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Preface

This book is not a research monograph or a reference book (although
research interests of the authors influenced it a lot)—this is a textbook.
Its structure is similar to that of a graduate course. A graduate course
usually begins with a course description, and so do we.

Course description. The objective of this book is twofold. First of all, we
wanted to give a detailed exposition of basic notions and techniques in the
theory of length spaces, a theory which experienced a very fast development
in the past few decades and penetrated into many other mathematical disci-
plines (such as Group Theory, Dynamical Systems, and Partial Differential
Equations). However, we have a wider goal of giving an elementary intro-
duction into a broad variety of the most geometrical topics in geometry—the
ones related to the notion of distance. This is the reason why we included
metric introductions to Riemannian and hyperbolic geometries. This book
tends to work with “easy-to-touch” mathematical objects by means of “easy-
to-visualize” methods. There is a remarkable book [Gro3|, which gives a
vast panorama of “geometrical mathematics from a metric viewpoint”. Un-
fortunately, Gromov’s book seems hardly accessible to graduate students
and non-experts in geometry. One of the objectives of this book is to bridge
the gap between students and researchers interested in metric geometry, and
modern mathematical literature.

Prerequisite. It is minimal. We set a challenging goal of making the core
part of the book accessible to first-year graduate students. Our expectations
of the reader’s background gradually grow as we move further in the book.
We tried to introduce and illustrate most of new concepts and methods
by using their simplest case and avoiding technicalities that take attention
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xii Preface

away from the gist of the matter. For instance, our introduction to Riemann-
ian geometry begins with metrics on planar regions, and we even avoid the
notion of a manifold. Of course, manifolds do show up in more advanced sec-
tions. Some exercises and remarks assume more mathematical background
than the rest of our exposition; they are optional, and a reader unfamiliar
with some notions can just ignore them. For instance, solid background in
differential geometry of curves and surfaces in R? is not a mandatory prereq-
uisite for this book. However, we would hope that the reader possesses some
knowledge of differential geometry, and from time to time we draw analogies
from or suggest exercises based on it. We also make a special emphasis on
motivations and visualizations. A reader not interested in them will be able
to skip certain sections. The first chapter is a clinic in metric topology; we
recommend that the reader with a reasonable idea of metric spaces just skip
it and use it for reference: it may be boring to read it. The last chapters
are more advanced and dry than the first four.

Figures. There are several figures in the book, which are added just to
make it look nicer. If we included all necessary figures, there would be at
least five of them for each page.

e [t is a must that the reader systematically studying this book makes
a figure for every proposition, theorem, and construction!

Exercises. Exercises form a vital part of our exposition. This does not
mean that the reader should solve all the exercises; it is very individual.
The difficulty of exercises varies from trivial to rather tricky, and their
importance goes all the way up from funny examples to statements that
are extensively used later in the book. This is often indicated in the text.
It is a very helpful strategy to perceive every proposition and theorem as an
exercise. You should try to prove each on your own, possibly after having
a brief glance at our argument to get a hint. Just reading our proof is the
last resort.

