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To my family



Preface

This book deals with systems of infinitely many random variables attached
to the vertices of a multi-dimensional lattice and depending on each other
according to their positions. The theory of such “spatial random systems with
interaction” is a rapidly growing branch of probability theory developed with
the goal of understanding the cooperative effects in large random systems.
The primary impetus comes from statistical physics. The range of applications
also includes various other fields such as biology, medicine, chemistry, and
economics, but this volume is only devoted to those concepts and results
which are significant for physics. In the physicist’s terminology, this subject
is referred to as classical (i.e. non-quantum) equilibrium statistical mechanics
of infinite lattice systems.

As is well-known, statistical physics attempts to explain the macroscopic
behaviour of matter on the basis of its microscopic structure. This effort also
includes the analysis of simplified mathematical models. Consider, for ex-
ample, the phenomenon of ferromagnetism. In a first approximation, a ferro-
magnetic metal (like iron) can be regarded as being composed of elementary
magnetic moments, called spins, which are arranged on the vertices of a crystal
lattice. The orientations of the spins are random but certainly not independent
— they are subject to a spin-spin interaction which favours their alignment. It
is plausible that this microscopic interaction is responsible for the macro-
scopic effect of spontaneous magnetization. What, though, are the essential
features of the interaction giving rise to this phase transition? This sort of
question is one of the motivations for the development and analysis of the
stochastic models considered herein.

Although the foundations of statistical mechanics were already laid in the
nineteenth century, the study of infinite systems only began in the late 1960s
with the work of R.L. Dobrushin, O.E. Lanford, and D. Ruelle who intro-
duced the basic concept of a Gibbs measure. This concept combines two
elements, namely (i) the well-known Maxwell-Boltzmann-Gibbs formula for
the equilibrium distribution of a physical system with a given energy function,
and (ii) the familiar probabilistic idea of specifying the interdependence struc-
ture of a family of random variables by means of a suitable class of conditional
probabilities. One of the interesting features of this concept is the fact that (as
a consequence of the implicit nature of the interdependence structure) a Gibbs
measure for a given type of interaction may fail to be unique. In physical
terms, this means that a physical system with this interaction can take several
distinct equilibria. The phenomenon of non-uniqueness of a Gibbs measure
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can thus be interpreted as a phase transition and is, as such, of particular
physical significance. The main topics of this book are, therefore, the problem
of non-uniqueness of Gibbs measures, the converse problem of uniqueness,
and the question as to the structure of the set of all Gibbs measures.

Due to its interdisciplinary nature, the theory of Gibbs measures can be
viewed from different perspectives. The treatment here follows a probabilitistic,
rather than a physical, approach. A prior knowledge of statistical mechanics
is not required. The prerequisites for reading this book are a basic knowledge
of measure theory at the level of a one-semester graduate course and, in
particular, some familiarity with conditional expectations and probability
kernels. The books by Bauer (1981) and Cohn (1980) contain much more than
is needed. Some other tools which are used on occasion are a few standard
results from probability theory and functional analysis such as the backward
martingale convergence theorem and the separating hyperplane theorem. In
all such cases a reference is given to help the uninitiated reader. My intention
is that this monograph serve as an introductory text for a general mathe-
matical audience including advanced graduate students, as a source of rigor-
ous results for physicists, and as a reference work for the experts. It is my
particular hope that this book might help to popularize its subject among
probabilists, and thereby stimulate future research.

There are four parts to the book. Part I (the largest part) contains the
elements of the theory: basic concepts, conditions for the existence of Gibbs
measures, the decomposition into extreme Gibbs measures, general unique-
ness results, a few typical examples of phase transition, and a general discus-
sion of symmetries. The other parts are largely independent of one another.
Part II contains a collection of results closely related to some classical
chapters of probability theory. The central objects of study are Markov fields
and Markov chains on the integers and on trees, as well as Gaussian fields
on Z‘ and other lattices. Part III is devoted to spatially homogeneous Gibbs
measures on Z¢. The topics include the ergodic decomposition, a variational
characterization of shift-invariant Gibbs measures, the existence of phase
transitions of prescribed types and a density theorem for ergodic Gibbs
measures. Part IV deals with the existence of phase transitions in shift-
invariant models on Z¢ which satisfy a definiteness condition called reflection
positivity. The non-uniqueness theorems provided here can be applied to
various kinds of specific models having one of the following characteristic
features: a stable degeneracy of ground states, a competition of several poten-
tial wells of different depths, or the existence of an SO(N)-symmetry.

