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Preface

Traditionally, Fourier analysis has been focused on the analysis of functions
in terms of linear phase functions such as the sequence n — e(an) := e,
In recent years, though, applications have arisen—particularly in connection
with problems involving linear patterns such as arithmetic progressions—in
which it has been necessary to go beyond the linear phases, replacing them
to higher order functions such as quadratic phases n — e(an?). This has
given rise to the subject of quadratic Fourier analysis and, more generally,
to higher order Fourier analysis.

The classical results of Weyl on the equidistribution of polynomials (and
their generalisations to other orbits on homogeneous spaces) can be inter-
preted through this perspective as foundational results in this subject. How-
ever, the modern theory of higher order Fourier analysis is very recent in-
deed (and still incomplete to some extent), beginning with the breakthrough
work of Gowers [G01998|, [G02001] and also heavily influenced by paral-
lel work in ergodic theory, in particular, the seminal work of Host and Kra
[HoKr2005]. This area was also quickly seen to have much in common with
areas of theoretical computer science related to polynomiality testing, and in
joint work with Ben Green and Tamar Ziegler [GrTa2010], [GrTa2008c],
[GrTaZi2010b], applications of this theory were given to asymptotics for
various linear patterns in the prime numbers.

There are already several surveys or texts in the literature (e.g.
[Gr2007], [Kr2006], [Kr2007], [Ho2006|, [Ta2007], [TaVu2006]) that
seek to cover some aspects of these developments. In this text (based on a
topics graduate course I taught in the spring of 2010), I attempt to give a
broad tour of this nascent field. This text is not intended to directly substi-
tute for the core papers on the subject (many of which are quite technical
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X Preface

and lengthy), but focuses instead on basic foundational and preparatory ma-
terial, and on the simplest illustrative examples of key results, and should
thus hopefully serve as a companion to the existing literature on the sub-
ject. In accordance with this complementary intention of this text, we also
present certain approaches to the material that is not explicitly present in
the literature, such as the abstract approach to Gowers-type norms (Section
2.2) or the ultrafilter approach to equidistribution (Section 1.1.3).

There is, however, one important omission in this text that should be
pointed out. In order to keep the material here focused, self-contained,
and of a reasonable length (in particular, of a length that can be mostly
covered in a single graduate course), I have focused on the combinatorial
aspects of higher order Fourier analysis, and only very briefly touched upon
the equally significant ergodic theory side of the subject. In particular, the
breakthrough work of Host and Kra [HoKr2005], establishing an ergodic-
theoretic precursor to the inverse conjecture for the Gowers norms, is not
discussed in detail here; nor is the very recent work of Szegedy [Sz2009],
[Sz2009b], [Sz2010], [Sz2010b] and Camarena-Szegedy [CaSz2010] in
which the Host-Kra machinery is adapted to the combinatorial setting.
However, some of the foundational material for these papers, such as the
ultralimit approach to equidistribution and structural decomposition, or the
analysis of parallelopipeds on nilmanifolds, is covered in this text.

This text presumes a graduate-level familiarity with basic real analysis
and measure theory, such as is covered in [Ta2011], [Ta2010], particularly
with regard to the “soft” or “qualitative” side of the subject.

The core of the text is Chapter 1, which comprises the main lecture
material. The material in Chapter 2 is optional to these lectures, except for
the ultrafilter material in Section 2.1 which would be needed to some extent
in order to facilitate the ultralimit analysis in Chapter 1. However, it is
possible to omit the portions of the text involving ultrafilters and still be able
to cover most of the material (though from a narrower set of perspectives).
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2 1. Higher order Fourier analysis

1.1. Equidistribution of polynomial sequences in tori

(Linear) Fourier analysis can be viewed as a tool to study an arbitrary func-
tion f on (say) the integers Z, by looking at how such a function correlates
with linear phases such as n + e(én), where e(z) := €*™® is the funda-
mental character, and £ € R is a frequency. These correlations control a
number of expressions relating to f, such as the expected behaviour of f on
arithmetic progressions n,n + r,n + 2r of length three.