Optional material. Our exposition can be conditionally subdivided into
two parts: core material and optional sections. Some sections and chapters
are preceded by a brief plan, which can be used as a guide through them.
It is usually a good idea to begin with a first reading, skipping all optional
sections (and even the less important parts of the core ones). Of course, this
approach often requires going back and looking for important notions that
were accidentally missed. A first reading can give a general picture of the
theory, helping to separate its core and give a good idea of its logic. Then
the reader goes through the book again, transforming theoretical knowledge
into the genuine one by filling it with all the details, digressions, examples
and experience that makes knowledge practical.
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About metric geometry. Whereas the borderlines between mathemati-
cal disciplines are very conditional, geometry historically began from very
“down-to-earth” notions (even literally). However, for most of the last cen-
tury it was a common belief that “geometry of manifolds” basically boiled
down to “analysis on manifolds”. Geometric methods heavily relied on dif-
ferential machinery, as it can be guessed even from the name “Differential
geometry”. It is now understood that a tremendous part of geometry es-
sentially belongs to metric geometry, and the differential apparatus can be
used just to define some class of objects and extract the starting data to
feed into the synthetic methods. This certainly cannot be applied to all
geometric notions. Even the curvature tensor remains an obscure monster,
and the geometric meaning of only some of its simplest appearances (such
as the sectional curvature) are more or less understood. Many modern re-
sults involving more advanced structures still sound quite analytical. On
the other hand, expelling analytical machinery from a certain sphere of
definitions and arguments brought several major benefits. First of all, it
enhanced mathematical understanding of classical objects (such as smooth
Riemannian manifolds) both ideologically, and by concrete results. From a
methodological viewpoint, it is important to understand what assumptions a
particular result relies on; for instance, in this respect it is more satisfying to
know that geometrical properties of positively curved manifolds are based
on a certain inequality on distances between quadruples of points rather
than on some properties of the curvature tensor. This is very similar to
two ways of thinking about convex functions. One can say that a function
is convex if its second derivative is nonnegative (notice that the definition
already assumes that the function is smooth, leaving out such functions as
f(z) = |z|). An alternative definition says that a function is convex if its
epigraph (the set {(z,y) : y > f(z)}) is; the latter definition is equivalent
to Jensen’s inequality f(ax + By) < af(z) + Bf(y) for all nonnegative a, 3
with oo + 8 = 1, and it is robust and does not rely on the notion of a limit.
From this viewpoint, the condition f” > 0 can be regarded as a convenient
criterion for a smooth function to be convex.

As a more specific illustration of an advantage of this way of thinking,
imagine that one wants to estimate a certain quantity over all metrics
on a sphere. It is so tempting to study a metric for which the quantity
attains its maximum, but alas this metric may fail exist within smooth
metrics, or even metrics that induce the same topology. It turns out that
it still may exist if we widen our search to a class of more general length
spaces. Furthermore, mathematical topics whose study used to lie outside
the range of noticeable applications of geometrical technique now turned
out to be traditional objects of methods originally rooted in differential
geometry. Combinatorial group theory can serve as a model example of this
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situation. By now the scope of the theory of length spaces has grown quite
far from its cradle (which was a theory of convex surfaces), including most
of classical Riemannian geometry and many areas beyond it. At the same
time, geometry of length spaces perhaps remains one of the most “hands-
on” mathematical techniques. This combination of reasons urged us to write
this “beginners’ course in geometry from a length structure viewpoint”.

Acknowledgements. The authors enjoyed hospitality and excellent work-
ing conditions during their stays at various institutions, including the Uni-
versity of Strasbourg, ETH Zurich, and Cambridge University. These un-
forgettable visits were of tremendous help to the progress of this book. The
authors’ research, which had essential impact on the book, was partially
supported by the NSF Foundation, the Sloan Research Fellowship, CRDF,
RFBR, and Shapiro Fund at Penn State, whose help we gratefully acknowl-
edge. The authors are grateful to many people for their help and encour-
agement. We want to especially thank M. Gromov for provoking us to write
this book; S. Alexander, R. Bishop, and C. Croke for undertaking immense
labor of thoroughly reading the manuscript—their numerous corrections,
suggestions, and remarks were of invaluable help; S. Buyalo for many useful
comments and suggestions for Chapter 9; K. Shemyak for preparing most
of the figures; and finally a group of graduate students at Penn State who
took a Math 597c course using our manuscript as the base text and cor-
rected dozens of typos and small errors (though we are confident that twice
as many of them are still left for the reader).
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Chapter 1

Metric Spaces

The purpose of the major part of the chapter is to set up notation and to
refresh the reader’s knowledge of metric spaces and related topics in point-
set topology. Section 1.7 contains minimal information about Hausdorff
measure and dimension.

It may be a good idea to skip this chapter and use it only for reference,
or to look through it briefly to make sure that all examples are clear and
exercises are obvious.

1.1. Definitions

Definition 1.1.1. Let X be an arbitrary set. A function d : X x X —
R U {00} is a metric on X if the following conditions are satisfied for all
z,y,z € X.

(1) Positiveness: d(z,y) > 0 if x # y, and d(z,z) = 0.

(2) Symmetry: d(z,y) = d(y, z).

(3) Triangle inequality: d(z,2) < d(z,y) + d(y, 2).
A metric space is a set with a metric on it. In a formal language, a metric
space is a pair (X, d) where d is a metric on X. Elements of X are called

points of the metric space; d(z,y) is referred to as the distance between
points z and y.

