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Preface

In February of 2007, I converted my “What’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,

to open problems, to class lecture notes, to expository articles at both basic
and advanced levels.

With the encouragement of my blog readers, and also of the AMS, I
published many of the mathematical articles from the first two years of the
blog as [Ta2008] and [Ta2009], which will henceforth be referred to as
Structure and Randomness and Poincaré’s Legacies Vols. I, II. This gave
me the opportunity to improve and update these articles to a publishable
(and citeable) standard, and also to record some of the substantive feedback
I had received on these articles by the readers of the blog.

The current text contains many (though not all) of the posts for the third
year (2009) of the blog, focusing primarily on those posts of a mathematical
nature which were not contributed primarily by other authors, and which
are not published elsewhere. It has been split into two volumes.

The current volume consists of lecture notes from my graduate real anal-
ysis courses that I taught at UCLA (Chapter 1), together with some related
material in Chapter 2. These notes cover the second part of the gradu-
ate real analysis sequence here, and therefore assume some familiarity with
general measure theory (in particular, the construction of Lebesgue mea-
sure and the Lebesgue integral, and more generally the material reviewed
in Section 1.1), as well as undergraduate real analysis (e.g., various notions
of limits and convergence). The notes then cover more advanced topics in

1X



X Preface

measure theory (notably, the Lebesgue-Radon-Nikodym and Riesz represen-
tation theorems) as well as a number of topics in functional analysis, such
as the theory of Hilbert and Banach spaces, and the study of key function
spaces such as the Lebesgue and Sobolev spaces, or spaces of distributions.
The general theory of the Fourier transform is also discussed. In addition,
a number of auxiliary (but optional) topics, such as Zorn’s lemma, are dis-
cussed in Chapter 2. In my own course, I covered the material in Chapter
1 only and also used Folland’s text [Fo2000] as a secondary source. But
I hope that the current text may be useful in other graduate real analysis
courses, particularly in conjunction with a secondary text (in particular, one
that covers the prerequisite material on measure theory).

The second volume in this series (referred to henceforth as Volume II)
consists of sundry articles on a variety of mathematical topics, which is only
occasionally related to the above course, and can be read independently.

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other online reference pages.)

I will, however, mention a few notational conventions that 1 will use
throughout. The cardinality of a finite set £ will be denoted |E|. We will
use the asymptotic notation X = O(Y), X < Y, or Y > X to denote the
estimate | X| < CY for some absolute constant C' > 0. In some cases we will
need this constant C' to depend on a parameter (e.g., d), in which case we
shall indicate this dependence by subscripts, e.g., X = O4(Y) or X <4 Y.
We also sometimes use X ~ Y as a synonym for X < YV <« X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation 0,_,.(X) or simply
o(X) to denote any quantity bounded in magnitude by c¢(n)X, where c(n)
is a function depending only on n that goes to zero as n goes to infinity. If
we need ¢(n) to depend on another parameter, e.g., d, we indicate this by
further subscripts, e.g., 0p—00:4(X).

We will occasionally use the averaging notation E,cxf(z) :=
I)l(_l Y wex f(x) to denote the average value of a function f : X — C on
a non-empty finite set X.
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Section 1.1

A quick review of
measure and
integration theory

In this section we quickly review the basics of abstract measure theory and
integration theory, which was covered in the previous course but will of
course be relied upon in the current course. This is only a brief summary
of the material; certainly, one should consult a real analysis text for the full
details of the theory.

1.1.1. Measurable spaces. Ideally, measure theory on a space X should
be able to assign a measure (or volume, or mass, etc.) to every set in X.
Unfortunately, due to paradoxes such as the Banach-Tarski paradoz, many
natural notions of measure (e.g., Lebesque measure) cannot be applied to
measure all subsets of X; instead, we must restrict our attention to certain
measurable subsets of X. This turns out to suffice for most applications;
for instance, just about any non-pathological subset of Euclidean space that
one actually encounters will be Lebesgue measurable (as a general rule of
thumb, any set which does not rely on the axiom of choice in its construction
will be measurable).

To formalise this abstractly, we use

Definition 1.1.1 (Measurable spaces). A measurable space (X, X) is a set
X, together with a collection X of subsets of X which form a o-algebra, thus
X contains the empty set and X, and is closed under countable intersections,
countable unions, and complements. A subset of X is said to be measurable
with respect to the measurable space if it lies in X.

3



4 1. Real analysis

A function f : X — Y from one measurable space (X,X) to another
(Y,Y) is said to be measurable if f~1(E) € X for all E € Y.

Remark 1.1.2. The class of measurable spaces forms a category, with the
measurable functions being the morphisms. The symbol ¢ stands for count-
able union; cf. o-compact, o-finite, F,, set.