Each part and each chapter begins with an introductory paragraph which
may be consulted for further information on the contents and the inter-
dependence of chapters. The Introduction is primarily addressed to readers
who are not familiar with statistical physics. It provides some motivation for
the definition of a Gibbs measure and indicates why the phenomenon of
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non-uniqueness can be interpreted as a phase transition. Many of the general
notations of this book are already introduced in Section 1.1, but some stan-
dard mathematical notations are only explained in the List of Symbols at the
end. With only a few exceptions, all historical and bibliographical comments
are collected in a separate section, the “Bibliographical Notes”. This section
also includes a brief outline of numerous results which are not treated in the
text, but this is by no means a full account of the vast literature. The biblio-
graphy contains only those papers which are referred to in the Bibliographical
Notes or somewhere else in the book.

A few words about the limitations of scope are appropriate. As stated
above, this book is devoted to lattice models of classical statistical physics. It
therefore neither contains a treatment of quantum-machanical models nor an
analysis of interacting point particles in Euclidean space. Moreover, this book
does not include a discussion of lattice systems with random interaction such
as diluted ferromagnets and spin glass models, although this is a field of
particular current interest. Even with these restrictions, the subject matter
exceeds by far that which can be presented in detail in a single volume. There
are two major omissions in this book: the Pirogov-Sinai theory of low-
temperature phase diagrams, and the immense field of ferromagnetic correla-
tion inequalities and their applications. A sketch of these subjects can be found
in the Bibliographical Notes (especially those on Chapters 2 and 19), and I
urge the reader to investigate the literature given there. Also, since readability
rather than generality has been my goal, systems of genuinely unbounded
spins are treated here only sporadically rather than systematically, although
references are given in the Bibliographical Notes. Some further topics which
are not even touched upon are the field of “exactly solved™ lattice models such
as the eight- and six-vertex models (cf. Baxter (1982a)), the significance of
unbounded spin systems for constructive quantum field theory (cf. Simon
(1974), Guerra et al. (1975), and Glimm and Jaffe (1981)), lattice gauge theories
(cf. Seiler (1982)), and stochastic time evolutions having Gibbs measures for
their stationary measures (cf. Durrett (1981) and Liggett (1985) as well as Doss
and Royer (1978) and Holley and Stroock (1981), e.g.).

Finally, I take this opportunity to thank my academic teacher Konrad
Jacobs for advice and encouragement during my first years as a probabilist,
and in particular for guiding my interest towards the probabilistic problems
of statistical mechanics. For many years, I had the good fortune of working
in the groups of Hermann Rost in Heidelberg and Chris Preston in Bielefeld,
and I gratefully acknowledge their influence on my work. I am particularly
indebted to Paul Deuring, Aernout van Enter, Jozsef Fritz, Andreas Greven,
Harry Kesten, Hans-Rudolf Kiinsch, Reinhard Lang, Fredos Papangelou,
Michael Réckner, and Herbert Spohn for reading various portions of the
manuscript and making numerous valuable comments. P61 Mac Aonghusa
looked over the English, and Mrs. Christine Hele typed the manuscript with



X Preface

care and patience. Last but not least, I would like to express my gratitude to
the editors of this series, in particular Heinz Bauer, for their stimulating
interest in this project.

Munich, May 1988 : Hans-Otto Georgii

Preface to the Second Edition

A second edition after 23 years of rapid development of the field? One may
well say that this should give reason for a complete rewriting of the book. But,
on the other hand, a selection of topics had to be made already in the first
edition, and this particular selection has found its firm place in the literature. In
view of this and some technical restrictions, the publisher and I decided to keep
the book more or less in its previous state and to make only modest changes.
Apart from the correction of a few minor errors which were already fixed in
the Russian edition (Moscow: Mir 1992) and some small adjustments, these
changes are
— anew section, 15.5, on large deviations for Gibbs measures and the mini-
mum free energy principle, and
— a brief overview of the main progress since 1988, which is added to the
Bibliographical Notes.
In particular, the latter will show that many of the omissions here are filled
by other texts. My thanks go to Anton Bovier, Franz Merkl, Herbert Spohn
and especially Aernout van Enter for valuable comments on a first draft of the
second addendum. I am also grateful to the publisher and the series editors for
their constant interest in this work.