In this text we will be studying higher-order correlations, such as the
correlation of f with quadratic phases such as n +— e(én?), as these will
control the expected behaviour of f on more complex patterns, such as
arithmetic progressions n,n +r,n + 2r, n + 3r of length four. In order to do
this, we must first understand the behaviour of ezponential sums such as

N

Z e(an?).

n=1

Such sums are closely related to the distribution of expressions such as
an? mod 1 in the unit circle T := R/Z, as n varies from 1 to N. More
generally, one is interested in the distribution of polynomials P: Z¢ — T
of one or more variables taking values in a torus T; for instance, one might
be interested in the distribution of the quadruplet (an?,a(n + )2, a(n +
2r)%, a(n 4+ 3r)?) as n,r both vary from 1 to N. Roughly speaking, once we
understand these types of distributions, then the general machinery of qua-
dratic Fourier analysis will then allow us to understand the distribution of
the quadruplet (f(n), f(n+7r), f(n+2r), f(n+3r)) for more general classes
of functions f; this can lead for instance to an understanding of the distri-
bution of arithmetic progressions of length 4 in the primes, if f is somehow
related to the primes.

More generally, to find arithmetic progressions such as n,n + r,n +
2r,n + 3r in a set A, it would suffice to understand the equidistribution of
the quadruplet! (14(n),1a(n+7),14(n+2r),14(n+3r)) in {0,1}* as n and
r vary. This is the starting point for the fundamental connection between
combinatorics (and more specifically, the task of finding patterns inside sets)
and dynamics (and more specifically, the theory of equidistribution and
recurrence in measure-preserving dynamical systems, which is a subfield of
ergodic theory). This connection was explored in the previous monograph
[Ta2009]; it will also be important in this text (particularly as a source of
motivation), but the primary focus will be on finitary, and Fourier-based,
methods.

1Here 14 is the indicator function of A, defined by setting 14(n) equal to 1 when n € A and
equal to zero otherwise.



1.1. Equidistribution in tori 3

The theory of equidistribution of polynomial orbits was developed in
the linear case by Dirichlet and Kronecker, and in the polynomial case by
Weyl. There are two regimes of interest; the (qualitative) asymptotic regime
in which the scale parameter N is sent to infinity, and the (quantitative)
single-scale regime in which N is kept fixed (but large). Traditionally, it is
the asymptotic regime which is studied, which connects the subject to other
asymptotic fields of mathematics, such as dynamical systems and ergodic
theory. However, for many applications (such as the study of the primes), it
is the single-scale regime which is of greater importance. The two regimes
are not directly equivalent, but are closely related: the single-scale theory
can be usually used to derive analogous results in the asymptotic regime,
and conversely the arguments in the asymptotic regime can serve as a sim-
plified model to show the way to proceed in the single-scale regime. The
analogy between the two can be made tighter by introducing the (qualita-
tive) ultralimit regime, which is formally equivalent to the single-scale regime
(except for the fact that explicitly quantitative bounds are abandoned in the
ultralimit), but resembles the asymptotic regime quite closely.

For the finitary portion of the text, we will be using asymptotic notation:
X <Y, Y >» X, or X =0(Y) denotes the bound |X| < CY for some
absolute constant C', and if we need C' to depend on additional parameters,
then we will indicate this by subscripts, e.g., X <4 Y means that | X| < CzY
for some Cy depending only on d. In the ultralimit theory we will use an
analogue of asymptotic notation, which we will review later in this section.

1.1.1. Asymptotic equidistribution theory. Before we look at the
single-scale equidistribution theory (both in its finitary form, and its ultra-
limit form), we will first study the slightly simpler, and much more classical,
asymptotic equidistribution theory.

