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Preface

The advent of high*Speéd computers has given tremendous impetus to all numerical
methods for solving engineering problems. Finite element method forms one of the most
versatile classes of such methods, and was originally developed in the field of structural
analysis. Finite element method is a computer-aided mathematical tool which can be used
for obtaining approx'imate solutions of some parameters to those engineering problems that
can be represented by physical system subjected to external influences. Such problems are
in areas like solid mechanics (elasticity, plasticity, statics, dynamics, etc.), heat
transfer ( conduction, convection, radiation), fluid mechanics, electromagnetism and
coupled interactions of the above, e. g. fluid-solid interaction. Application in solid
mechanics is much more extensive, and can be classified in many different ways depending
on the application types, physical system shapes or responses, loading conditions, and
SO on,

The purpose of this course is to introduce students (both undergraduate and graduate
students) to the fundamentals of the finite element method and its applications in
engineering with emphasis on solid structures or liquid. The students learn the necessary
principle to help them create a basic finite element code (using FORTRAN or MATLAB or
C programming language) for the stress and deformation analysis of solid structures.

This book is based on courses given by the author to both undergraduate and graduate
students of engineering mechanics at Sichuan University, A prior knowledge of the
FORTRAN or MATLAB or C programming language and solid mechanics is assumed.
The level of continuum mechanics, numerical analysis, matrix algebra and other
mathematics employed in this book is that normally taught in undergraduate engineering
courses. The book is therefore suitable for engineering undergraduates and other students
at an equivalent level. Postgraduates and practising engineers may also find it useful if

they are comparatively new to finite element methods.

Sichuan University, Zheming Zhu
Chengdu., China
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Chapter 1 Discretization and element stiffness

The limitations of the human mind are such that it cannot grasp the behaviour of its
complex surroundings and creations in one operation. Therefore, the process of
subdividing all systems into their individual components or ‘elements’, whose behavior is
readily understood, and then rebuilding the original system from such components to
study its behavior, is a natural way in which the engineer, the scientist, or even the
economist proceeds.

In many situations an adequate model is obtained using a finite number of well-defined
components, and we shall term such problems discrete. In others the subdivision is
continued indefinitely and the problem can only be defined using the mathematical fiction
of an infinitesimal. This leads to differential equations or equivalent statements which
imply an infinite number of elements, and we shall term such systems continuous.

With the advent of digital computers, discrete problems can generally be solved
readily even if the number of elements is very large. As the capacity of all computers is
finite, continuous problems can only be solved exactly by mathematical manipulation.
Here, the available mathematical techniques wusually limit the possibilities to
oversimplified situations.

To overcome the intractability of realistic types of continuum problems, various
methods of discretization have been proposed from time to time both by engineers and
mathematicians, All involve an approximation which, hopefully, approaches in the limit
the true continuum solution as the number of discrete variables increases.

The discretization of continuous problems has been approached differently by mathematicians
and engineers. Mathematicians have developed general techniques applicable directly to
differential equations governing the problem, such as finite difference approximations, various
weighted residual procedures, or proximate techniques for determining the stationarity of
properly defined *functionals’. The engineer, on the other hand. often approaches the problem
more intuitively by creating an analogy between real discrete elements and finite portions of a
continuum domain.

Since the early 1960s much progress has been made, and today the purely
mathematical and ‘analogy’ approaches are fully reconciled. It is the object of this text to
present a view of the finite element method as a general discretization procedure of

continuum problems posed by mathematically defined statements.
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In the analysis of problems of a discrete nature, a standard methodology has been developed
over the years, The civil engineer, dealing with structures, first calculates force-displacement
relationships for each element of the structure and then proceeds to assemble the whole by
following a well-defined procedure of establishing local equilibrium at each ‘node’ or connecting
point of the structure. The resulting equations can be solved for the unknown displacements.
Similarly, the electrical or hydraulic engineer, dealing with a network of electrical components
(resistors, capacitances, etc, ) or hydraulic conduits, first establishes a relationship between
currents (flows) and potentials for individual elements and then proceeds to assemble the system
by ensuring continuity of flows.

All such analyses follow a standard pattern which is universally adaptable to discrete
systems, It is thus possible to define a standard discrete system, and this chapter will be
primarily concerned with establishing the processes applicable to such systems. Much of
what is presented here will be known to engineers, but some reiteration at this stage is
advisable, As the treatment of elastic solid structures has been the most developed area of

activity, this will be the focus of this book.