Munich, January 2011 Hans-Otto Georgii
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Introduction

The theory of Gibbs measures is a branch of Classical Statistical Physics but
can also be viewed as a part of Probability Theory. The notion of a Gibbs
measure dates back to R.L. Dobrushin (1968-1970) and O.E. Lanford and
D. Ruelle (1969) who proposed it as a natural mathematical description of an
equilibrium state of a physical system which consists of a very large number
of interacting components. In probabilistic terms, a Gibbs measure is nothing
other than the distribution of a countably infinite family of random variables
which admit some prescribed conditional probabilities. During the two de-
cades since 1968, this notion has received considerable interest from both
mathematical physicists and probabilists. The physical significance of Gibbs
measures is now generally accepted, and it became evident that the physical
questions involved give rise to a variety of fascinating probabilistic problems.
In this introduction we shall give an outline of some physical grounds which
motivate the definition of, and justify the interest in, Gibbs measures.

The physical background. Consider, for example, a piece of a ferromagnetic
metal (like iron, cobalt, or nickel) in thermal equilibrium. The piece consists
of a very large number of atoms which are located at the sites of a crystal
lattice. Each atom shows a magnetic moment which can be visualized as a
vector in R?. Since this magnetic moment results from the angular moments,
the so-called spins, of the electrons, it is also called, for short, the spin of the
atom. The interaction properties of the electrons in the crystal imply that any
two adjacent atoms have a tendency to align their spins in parallel. At high
temperatures, this tendency is compensated by the thermal motion. If, how-
ever, the temperature is below a certain threshold value which is called the
Curie temperature, the coupling of moments dominates and gives rise to the
phenomenon of spontaneous magnetization: Even in the absence of any
external field, the atomic spins align and thus induce a macroscopic magnetic
field. In a variable external field h, the magnetization of the ferromagnet thus
exhibits a jump discontinuity at h = 0. (As a matter of fact, a real ferromagnet
falls into several so-called Weiss domains with different directions of magneti-
zation. We ignore this effect which is superimposed on the above behaviour.
In other words, we are only interested in the intrinsic properties of a single
Weiss domain.)

As a second example from Statistical Physics we consider the liquid-vapour
phase transition of a real gas. On the macroscopic level, this phase transition
is again characterized by a jump discontinuity, namely a jump of the density
of the gas as a function of the pressure (at a fixed value of temperature). This
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analogy between real gases and ferromagnets also extends to the microscopic
level, at least if we adopt the following simplified picture of a gas. The gas
consists of a huge number of particles which interact via van der Waals forces.
To describe the spatial distribution of the particles we may imagine that the
container of the gas is divided into a large number of cells which are of the
same order of magnitude as the particles. To each cell we assign its occupation
number, i.e. the number of particles in the cell. (More generally, we could also
distinguish between particles of different types and/or orientations.) We also
replace the van der Waals attraction between the particles by an effective
interaction between the occupation numbers. The resulting caricature of
a gas is called a lattice gas. In spite of all defects of this reduced picture,
one might expect that a lattice gas still exhibits a liquid-vapour phase transi-
tion. From a formal point of view, this transition is similar to the spontaneous
magnetization of a ferromagnet: The cells in the container correspond to
the ferromagnetic atoms, and the occupation numbers correspond to the
magnetic moments.

The mathematical model. How can a ferromagnet or a lattice gas in thermal
equilibrium be described in mathematical terms? As we will show now, this
question leads to the concept of a Gibbs measure. We shall proceed in four
steps.

Step 1: The configuration space. What are the common features of a ferro-
magnet and a lattice gas? First, there is a large (but finite) set S which labels
the components of the system. In the case of a ferromagnet, S consists of the
sites of the crystal lattice which is formed by the positions of the atoms. In a
lattice gas, S is the set of all cells which subdivide the volume which is filled
with the gas. Secondly, there is a set E which describes the possible states of
each component. For a ferromagnet, E is the set of all possible orientations
of the magnetic moments. For example, to design a simple model we might
assume that each moment is only capable of two orientations. Then E =
{—1,1}, where 1 stands for “spin up” and — 1 for “spin down”. In the case of
a lattice gas, we can take E = {0,1,..., N}, where N is the maximal number
of particles in a cell. In the simplest case we have E = {0, 1}, where 1 stands
for “cell is occupied” and O for “cell is empty”. Having specified the sets S and
E, we can describe a particular state of the total system by a suitable element
@ = (w;);5 of the product space Q = E5. Q is called the configuration space.