Suppose we have a sequence of points z(1),z(2),z(3),... in a compact
metric space X. For any finite N > 0, we can define the probability measure

KN = EnG[N] 6w(n)

which is the average of the Dirac point masses on each of the points z(1), ...,
z(N), where we use E,c|ny] as shorthand for + SN (with [N] =
{1,...,N}). Asymptotic equidistribution theory is concerned with the lim-
iting behaviour of these probability measures py in the limit N — oo, for
various sequences z(1),x(2),... of interest. In particular, we say that the
sequence z: N — X is asymptotically equidistributed on N with respect to a
reference Borel probability measure o on X if the py converge in the vague
topology to p or, in other words, that

(L.1) B,/ (2(n) = /X # duss -3 /X F dy



4 1. Higher order Fourier analysis

for all continuous scalar-valued functions f € C(X). Note (from the Riesz
representation theorem) that any sequence is asymptotically equidistributed
with respect to at most one Borel probability measure p.

It is also useful to have a slightly stronger notion of equidistribution: we
say that a sequence z: N — X is totally asymptotically equidistributed if
it is asymptotically equidistributed on every infinite arithmetic progression,
i.e. that the sequence n — z(gn + r) is asymptotically equidistributed for
all integers ¢ > 1 and 7 > 0.

A doubly infinite sequence (z(n)),cz, indexed by the integers rather
than the natural numbers, is said to be asymptotically equidistributed rel-
ative to p if both halves? of the sequence z(1),z(2),z(3),... and z(—1),
z(—2),2(—3),... are asymptotically equidistributed relative to . Simi-
larly, one can define the notion of a doubly infinite sequence being totally
asymptotically equidistributed relative to pu.

Example 1.1.1. If X = {0,1}, and z(n) := 1 whenever 2% < n < 2%+!
for some natural number j and z(n) := 0 otherwise, show that the sequence
x is not asymptotically equidistributed with respect to any measure. Thus
we see that asymptotic equidistribution requires all scales to behave “the
same” in the limit.

Exercise 1.1.1. If z: N — X is a sequence into a compact metric space
X, and p is a probability measure on X, show that x is asymptotically
equidistributed with respect to p if and only if one has

. 1
Jim {1 <n< N :a(n) € UY| = u(U)

for all open sets U in X whose boundary U has measure zero. (Hint: For
the “only if” part, use Urysohn’s lemma. For the “if” part, reduce (1.1) to
functions f taking values between 0 and 1, and observe that almost all of
the level sets {y € X : f(y) < t} have a boundary of measure zero.) What
happens if the requirement that U have measure zero is omitted?

Exercise 1.1.2. Let z be a sequence in a compact metric space X which is
equidistributed relative to some probability measure pu. Show that for any
open set U in X with u(U) > 0, the set {n € N : z(n) € U} is infinite, and
furthermore has positive lower density in the sense that

1
1 1 - <n< : ;
thlgf)oNl{l_n_N z(n) e U} >0

In particular, if the support of u is equal to X, show that the set {z(n) :
n € N} is dense in X.

2This omits x(0) entirely, but it is easy to see that any individual element of the sequence
has no impact on the asymptotic equidistribution.
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Exercise 1.1.3. Let z: N — X be a sequence into a compact metric space
X which is equidistributed relative to some probability measure p. Let
p: R — R be a compactly supported, piecewise continuous function with
only finitely many pieces. Show that for any f € C(X) one has

llm—Zgon/N (z(n)) (/deu>(/0mgo(t)dt>

and for any open U whose boundary has measure zero, one has

Jm s Y em) =) ([Tewar).

neN:zx(n)eU

In this section, X will be a torus (i.e., a compact connected abelian Lie
group), which from the theory of Lie groups is isomorphic to the standard
torus T¢, where d is the dimension of the torus. This torus is then equipped
with Haar measure, which is the unique Borel probability measure on the
torus which is translation-invariant. One can identify the standard torus T
with the standard fundamental domain [0, 1)4, in which case the Haar mea-
sure is equated with the usual Lebesgue measure. We shall call a sequence
T1,To,... in T (asymptotically) equidistributed if it is (asymptotically)
equidistributed with respect to Haar measure.