1.1 Discretization of a domain by elements

Forstructures with a complex configuration and subjected to multi-loads as shown in
Fig. 1 —1, it is very difficult, and sometimes it is impossible, to obtain analytical
solutions of the stresses or the displacements by using the knowledge of solid mechanics.
Under such scenario, a better approach is to discretize the structure or the domain into a
finite number of small triangular (or quadrilateral) elements, as shown in Fig. 1—2, and
then try to solve the stresses and/or strains of each element. This process is called
discretization of a domain. For three dimensional problems, we use tetrahedral elements

or brick elements to discretize the domain.

q

Fig. 1—1 A domain with a complex configuration and multi-loads
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Assume that .

1. The continuum (or domain) is separated by imaginary lines or surfaces (in 3D
cases) into a number of ‘finite elements’, and the nodes are numbered. The
number of the nodes are arbitrary, but for saving the calculation time, the
difference between a node number with its adjacent node numbers should be as
small as possible.

2. The elements are interconnected at a discrete number of nodes, not the imaginary
lines. If there is action between two adjacent elements, only the conjunct nodes
can transfer the force or the displacement.

3. The phenomena of overlap and gap between two adjacent elements as shown in

Fig. 1—2 are not allowed.

overlap

(a) Discretization of a domain (b) Two cases of dislocation
Fig. 1—2 Discretization of a domain with triangular elements and numbered nodes

After the domain is discretized by a finite number of triangle elements, as shown in
Fig. 1—3, we will try to solve the stresses and/or the strains of each element. First, we
arbitrarily take one triangular element from the domain divided by the triangular elements,
for example, the element number (5), and for generality, the node numbers are replaced
by i(zx;s y:). j(x;5 y;) and k (x4, y:) in an anticlockwise sequence, which is a
strictly rule we must obey in the following study. Each node has two coordinates (x, y)

which are known because they were fixed during meshing.
9

(xoy0)
k

J
(x,)

X

Fig. 1—3 One element is selected arbitrarily and its nodes are numbered by i, j and k
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Let’s think about: if one can find the solution of the stresses of the arbitrarily selected
element, then one may take the same procedure to get the solutions of all the elements,
which means you can obtain all the stresses and the strains of the whole domain or
structure, Therefore, in the following study, we will first consider the simplest case only
one element, which is also rational because one could use only one element to divide a
domain in some simple situations. Then we will consider multi-elements, and through the
relation between one element and multi-elements, one can easily get the solutions of
stresses and strains of the structures.

Based on one element, two cases will be considered in this chapter: (1) the
displacements of the three nodes are known, as shown in Fig. 1—4; (2) the loads acting

on the three nodes are known, as shown in Fig. 1—5.

U; ¥

LU k| 0 x

Fig. 1—4 The displacements of three nodes are known

_F,,_I

Fi
LF?
Fig. 1—5 The loads of three nodes are known

(0] X

In the following, we will present detailed procedures of solving the stresses and

strains for the two cases shown in Figs. 1—4 and 1—5.

1.2 Solution to the case that the three-node displacements are known

The case that the three-node displacements are known will be studied in this chapter.
For each node, there are two displacements, thus for three nodes, there are totally six

displacements (8)¢, and they can be expressed in terms of a matrix as shown in Fig. 1—6.
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LUk J

Fig. 1—6 A triangle element and its six known displacement components

For the case that the displacements of the three nodes are known, we first try to
obtain the displacements (u and v) of any point inside the triangular element based on the

: « 1 : . . d
three node displacements. We use the strain-displacement relationship (i.e. ¢ = _;,1& ) to
x

obtain the strains of this element, and finally we use the stress-strain relationship

(l.e.og, = (e, +e,)) to obtain the stresses of this element.

E
1 —y
Next, we will follow this procedure to get the solution to the stresses of this
element. We suppose the displacements insider this element are linearly related to the x
and y coordinates, and the relation can be written as
u =a; taxr tazy 1=1)
v =a4 tasx tasy
where a1 asy ass ais ass as are unknown coefficients. In a three-node element, there
are totally six displacement components which are known and can be employed to
determine the six unknown coefficients. Substituting the three node coordinates x and y

into-Eq. (1—1), one can get six linear simultaneous equations as

ju‘- =qa; tax; tasy; u; (1 x; yi][a:

u; =a; tazx; tazy; =>u; = |1 x; y;lja: (1—2)
Up = a1 taxxr tasys Uy 1z vyl las
v, =a4 tasx; tasyi v, 1 z; i ([as

1v; =a4 tasx; tasy; =><v;, p= |1 x; v;|qas a-3
Ve =ay4 Tasxr Tasye Uy 11z ] las

1.2.1 The area of a triangle element

In order to obtain the solution of the six unknown coefficients a1y azs aszs ass ass

ass we will first investigate the determinant

1 X; yi
D=\|1 z; y;|=xjy¢ txwy: t2:y; —Z;¥i —TiVx — T4Y; (1-4)
] v o3 Ve

Combined with Fig. 1—7, Eq. (1—4) can be written in another form as
D:yk(l'j —Ii)+yj(x,-—rb)+yi(xk _.T,') :ZA (1_5)
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where A is the triangle area in Fig. 1—7. This indicates that the determinant D is just
the double triangle area.