Step 2: The probabilistic point of view. The physical systems considered
above are characterized by a sharp contrast: The microscopic structure is
enormously complex, and any measurement of microscopic quantities is
subject to statistical fluctuations. The macroscopic behaviour, however, can
be described by means of a few parameters such as temperature and pressure
resp. magnetization, and macroscopic measurements lead to apparently de-
terministic results. This contrast between the microscopic and the macro-
scopic level is the starting point of Classical Statistical Mechanics as developed
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by Maxwell, Boltzmann, and Gibbs. Their basic idea may be summarized as
follows: The microscopic complexity can be overcome by a statistical ap-
proach; the macroscopic determinism then may be regarded as a consequence
of a suitable law of large numbers. According to this philosophy, it is not
adequate to describe the state of the system by a particular element w of the
configuration space Q. The system’s state should rather be described by a
family (o;); . s of E-valued random variables, or (if we pass to the joint distribu-
tion of these random variables) by a probability measure x on Q. Of course,
the probability measure u should be consistent with the available partial
knowledge of the system. In particular, u should take account of the a priori
assumption that the system is in thermal equilibrium.

Step 3: The Gibbs distribution. Which kind of probability measure on Q is
suitable to describe a physical system in equilibrium? The term “equilibrium”
clearly refers to the forces that act on the system. Thus, before specifying a
probabilistic model of an equilibrium state we need to specify a Hamiltonian
H which assigns to each configuration @ a potential energy H(w). In the
physical systems above, the essential contribution to the potential energy
comes from the interaction of the microscopic components of the system. In
addition, there may be an external force.

For example, in the case of a ferromagnet with state space E = {—1,1} it
is reasonable to consider a Hamiltonian of the form

0.1) Hw)=— Y JGj)ow,—h ) o,

{i.j}=s el

Here J(i,j) = J(j,i) > 0, and h is real number. The term —J(i,j)w,w; repre-
sents the interaction energy of the spins w; and w;. This energy is minimal if
w; = w;, ie. if w; and o, are aligned, the interaction is thus ferromagnetic. The
number h represents the action of an external magnetic field. (If 4 > 0, this
field is oriented in the positive direction of the spins.) A Hamiltonian of the
form (0.1) can also be used in the case of a lattice gas with state space
E = {0,1}. In this case, the term —J(i,j)w;w; is only non-zero when the cells
i and j are occupied; hence —J(i,j) is the interaction energy of the two
particles in these cells, and the condition J(i,j) > 0 means that the particles
attract each other. In the lattice gas context, his to be interpreted as a chemical
potential, i.e., h represents the work which is necessary in order to place a
particle in the system.

As soon as we have specified a Hamiltonian H, the answer to the question
which was posed at the beginning of this step is provided by Statistical
Mechanics: The equilibrium state of a physical system with Hamiltonian H
is described by the probability measure

(0.2) u(dw) = Z texp[—pH(w)]dw



4 Introduction

on L. In this expression, the notation dw refers to a suitable a priori measure
on Q (for example, the counting measure if Q is finite), f is a positive number
which is proportional to the inverse of the absolute temperature, and Z > 0
is a normalizing constant. The above u is called the Gibbs distribution (or,
somewhat old-fashioned, the Gibbs ensemble) relative to H. (In the ferromag-
netic context, u is the so-called canonical Gibbs distribution. In the lattice
gas case, u is the grand canonical distribution). The rigorous justification of
the ansatz (0.2) is a long story which is still far from being finished. We just
mention the key words “ergodic hypothesis”, “equivalence of ensembles”,
and “second law of thermodynamics”. In the meantime, the prescription (0.2)
may be regarded as a postulate which is justified by its stupendous success.