When the metric in question is clear from the context, we also denote
the distance between z and y by |zy|.

Unless different metrics on the same set X are considered, we will omit
an explicit reference to the metric and write “a metric space X” instead of
“a metric space (X,d).”

1



2 1. Metric Spaces

In most textbooks, the notion of a metric space is slightly narrower
than our definition: traditionally one consider metrics with finite distance
between points. If it is important for a particular consideration that d
takes only finite values, this will be specified by saying that d is a finite
metric. There is a very simple relation between finite and infinite metrics,
namely a metric space with possibly infinite distances splits canonically into
subspaces that carry finite metrics and are separated from one another by
infinite distances:

Exercise 1.1.2. Show that the relation d(z,y) # oo is an equivalence
relation. Each of its equivalence classes together with the restriction of
d is a metric space with a finite metric.

Definition 1.1.3. Let X and Y be two metric spaces. Amap f: X —- Y is
called distance-preserving if | f(z)f(y)| = |zy| for any two points z,y € X.
A bijective distance-preserving map is called an isometry. Two spaces are
isometric if there exists an isometry from one to the other.

It is clear that being isometric is an equivalence relation. Isometric
spaces share all properties that can be expressed completely in terms of
distances.

Semi-metrics.

Definition 1.1.4. A function d : X x X — Ry U {+oo} is called a semi-
metric if it satisfies all properties from Definition 1.1.1 of a metric except
the requirement that d(z,y) = 0 implies z = y. This means that we allow
zero distance between different points.

There is an obvious relation between semi-metrics and metrics, namely
identifying points with zero distance in a semi-metric leads to a usual metric:

Proposition 1.1.5. Let d be a semi-metric on X. Introduce an equivalence
relation Ry on X: set xRgy iff d(z,y) = 0. Since d(z,y) = d(x1,y1)
whenever tRqx1 and yRgy,, the projection d of d onto the quotient space
X = X/Ry is well-defined. Then (X,d) is a metric space.

Proof. Trivial (exercise). O

We will often abuse notation, writing (X/d,d) rather than (X/Rg,d),

with X/d instead of X/R,; and using the same letter d for its projection d.

Example 1.1.6. Let the distance between two points (z,vy), (z/,9') in R?
be defined by d((z,y), (¢',9')) = |(x — 2') + (y — 3/)|]. Check that it is a
semi-metric. Prove that the quotient space (R?/d, d) is isometric to the real
line.
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1.2. Examples

Various examples of metric spaces will appear everywhere in the course. In
this section we only describe several important ones to begin with. For many
of them, verification of the properties from Definition 1.1.1 is trivial and is
left for the reader.

Example 1.2.1. One can define a metric on an arbitrary set X by

0 ifzx=y,
|zy| = :
1 ifz #uy.

This example is not particularly interesting but it can serve as the initial
point for many constructions.

Example 1.2.2. The real line, R, is canonically equipped with the distance
|zy| = |z — y|, and thus can be considered as a metric space. There is an
immense variety of other metrics on R; for instance, consider djogz(z,y) =
log(|z —y| + 1).

Example 1.2.3. The Euclidean plane, R?, with its standard distance,
is another familiar metric space. The distance can be expressed by the
Pythagorean formula,

lzy| = |z — y| = V(21 — y1)? + (22 — ¥2)?

where (z1,2z2) and (y1,y2) are coordinates of points z and y. The triangle
inequality for this metric is known from elementary Euclidean geometry.
Alternatively, it can be derived from the Cauchy inequality.

Example 1.2.4 (direct products). Let X and Y be two metric spaces. We
define a metric on their direct product X x Y by the formula

(@1, 31) (22, 92)| = V]z122]? + [y192].
In particular, R x R = R2.

Exercise 1.2.5. Derive the triangle inequality for direct products from the
triangle inequality on the Euclidean plane.