Vi

X

Fig. 1—7 Sketch of a triangle

1.2.2 The solution of the six unknown coefficients

According to the knowledge of Linear Algebra, from Eq. (1—2), the coefficients
a1s a2 and a3 can be expressed as

w; T i 1 w, y; 1 z; w;
i 1 1
a1 =pity X Y ,az=‘51 uj yj 9‘13:51 Ly 4 (1-6)
Uy, Ty yk 1 Uu, yk 1 Lk Uy
1 & 9y
where D = |1 z; y;| = 2A, and more details of the coefficients a1, a2 and a3 can be
1 Y 6 3 Ve
written as
u;, I Yi
a“—l—u xT; Y —Lux] ¢ — B ! -
| = j i il = : j k
D uj x] ' 2A Le Vi ' T Y T Yj
k E Yk
- i(a;u,' +tau; +ayu)
]. u; y,'
a“-l—luy—l['—ulyj-kulyi*ulyl
2 — / j = AT i k
DluJ y’ 24 el 11 1y
k k
1
="22(biu,' "r‘bju,- +blzulz)
1 @y
as—llx , i lxj_uII; ulr,
= = : . %
D : ¥ T 2A 1 =z 11—y z;
L Uy
=i(€,‘ug+C,‘u1‘ +c,,uk)
I; ol 1 v 1l =
wherea, = | ! =x,—yk—xky,-;b,~=—’ : =y, —¥iiCi ’ ' =—x; +;
Ty Y 1y, 1 =,
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(247 +k), and here the subscripts i, j and £ circulate in the same manner. For example,

according to the 7, j and & sequence, as shown in Fig. 1—8, a; can be written asa; =

xpyi —a;ye . Similarly, all the other coefficients ax, b;, b, ¢; and ¢, can be obtained,
and the students should write out them as an assignment.

k

i
Fig. 1—8 Sketch of a triangle
It should be noted that all the a, & and ¢ coefficients are constants because the nodal

coordinates (x, y) are known and have a fixed value for a specific triangle element.

Similarly, from Eq. (1—3), one can gain the solution of the coefficients as, a5 and

as» and they can be expressed as

ay = i(aivi +a;v; tazve)

- :i(b,'v,- Ko B
_ 1 i

Qg —ﬁ(cfvi +C}"Uj +(k’l)k)

It can be seen that the six coefficients a1s a2y azs ass as, ag are related to the
node displacements (u,;, v;) (i, j, k). The six coefficients can be written in another

form as

s
B
B
8
~
8
R
b
B
S
~
8
el
S

) '

o
-
S
ES
<
<

(04} C; (‘j Cp Uy a6
1.2.3 The displacement expression and shape function

Substituting the six coefficients in Eq. (1 —7) into the displacement expression in

Eq. (1—1), one can have

a a;, a; ap|(u;
u =q; taxr ey =[1 = yRkas =i[l x y]|b; b; by |ju;
as ci ¢ cp ) \ug
N, 7T u,l
= |N; uw; )= Niu; +Nju; + Nyu,
N, uk{
@y a; a; a v,-l
v =a4 tasxr tasy =[1 = yRKas =i[1 x y]lb; b, by 'uj[
@ ci ¢ cx ] \ve
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N;17 (v;
= |N; vj »= N;v; + Njv; + Nyv, (1—-8)
N, U
N; a;, a; a, a; +bx+c;y a; =X;yr — LY,
where < N; = i[lx‘y] b: b b | = i a; +bjx +c;y 3 and where <b, =y, —
N, i € G a; +hx +ciy ¢ =—x; +x,

(i,7.k)
where N,;, N; and N, are called Shape Function of this triangle element, and for
simplification, they can be written as

.. .
2A

For a triangular element, the area A and the coefficients a;, b, and ¢, are constants,

N,‘ (d,‘ +b,‘1'+f,'y) (lv]qk) (1_9)

and therefore, the shape function is only the function of the coordinates x and y.

