Cheng’s results by
spherically symmetric spaces, in such a way that these still yield curvature bounds
which imply the desired eigenvalue bounds. On the other hand, spherically sym-
metric manifolds posses a relatively simple characterization and the first Dirichlet
eigenvalue on a geodesic disk is given by the zero of a solution to a second order
ordinary differential equation (see (2.16)). Thus, there are many bounds for these
eigenvalues, some of which providing quite accurate bounds—see [11], [12], [20], [77],
for instance. ,

The heat equation, which can be used to describe the conduction of heat through
a given medium, and related deformations of the heat equation, like the diffusion
equation, the Fokker-Planck equation, and so on, are of basic importance in variable
scientific fields. Given an n-dimensional Riemannian manifold M with the Laplace-
Beltrami operator A. Then we are able to define a differential operator L, which is
known as the heat operator, by

0

L=A-—

ot
acting on functions in C° (M x (0,00)), which are C? w.r.t. the variable z, varying
on M, and C' w.r.t. the variable ¢, varying on (0,00). Correspondingly, the heat

equation is given by

0
Lu=0 (equivalently, Au — Eu = O) ,
with u € C° (M x (0,00)). If we want to get the existence, or even give an explicit
expression, of the solution for this heat equation with a prescribed initial condition
or (Dirichlet or Neumann) boundary condition, we need to use a tool named heat
kernel.

Definition 1.4 A fundamental solution, which is called the heat kernel, of the heat
equation on a prescribed Riemannian manifold M is a continuous function H(z,y,t),
defined on M x M x (0,00), which is C? with respect to z, C* with respect to t, and
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which satisfies
L.H =0, %in(l) H(z,y,t) = 6y(z),

where 0y(x) is the Dirac delta function, that is, for all bounded continuous function
f on M, we have, for everyy € M,

tim [ H@.0f@)3dv (@) = 1)

By constructing a parametrix, the existence of the heat kernel on compact or
complete Riemannian manifolds, or even manifolds with boundary subject to either
Dirichlet or Neumann boundary conditions, can be obtained (see, for instance, [30]).
In fact, for a complete Riemannian manifold, one can have the following.

Theorem 1.5 ([141]) Let M be a complete Riemannian manifold. Then there
ezists a heat kernel H(z,y,t) € C®°(M x M x R*) such that

() H(z,y,t) = H(y,, 1),

(I1) lim H(z,y,t) = 62(y),

) (A-4)H =0,

(IV) H(z,y,t) = /M H(z,z,t— 8)H(z,y,8)dV(z), with 0 < s < t.

In Section 2.7 of Chapter 2, we would like to focus on the heat kernels of geodesic
balls on complete manifolds, and successfully obtain a comparison result, which can
be seen as an extension of Debiard-Gaveau-Mazet’s comparison result in [55] and
Cheeger-Yau’s comparison result in [32], for the heat kernel with a Dirichlet or
Neumann boundary condition—see Theorem 2.31 for the precise statement. There
is a connection between the heat kernel and the eigenvalues of the Laplace operator.
One can get a glance about this relation from the following conclusion (cf. [30],
p.169).

Theorem 1.6 (The Sturm-Liouville decomposition for the Dirichlet eigenvalue
problem) Given a normal domain Q2 in a Riemannian manifold M, there exists a
complete orthonormal basis {1, p2, ¢3,+ -} of L2(Q) consisting of Dirichlet eigen-
functions of the Laplacian A, with ¢; having eigenvalue \; satisfying

0</\1</\2<A3S--'TOO.
In particular, each eigenvalue has finite multiplicity, and
¢ € C*(Q) N CHQ),

where C1(Q) is the set of functions v satisfying that v is C* on Q, and can be
extended to a continuous function on Q, and moreover, the gradient gradv can be
extended to a continuous vector field on Q.
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Finally, the heat kernel H(z,y,t) on ) satisfies

o0

H(m, Y, t) = Z e_Ajt¢]' ($)¢] (y),

i=1

with convergence absolute, and uniform, for each t > 0. In particular,

/Ha:wth Ze At

By using Theorem 1.6 and the comparison result for the heat kernel, Theorem
2.31, we can supply another ways to prove the most part of Theorems 2.8 and 2.14.

As we have mentioned in Preface, we study eigenvalue problems of some elliptic
operators on bounded connected domains in the first four chapters, since in this case
they have the discrete spectrum. But what about the case of unbounded domains?
Do they also have the discrete spectrum? The situation of unbounded domains
is much complicated. For instance, the Laplace operator only has the essential
spectrum in the Euclidean 3-space R3 or the hyperbolic 3-space H3, but it has the
discrete spectrum on the quantum layers (in R3) satisfying constrains mentioned in
Theorem 1 of Chapter 5.