Example 1.2.6. Recall that the coordinate n-space R" is the vector space
of all n-tuples (zi,...,2,) of real numbers, with component-wise addition
and multiplication by scalars. It is naturally identified with the multiple
direct product R x --- x R (n times). This defines the standard Euclidean
distance,

lzy| = \/(1'1 — )2+ -+ (Tn — ya)?
where & = (Z1;<.«yZn) 80d = (Y15« « s Pn)-



4 1. Metric Spaces

Example 1.2.7 (dilated spaces). This simple construction is similar to
obtaining one set from another by means of a homothety map. Let X be a
metric space and A > 0. The metric space AX is the same set X equipped
with another distance function dyx which is defined by d)x(z,y) = dx(z,y)
for all z,y € X, where dx is the distance in X. The space AX is referred to
as X dilated (or rescaled) by .

Example 1.2.8 (subspaces). If X is a metric space and Y is a subset of X
then a metric on Y can be obtained by simply restricting the metric from
X. In other words, the distance between points of Y is equal to the distance
between the same points in X.

Restricting the distance is the simplest but not the only way to define a
metric on a subset. In many cases it is more natural to consider an intrinsic
metric, which is generally not equal to the one restricted from the ambient
space. The notion of intrinsic metric will be explained further in the course,
but its intuitive meaning can be illustrated by the following example of the
intrinsic metric on a circle.

Example 1.2.9. The unit circle, S*, is the set of points in the plane lying at
distance 1 from the origin. Being a subset of the plane, the circle carries the
restricted Euclidean metric on it. We define an alternative metric by setting
the distance between two points as the length of the shorter arc between
them. For example, the arc-length distance between two opposite points of
the circle is equal to 7. The distance between adjacent vertices of a regular
n-gon (inscribed into the circle) is equal to 27 /n.

Exercise 1.2.10. (a) Prove that any circle arc of length less or equal to ,
equipped with the above metric, is isometric to a straight line segment.

(b) Prove that the entire circle with this metric is not isometric to any
subset of the plane (regarded with the restriction of Euclidean distance onto
this subset).

1.2.1. Normed vector spaces.

Definition 1.2.11. Let V be a vector space. A function [-|:V — R is

a norm on V if the following conditions are satisfied for all v,w € V and
k e R.

(1) Positiveness: |v| > 0 if v # 0, and |[0| = 0.
(2) Positive homogeneity: |kv| = |k||v|.
(3) Subadditivity (triangle inequality): |v + w| < |v| + |w].

A normed space is a vector space with a norm on it. Finite-dimensional
normed spaces are also called Minkowski spaces. The distance in a normed
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space (V,|-|) is defined by the formula

d(v,w) = |[v —wl.

It is easy to see that a normed space with the above distance is a metric
space. The norm is recovered from the metric as the distance from the
origin.

The Euclidean space R™ described in Example 1.2.6 is a normed space
whose norm is expressed by

|(-’L'1,-..,.’En)|= $%++z%
There are other natural norms in R".

Example 1.2.12. The space R} is the coordinate space R™ with a norm
| -, defined by

(@1, - za)lly = |2a] + - - + [2n]
(where | - | is just the absolute value of real numbers).
Example 1.2.13. Similarly, the space RY, is R™ with a norm || - ||, where
(z1,y. .., %n)| o = max{|zi],...,|zal}.

Exercise 1.2.14. Prove that
(a) R? and RZ are isometric;

(b) RT and R%, are not isometric for any n > 2.

Example 1.2.15. Let X be an arbitrary set. The space {o(X) is the set
of all bounded functions f : X — R. This is naturally a vector space with
respect to pointwise addition and multiplication by scalars. The standard
norm || - ||, on £oo(X) is defined by

1flloe = sup [f(z)].
zeX

Exercise 1.2.16. Show that R}, = /. (X) for a suitable set X. Hint: an
n-tuple (z1,...,x,) is formally a map, isn’t it?

1.2.2. Euclidean spaces. Let X be a vector space. Recall that a bilinear
formon X is a map F : X x X — R which is linear in both arguments.
A bilinear form F is symmetric if F(z,y) = F(y,z) for all z,y € X. A
symmetric bilinear form F can be recovered from its associated quadratic
form Q(z) = Qp(z) = F(z,z), e.g., by means of the formula 4F(z,y) =
Qlz+y) - Qz —y).

Definition 1.2.17. A scalar product is a symmetric bilinear form F' whose
associated quadratic form is positive definite, i.e., F'(z,z) > 0 for all = # 0.
A Euclidean space is a vector space with a scalar product on it.