The displacements in Eq. (1—8) can be simply expressed as

= [NJ{o}"

,

{N,—u,v—i—Nju,--FNkuk}_ [N, 0 Nj 0 Nk O]Jl[,
N,'U5+vaj+NkUk 0 N,' 0 Nj 0 Nk

1=10)
where [ N ] is the matrix of shape function. It can be seen that the displacements within
each element and on its boundaries can be expressed in terms of the shape function and its

nodal displacements.
1.2.4 Strain and strain matrix
After the displacement functions of the element have been determined, we can use the

general relation of strain-displacement to get the strains inside this element. The relation

of strain-displacement for a plane problem can be expressed as

Ju d }
dx (31 ¥
€s
Y i dv | _ 9 | |H .
{e}=4¢, r=+ Iy r= 10 3y v} (1—-11)
Yol low o] |2 2
dy dx Ldy dxd

Substituting Eq. (1—10) into Eq. (1—11), we have
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J
e 0
N, 0 N 0 N
{e}=|0 71[ : '
Lo N, 0 N, 0
J 9
dy dx
Substituting the shape function N; =
we have
€x 1 i
1
- =15
{e} ey{ 2A
}’Jy Ci

whereb; = y; — yu,c;

I . ' |
vi dx dx dx Vi
OJ u; aN. aN; N, | J%i
< == 0 =k 0 =i 0 =tk 12
N, 'u,? dy dy dy ij
Uy 3_N a_]\]. aNj a‘N;' aN& aNﬁ Uy
o Ldy dx dy dx dy dx | -
2—;;((1,- +b,x +c;y)(i,j,k) into the above equation,
Uu;
Ui
0 b6, 0 b O
s
¢; 0 ¢; 0 cpls +=[B]{6}) (1-12)
B
b,' Cj bj Cp bk !
Up
Uk

=—x; +x.(i,j,k), [B] is strain matrix, and (§)‘ is element

displacements. It can be seen that the matrix [ B | is a constant matrix, which means that

the strains inside the whole element are the same because no x and y are related in the [ B ]

matrix.

One can find that if the displacements of the three nodes are known, i. e. (§)¢ is

known, the three strain components

[ B] matrix can be written in another

[B]=[B. B; Bi]l=55|0

b; 0
where [B,v]:i 0 & |€esgsk)
c; b;

1.2.5 Stresses and stress ma

can be easily obtained by using Eq. (1—12). The

form as
b, 0 b, 0 & O
ci 0 ¢ 0 « (1-13)
ci b; c;j b; cp by

trix

The relation between stresses and strains is the basic knowledge, and the students

should have grasped this relationship

before. It can be written as

6y = E =g, Fue,)

1 —p?
2oy = ——0e, tey)

1—vy

_ E __E 1—y
Ty fZ(l-i—»)yI'v 1—)72 2 Vo

The stress-strain relation can be rewritten in another form as
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1 v 0
Ox €x
dy = 2 > 1Y . 8 By (1—-14)
T—y -
Tay O O T y,r_v
Eq. (1—14) can be simplified as
{e}=[D1{e} (1—15)
where [ D] is the plane stress elasticity matrix and
1 v 0
Dy ® ¥ @ (1—16)
I—v 1 =i
0 @ 7
Substituting the strains in Eq. (1—12) into Eq. (1—15), we have
{e}=[Dle}=[D1[BI{a}* = [SI{o}* 1—17)
where [ S] is stress matrix and it can be written as
1 v 0 0m o086 0 8 0
_ m E vy 1 0
ES:I [D:H:B] 2A(1_)J2) 1~_y 0 i G 0 Ch
0 5 ci b ¢; b; ¢ b
b; Ve, b; Ve by VC
- E vb; Ci Vbj Cj Ubk Ci
2A(1 —v?)
. = 1= 1= ] = 1l — 1—
. 9 . Y, ; v, > Y, ; e . Yp,
(1—18)
whereb,- =Yi T YroCi = X; "—Ik(iaj SR .
Substituting Eq. (1—18) into Eq. (1—17), one can have
o
b,‘ VC; bj VC bk VCp Ui
0.
o E vb; Cj b ; C; vb, Ch U
7 (T 240 =D } ]
. o l—vc l—vb l—yc l—ub' 1—1/” l-ubk v
” g TERTg Y g 2 e
LU &
(1—-19)

It can be seen that the stress matrix is also a constant matrix, which means that the

stresses in this whole element are the same. Therefore, the triangle element is also called

constant stress elements or constant strain elements. This is because the displacements

selected in Eq. (1—1) are linearly related to x and y coordinates, and the derivatives with

respect to x and y are independent of x and y. Therefore, both the [ B] matrix and the

[ S] matrix are constants.
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