By applying the theory of self-adjoint operators, the spectral properties of the
linear Laplacian on a domain in a Euclidean space or a manifold have been studied
extensively. Mathematicians are generally interested in the spectrum of the Lapla-
cian on compact manifolds (with or without boundary) or noncompact complete
manifolds, since in these two cases the linear Laplace operators can be uniquely ex-
tended to self-adjoint operators [74,75]. However, the study of the spectrum of the
Laplacian on noncompact noncomplete manifolds also attracts attention of mathe-
maticians and physicists in the past three decades, since the study of the spectral
properties of the Dirichlet Laplacian in infinitely stretched regions has applications
in elasticity, acoustics, electromagnetism, quantum physics, etc. In fact, the Lapla-
cians on some noncompact noncomplete manifolds, like quantum layers, can also be
extended to self adjoint operators under suitable constraints (see, e.g., [111], [121]),
and then the existing methods for the previous cases might be used. A quantum
layer is actually formed by thickening an immersed oriented hypersurface of some
given ambient manifold along its normal vectors to a fixed width. For instance, let ¥
be an immersed oriented hypersurface in the Euclidean space R™*! (n > 1), and let
N be the vector field of ¥; then the quantum layer Q built over ¥ with half width
a can be seen as a differentiable manifold ¥ x (—a, a), and it can also be given by a
map

®: Y x (—a,a) = R*1, (z,u) — =+ uN. (1.8)
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So, from this example, we know that quantum layers are noncompact noncomplete
manifolds. They maybe have the discrete spectrum or maybe not. In mathematical
physics, points in the discrete spectrum are called bound states, which can be used
to describe some physical quantities. Moreover, the lowest bound state is called the
ground state. The integrability of the Gaussian curvature is necessary for deriving
the existence of the ground state of the quantum layers built over surfaces ruled
outside a compact set [112]. Lin and Lu have shown that the finite topological
type makes an important role in the proof of the fact that a surface ruled outside a
compact set has integrable Gaussian curvature (see Corollary 2 in [112]). From this
example, we know that topological structures maybe have influence on the spectral
properties of the Laplacian (see also Example 2.16 in Chapter 2).

In Chapter 5, we first recall some existing conclusions about the existence of
ground state of prescribed quantum strips and quantum layers, which are noncom-
pact manifolds, and also issue several open problems. This can be seen as our
attempt of trying to know more information about the spectral structure of some
elliptic operators on unbounded domains. Besides, some other open problems con-
cerning eigenvalue problems in curvature flows and Finsler geometry will also be
issued.



Chapter 2

Eigenvalue comparison theorems

The structure of the chapter is as follows. In the next section, we lay out the back-
ground to the problem and the necessary basic definitions, including the characteri-
zations of the relevant quantities in the case of spherically symmetric manifolds. The
bound for eigenvalues in the case where the radial Ricci curvature is bounded from
below w.r.t. some point is derived in Section 2.2, together with some consequences.
The case where the radial sectional curvature is bounded from above w.r.t. some
point is dealt with in Section 2.3. This requires the extension of other comparison
results to the spherically symmetric setting (as opposed to the constant curvature
setting), which we believe to be interesting in their own right, such as Rauch’s and
Bishop’s comparison theorems—see Theorem 2.11 and Theorems 2.5 and 2.12, re-
spectively. In Section 2.4, several interesting properties of the model spaces will
be discussed. Some interesting examples will be shown in Section 2.5 to explain
our results clearly and intuitively. In Section 2.6, we present a criterion to judge
the existence of the desired model space, a spherically symmetric manifold with a
pole, for a prescribed unbounded manifold. In section 2.7, we will give a comparison
result for the heat kernel, which supplies us another ways to prove the generalized
eigenvalue comparison results in the previous sections. The precise statement of
our main result is given in Section 2.8—see Theorem 2.34 for the detail. Besides,
an interesting spectral result will also be given in this section. In Section 2.9, we
will give the proof of Theorem 2.34 by using a method provided by Freitas, Mao
and Salavessa in [72] (equivalently, the method shown in the proof of Theorem 2.8
in Section 2.2 of Chapter 2). By using this theorem, some estimates for the first
eigenvalue of the Dirichlet p-Laplacian of a geodesic ball on a complete Riemannian
manifold with a radial Ricci curvature lower bound w.r.t. some point will be given
in the last section. The main content of this chapter is based on an independent
work [122], the Ph.D. thesis [123] of the first author here (i.e., Prof. Jing Mao), and
a joint-work [72] of Freitas, Mao and Salavessa.