We have a simple criterion for when a sequence is asymptotically equidis-
tributed, that reduces the problem to that of estimating exponential sums:

Proposition 1.1.2 (Weyl equidistribution criterion). Let z: N — T¢9,
Then x is asymptotically equidistributed if and only if

(1.2) lim Ene[N]e(k' -z(n)) =0
N—o0o

for all k € Z\{0}, where e(y) := e*™¥. Here we use the dot product
(kl,. p ,kd) s (zl,...,xd) =kixy + -+ kgry
which maps Z¢ x T% to T.

Proof. The “only if” part is immediate from (1.1). For the “if” part, we
see from (1.2) that (1.1) holds whenever f is a plane wave f(y) :=e(k-y)
for some k € Z? (checking the k = 0 case separately), and thus by linearity
whenever f is a trigonometric polynomial. But by Fourier analysis (or from
the Stone-Weierstrass theorem), the trigonometric polynomials are dense
in C(T9) in the uniform topology. The claim now follows from a standard
limiting argument. O

As one consequence of this proposition, one can reduce multidimensional
equidistribution to single-dimensional equidistribution:
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Corollary 1.1.3. Let z: N — T%, Then x is asymptotically equidistributed
in T¢ if and only if, for each k € ZN{0}, the sequence n v~ k - z(n) is
asymptotically equidistributed in T .

Exercise 1.1.4. Show that a sequence z : N — T is totally asymptotically
equidistributed if and only if one has

(1.3) ]\}1_131 E,cvie(k - z(n))e(an) = 0

for all k € Z%\{0} and all rational a.

This quickly gives a test for equidistribution for linear sequences, some-
times known as the equidistribution theorem:

Exercise 1.1.5. Let o, 3 € T?. By using the geometric series formula, show
that the following are equivalent:

(i) The sequence n — na + [ is asymptotically equidistributed on N.

(ii) The sequence n — na+ 3 is totally asymptotically equidistributed
on N.

(iii) The sequence n — na+ f3 is totally asymptotically equidistributed
on Z.

(iv) a is irrational, in the sense that k - o # 0 for any non-zero k € Z¢.

Remark 1.1.4. One can view Exercise 1.1.5 as an assertion that a linear
sequence z,, will equidistribute itself unless there is an “obvious” algebraic
obstruction to it doing so, such as k - z,, being constant for some non-zero
k. This theme of algebraic obstructions being the “only” obstructions to
uniform distribution will be present throughout the text.

Exercise 1.1.5 shows that linear sequences with irrational shift o are
equidistributed. At the other extreme, if « is rational in the sense that
ma = 0 for some positive integer m, then the sequence n + na + [ is
clearly periodic of period m, and definitely not equidistributed.

In the one-dimensional case d = 1, these are the only two possibili-
ties. But in higher dimensions, one can have a mixture of the two ex-
tremes, that exhibits irrational behaviour in some directions and periodic
behaviour in others. Consider for instance the two-dimensional sequence
n — (V2n, -%n) mod Z?. The first coordinate is totally asymptotically
equidistributed in T, while the second coordinate is periodic; the shift
(V2, %) is neither irrational nor rational, but is a mixture of both. As such,
we see that the two-dimensional sequence is equidistributed with respect to
Haar measure on the group T x (3Z/Z).

This phenomenon generalises:
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Proposition 1.1.5 (Equidistribution for abelian linear sequences). Let T
be a torus, and let x(n) := na + B for some o, € T. Then there exists
a decomposition x = z' + 2", where 2'(n) := na’ is totally asymptotically
equidistributed on Z in a subtorus T' of T (with o/ € T', of course), and
z"(n) = na” + B is periodic (or equivalently, that o € T is rational).

Proof. We induct on the dimension d of the torus 7. The claim is vacuous
for d = 0, so suppose that d > 1 and that the claim has already been proven
for tori of smaller dimension. Without loss of generality we may identify 7'
with T¢.