Step 4: The infinite volume limit. As we have emphasized above, the number
of atoms in a ferromagnet and the number of microscopic cells in a lattice gas
are extremely large. Consequently, the set S in our mathematical model
should be very large. According to a standard rule of mathematical thinking,
the intrinsic properties of large objects can be made manifest by performing
suitable limiting procedures. It is therefore a common practice in Statistical
Physics to pass to the infinite volume limit |S| — oo. (This limit is also referred
to as the thermodynamic limit.) However, instead of performing the same kind
of limit over and over it is often preferable to study directly the class of all
possible limiting objects. In our context, this means that the finite lattice S
should be replaced by a countably infinite lattice such as, for example, the
d-dimensional integer lattice Z¢. We are thus led to a study of systems with
infinitely many interacting components, and we are faced with the problem
of describing an equilibrium state of such a system by a suitable probability
measure on an infinite product space like Q = EZ. However, if § is an infinite
lattice and the interaction is spatially homogeneous then a Hamiltonian like
(0.1) is no longer well-defined, and formula (0.2) thus makes no sense. To
overcome this obstacle we either might consider limits of suitable Gibbs
distributions as S increases to an infinite lattice; this, however, turns out to
be rather difficult in general. Alternatively, we might try to characterize the
Gibbs distribution (0.2) by a property which admits a direct extension to the
case of an infinite lattice. Such a characterization can indeed be obtained fairly
easily, as we will now show. (In fact, this characterization will lead us to a
result which is intimately connected with what can be obtained by suitable
limits; cf. (4.17) and (7.30) in the text).

To be specific we let E = {—1,1} or {0,1}, S be finite, and H be given by
(0.1). We also let A be any non-empty subset of S and { € E» and n e E>\*
any two configurations on A resp. the complement S\A; the combined con-
figuration on S will be denoted (n. We consider the probability of the event
“C occurs in A” under the hypothesis “n occurs in S\A” relative to the prob-
ability measure u in (0.2). (dw is counting measure.) Cancelling all terms which
only depend on 7, we find that
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03)  p(inAlninS\A) = p(lnin S)/u(nin S\A)
= exp [—ﬁH(Cﬂ)]/EZ exp [—pH({n)]

eEA

= Za(n) "' exp [— BHA((n)]-
Here

H,((n) = — Z J(,j)GEG — Z Ci|:h A4 z J(i,f)"lj:l,
{i,ile=A ieA jeS\A
considered as a function of {, is the Hamiltonian of the subsystem in A with
“boundary condition” #, and

Zp(n) = Z CXP[_ﬂHA(Eﬂ)]
TeEr

is a normalizing constant. Conversely, there is only one u which satisfies (0.3)
for all {, n,and A, namely the Gibbs distribution (0.2). (To see this it is sufficient
to put A = §.) Since each A — S is automatically finite, we can conclude that
the probability measure p in (0.2) is uniquely determined by the property that
each finite subsystem, conditioned on its surroundings, has a Gibbsian distri-
bution relative to the Hamiltonian that belongs to this subsystem. Now the
point is that the last property still makes sense when the lattice S is infinite.
We are thus led to the following definition of an infinite-lattice counterpart
of a Gibbs distribution:

Consider a probability measure u on a product space Q = ES, where S is
countably infinite and E is any measurable space. u is called a Gibbs measure
if, for each finite subset A of S and u-almost every configuration n outside A,
the conditional distribution of the configuration in A given 5 is Gibbsian
relative to the Hamiltonian in A with boundary condition #. The family
7 = (ya(.1m),.o of all these Gibbsian conditional distributions is called the
specification of p. y describes the interdependencies between the configura-
tions on different parts of S; these interdependencies are dictated by the
interaction between the components of the system.

Let us summarize the above paragraphs as follows: 4 Gibbs measure is a
mathematical idealization of an equilibrium state of a physical system which
consists of a very large number of interacting components. In the language of
Probability Theory, a Gibbs measure is simply the distribution of a stochastic
process which, instead of being indexed by the time, is parametrized by the sites
of a spatial lattice, and has the special feature of admitting prescribed versions
of the conditional distributions with respect to the configurations outside finite
regions.

Asis evident from the last sentence, there is a formal analogy between Gibbs
measures and Markov processes. This analogy contributes to the purely
probabilistic interest in Gibbs measures. (As a matter of fact, there are some