Remark 1.1.3. The notion of a measurable space (X, X) (and of a mea-
surable function) is superficially similar to that of a topological space (X, F)
(and of a continuous function); the topology F contains () and X just as the
o-algebra X does, but is now closed under arbitrary unions and finite in-
tersections, rather than countable unions, countable intersections, and com-
plements. The two categories are linked to each other by the Borel algebra
construction; see Example 1.1.5 below.

Example 1.1.4. We say that one o-algebra X’ on a set X is coarser than
another X’ (or that X’ is finer than &) if X C A" (or equivalently, if the
identity map from (X,AX”’) to (X, X) is measurable); thus every set which
is measurable in the coarse space is also measurable in the fine space. The
coarsest o-algebra on a set X is the trivial o-algebra {(),X}, while the finest
is the discrete o-algebra 2X := {E : E cX}.

Example 1.1.5. The intersection A ¢, Xo = (Naea Xa of an arbitrary
family (X,)aca of o-algebras on X is another o-algebra on X. Because
of this, given any collection F of sets on X we can define the o-algebra
B[F] generated by F, defined to be the intersection of all the o-algebras
containing F, or equivalently the coarsest algebra for which all sets in F are
measurable. (This intersection is non-vacuous, since it will always involve
the discrete o-algebra 2X.) In particular, the open sets F of a topological
space (X,F) generate a o-algebra, known as the Borel o-algebra of that
space.

We can also define the join \/
on X by the formula

(1.1) V Za =B Al

acA acA

aeA Vo of any family (Xq)aea of o-algebras

For instance, the Lebesque o-algebra L of Lebesgue measurable sets on a
Euclidean space R" is the join of the Borel o-algebra B and of the algebra
of null sets and their complements (also called co-null sets).

Exercise 1.1.1. A function f : X — Y from one topological space to
another is said to be Borel measurable if it is measurable once X and Y are
equipped with their respective Borel o-algebras. Show that every continuous
function is Borel measurable. (The converse statement, of course, is very far
from being true; for instance, the pointwise limit of a sequence of measurable



1.1. Measure and integration 5

functions, if it exists, is also measurable, whereas the analogous claim for
continuous functions is completely false.)

Remark 1.1.6. A function f : R® — C is said to be Lebesgue measurable
if it is measurable from R" (with the Lebesgue o-algebra) to C (with the
Borel g-algebra), or equivalently if f~1(B) is Lebesgue measurable for every
open ball B in C. Note the asymmetry between Lebesgue and Borel here;
in particular, the composition of two Lebesgue measurable functions need
not be Lebesgue measurable.

Example 1.1.7. Given a function f : X — Y from a set X to a measurable
space (Y,)), we can define the pullback f='(Y) of Y to be the o-algebra
YY) = {f"YE) : E € Y}, this is the coarsest structure on X that makes
[ measurable. For instance, the pullback of the Borel o-algebra from [0, 1]
to [0, 1]? under the map (z,y) — x consists of all sets of the form E x [0, 1],
where E C [0, 1] is Borel measurable.

More generally, given a family (fq : X — Y, )aeca of functions into mea-
surable spaces (Yy, Vo), we can form the o-algebra \/ . 4 fo ' (Va) generated
by the f,; this is the coarsest structure on X that makes all the f, simul-
taneously measurable.

Remark 1.1.8. In probability theory and information theory, the func-
tions f, : X — Y, in Example 1.1.7 can be interpreted as observables, and
the o-algebra generated by these observables thus captures mathematically
the concept of observable information. For instance, given a time parame-
ter ¢, one might define the o-algebra F<; generated by all observables for
some random process (e.g., Brownian motion) that can be made at time ¢
or earlier; this endows the underlying event space X with an uncountable
increasing family of o-algebras.

Example 1.1.9. If E is a subset of a measurable space (Y, )), the pullback
of Y under the inclusion map ¢ : E — Y is called the restrictzon of Y to
E and is denoted Y |g. Thus, for instance, we can restrict the Borel and
Lebesgue o-algebras on a Euclidean space R" to any subset of such a space.

Exercise 1.1.2. Let M be an n-dimensional manifold, and let (7, : Uy —
V.) be an atlas of coordinate charts for M, where U, is an open cover of M
and V,, are open subsets of R™. Show that the Borel o-algebra on M is the
unique o-algebra whose restriction to each U, is the pullback via 7, of the
restriction of the Borel o-algebra of R" to V.

Example 1.1.10. A function f : X — A into some index set A will partition
X into level sets f~'({a}) for a € A; conversely, every partition X =
Uaca Fa of X arises from at least one function f in this manner (one can
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just take f to be the map from points in X to the partition cell in which that
point lies). Given such an f, we call the o-algebra f~1(24) the o-algebra
generated by the partition; a set is measurable with respect to this structure
if and only if it is the union of some subcollection |J g Fa of cells of the
partition.