If « is irrational, then we are done by Exercise 1.1.5, so we may assume
that « is not irrational; thus k - & = 0 for some non-zero k € Z%. We then
write k = mk’, where m is a positive integer and k' € Z% is irreducible (i.e.,
k' is not a proper multiple of any other element of Z%); thus k’-« is rational.
We may thus write a = a; + a9, where as is rational, and k- a; = 0. Thus,
we can split * = x1 + x9, where x1(n) := na; and z2(n) := nas + 3. Clearly
x9 is periodic, while z; takes values in the subtorus Ty := {y € T: k¥'-y = 0}
of T. The claim now follows by applying the induction hypothesis to T}
(and noting that the sum of two periodic sequences is again periodic). [

As a corollary of the above proposition, we see that any linear sequence
n +— na + B in a torus T is equidistributed in some union of finite cosets
of a subtorus T". It is easy to see that this torus T is uniquely determined
by a, although there is a slight ambiguity in the decomposition z = z' + z”
because one can add or subtract a periodic linear sequence taking values in
T from z' and add it to z” (or vice versa).

Having discussed the linear case, we now consider the more general sit-
uation of polynomial sequences in tori. To get from the linear case to the
polynomial case, the fundamental tool is

Lemma 1.1.6 (van der Corput inequality). Let aj,as,... be a sequence of
complex numbers of magnitude at most 1. Then for every 1 < H < N, we
have

172 1 H1/?
Eneinan] < (Bnepa | Bnepyjanindnl)/ + 7z T N
Proof. For each h € [H], we have
H
EnE[N]an — Ene[N]a'n—f-h +0 ]—V:

and hence, on averaging,

H
EnE[N]an = E7l€[N]EhE[H]an+h +0 (ﬁ) )
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Applying Cauchy-Schwarz, we conclude

H
EnE[N]an < (EﬂG[N]IEhG[H]a71+h|2)l/2 o N-
We expand out the left-hand side as

H

Enein)tn < (Bp el Bneiyannmiw) ' + 4.

The diagonal contribution h = h" is O(1/H). By symmetry, the off-diagonal
contribution can be dominated by the contribution when h > h’. Making
the change of variables n+— n —h’, h +— h+ h' (accepting a further error of

O(H'/2/N1/2)), we obtain the claim. O

Corollary 1.1.7 (van der Corput lemma). Let z: N — T? be such that the
derwative sequence Opx: n — z(n+h)—z(n) is asymptotically equidistributed
on N for all positive integers h. Then x, is asymptotically equidistributed
on N. Similarly with N replaced by Z.

Proof. We just prove the claim for N, as the claim for Z is analogous (and
can in any case be deduced from the N case).

By Proposition 1.1.2, we need to show that for each non-zero k € Z¢,
the exponential sum

[Eneinie(k - 2(n))]
goes to zero as N — oo. Fix an H > 0. By Lemma 1.1.6, this expression is
bounded by

1 HL /2
H1/2 + N1/2°
On the other hand, for each fixed positive integer h, we have from hypothesis
and Proposition 1.1.2 that |E,cyje(k - (z(n + h) — z(n)))| goes to zero as
N — oo. Taking limit superior as N — oo, we conclude that

< (Bnepm [ Enevie(k - (z(n+ h) — z(n)))) /% +

. 1
llﬁl_fimEne[N]e(k cz(n))| < ek
Since H is arbitrary, the claim follows. O

Remark 1.1.8. There is another famous lemma by van der Corput con-
cerning oscillatory integrals, but it is not directly related to the material
discussed here.

Corollary 1.1.7 has the following immediate corollary:

Corollary 1.1.9 (Weyl equidistribution theorem for polynomials). Let s >
1 be an integer, and let P(n) = asn®+ --- + ag be a polynomial of degree s
with ao, ...,as € T If ay is irrational, then n — P(n) is asymptotically
equidistributed on Z.