Exercise 1.1.3. Show that a o-algebra on a finite set X necessarily arises
from a partition X = Ua€ AP as in Example 1.1.10, and furthermore the
partition is unique (up to relabeling). Thus, in the finitary world, o-algebras
are essentially the same concept as partitions.

Example 1.1.11. Let (X4, Xa)aca be a family of measurable spaces,
then the Cartesian product [],.4 Xo has canonical projection maps
T3 : [[nea Xa — Xp for each f € A. The product o-algebra ], .4 Xa
is defined as the o-algebra on ], 4 Xo generated by the m,, as in Example
1.1.7.

Exercise 1.1.4. Let (X,)aca be an at most countable family of second
countable topological spaces. Show that the Borel o-algebra of the prod-
uct space (with the product topology) is equal to the product of the Borel
o-algebras of the factor spaces. In particular, the Borel o-algebra on R"
is the product of n copies of the Borel g-algebra on R. (The claim can
fail when the countability hypotheses are dropped, though in most applica-
tions in analysis, these hypotheses are satisfied.) We caution however that
the Lebesgue o-algebra on R™ is not the product of n copies of the one-
dimensional Lebesgue o-algebra, as it contains some additional null sets;
however, it is the completion of that product.

Exercise 1.1.5. Let (X, X) and (Y,)) be measurable spaces. Show that
if E is measurable with respect to X x ), then for every z € X, the set
{y € Y : (z,y) € E} is measurable in ), and similarly for every y € Y,
the set {z € X : (z,y) € E} is measurable in X. Thus, sections of Borel
measurable sets are again Borel measurable. (The same is not true for
Lebesgue measurable sets.)

1.1.2. Measure spaces. Now we endow measurable spaces with a mea-
sure, turning them into measure spaces.

Definition 1.1.12 (Measures). A (non-negative) measure p on a measur-
able space (X, X) is a function p : X — [0, 400] such that p(@) = 0, and such
that we have the countable additivity property u(Us— En) = > ooy u(En)
whenever Fyp, Es, ... are disjoint measurable sets. We refer to the triplet
(X, X, 1) as a measure space.

A measure space (X, X, pu) is finite if u(X) < oo; it is a probability space
if u(X) =1 (and then we call p a probability measure). 1t is o-finite if X
can be covered by countably many sets of finite measure.
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A measurable set E is a null set if u(E) = 0. A property on points x in
X is said to hold for almost every x € X (or almost surely, for probability
spaces) if it holds outside of a null set. We abbreviate “almost every” and
“almost surely” as a.e. and a.s., respectively. The complement of a null set
is said to be a co-null set or to have full measure.

Example 1.1.13 (Dirac measures). Given any measurable space (X, X))
and a point x € X, we can define the Dirac measure (or Dirac mass) 6, to
be the measure such that 6,(EF) = 1 when z € E and §,(F) = 0, otherwise.
This is a probability measure.

Example 1.1.14 (Counting measure). Given any measurable space (X, X'),
we define counting measure # by defining #(FE) to be the cardinality |E|
of E when E is finite, or +00 otherwise. This measure is finite when X is
finite, and o-finite when X is at most countable. If X is also finite, we can
define normalised counting measure T%[#; this is a probability measure, also
known as the uniform probability measure on X (especially if we give X the
discrete o-algebra).

Example 1.1.15. Any finite non-negative linear combination of measures
is again a measure; any finite convex combination of probability measures
is again a probability measure.

Example 1.1.16. If f: X — Y is a measurable map from one measurable
space (X, X) to another (Y,)), and p is a measure on X', we can define the
push-forward f.pu:Y — [0,+00] by the formula f,u(E) := u(f~'(E)); this
is a measure on (Y,Y). Thus, for instance, f.d, = dp(;) for all z € X.

We record some basic properties of measures of sets:

Exercise 1.1.6. Let (X, X,u) be a measure space. Show the following
statements:

(i) Monotonicity. If E C F are measurable sets, then u(F) < u(F). (In
particular, any measurable subset of a null set is again a null set.)

(ii) Countable subadditivity. 1f E;, Es,... are a countable sequence of
measurable sets, then p(U,—; En) < > .oo, p(En). (Of course, one
also has subadditivity for finite sequences.) In particular, any count-
able union of null sets is again a null set.

(ili) Monotone convergence for sets. If Ey C Ey C --- are measurable,
then p(Us2; En) = limp_y00 p( Ey).
(iv) Dominated convergence for sets. If Ey D E9 D -+ are measurable,

and p(E1) is finite, then u(o—; En) = limp—co (Ey). Show that
the claim can fail if u(F;) is infinite.



