Mihalis Tsoukalos =

HiBGoIES
=/ hR)

Mastering Go

Lo g fa % 1l B3
Ziz it L1 e %
@‘J\'U o ‘!]‘\“‘
SOUTHEAST UNIVERSITY PRESS

Packt>

¥518 Go iEE S (RER)
Mastering Go

Mihalis Tsoukalos &

R FREKFHM

BB 4 B (CIP) #17

Kl Go BT 3/ (F) K BT - B R IE 5
(Mihalis Tsoukalos) . —S2EIA. —Fg 57 g K=
fitt,2019.5

F544 JF3C : Mastering Go

ISBN 978 -7-5641-8322-6

I.O¥- 0.0X- [I.OBFES-FBFE
=% N. OT1P312

[hi A B 348 CIP 3048 4% 7 (2019) 45 046189 =
E:10- 2018 - 497 =

© 2018 by PACKT Publishing Ltd.

Reprint of the English Edition, jointly published by PACKT Publishing Ltd and Southeast University Press, 2019.
Authorized reprint of the original English edition, 2018 PACKT Publishing Ltd, the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 LR #& @) PACKT Publishing Ltd i #& 2018,

RSB R G R K R AR IR 2019, b PP AR 64 R R e 4E 2 1T) AR AR AR 4K B R8GOl
—— PACKT Publishing Ltd & T,

AT RAF B BV 7T, K 49 EAT 305 Ao 38 RAF BT H X E 4,

¥l Go 1B GEEID

AR RAT . ZR B K2

#o dib. BRI 25 RS 210096
R A

P dik: http://www.seupress.com

B, FHIR 4 : press@seupress.com

Rl s MRS = ENRIA PR A R
A 787 ZK X 980 2K 16 74
5. 37.75

. 739 FF

W: 20194 5 A% 1R

W: 2019 4E 5 A% 1 IRENR

5. ISBN 978 - 7- 5641 - 8322 -6
#r: 118.00 7T

MMy TFTNDHD

At B A B R R S B S B AR . IR (B ED . 025 - 83791830

A Viapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

* Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www . PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Mihalis Tsoukalos is a technical author, a Unix administrator, a developer, and a
mathematician, who enjoys learning new things. He has written more than 250 technical
articles for many publications, including Sys Admin, MacTech, Linux User and Developer,
Usenix ;login:, Linux Format, and Linux Journal.

Mihalis is also the author of Go Systems Programming, by Packt Publishing, 2017 and the
technical editor for MongoDB in Action, Second Edition, by Manning. Mihalis' research
interests include databases, operating systems, and statistics. You can reach him at http://
www.mtsoukalos.eu/ and @mactsouk. He is also a photographer (http://www.highiso.
net/).

I would like to thank the people at Packt Publishing for helping me write this book,
including Frank Pohlmann and Gary Schwartz, my technical reviewer, Mat Ryer, Radhika
Atitkar, for her encouragement and trust, and Kishor Rit, for answering all my questions
and encouraging me during the whole process.

For all people everywhere: You will never change your life until you change something you
do daily!

About the reviewer

Mat Ryer has been programming computers since he was 6 years old. He would build
games and programs, first in BASIC on a ZX Spectrum and then in AmigaBASIC and
AMOS on Commodore Amiga with his father. Many hours were spent on manually
copying the code from the Amiga Format magazine and tweaking variables or moving
GOTO statements around to see what might happen. The same spirit of exploration and
obsession with programming led Mat to starting work with a local agency in Mansfield,
England, when he was 18, where he started to build websites and other online services.

After several years of working with various technologies and industries in London and
around the world, Mat noticed a new systems language called Go that Google was
pioneering. Since it addressed very pertinent and relevant modern technical challenges, Mat
started using it to solve problems while the language was still in the beta stage. He has used
it ever since. Mat contributes to open-source projects and founded Go packages, including
Testify, Mog, Silk, and Is, as well as a macOS developer tool called BitBar.

In 2018, Mat co-founded Machine Box and still spends a lot of time speaking at conferences,
writing about Go on his blog, and is an active member of the Go community.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents

Preface 1
Chapter 1: Go and the Operating System 7
The structure of the book 8
The history of Go 8
Why learn Go? 9
Go advantages 9
Is Go perfect? 11
What is a preprocessor? i

The godoc utility 12
Compiling Go code 13
Executing Go code 14
Two Go rules 14
You either use a Go package or do not include it 15
There is only one way to format curly braces 16
Downloading Go packages 17
Unix stdin, stdout, and stderr 19
About printing output 19
Using standard output 21
Getting user input 23
About := and = 23
Reading from standard input 24
Working with command-line arguments 26
About error output 28
Writing to log files 30
Logging levels 31
Logging facilities 31
Log servers 31

A Go program that sends information to log files 32
About log.Fatal() 35
About log.Panic() 36
Error handling in Go 38
The error data type 38
Error handling 40
Additional resources 43
Exercises 44
Summary 44

Chapter 2: Understanding Go Internals 45

Table of Contents

The Go compiler 46
Garbage Collection 47
The Tricolor algorithm 50
More about the operation of the Go Garbage Collector 53
Unsafe code 55
About the unsafe package 57
Another example of the unsafe package 57
Calling C code from Go 59
Calling C code from Go using the same file 59
Calling C code from Go using separate files 60
The C code 61
The Go code 62
Mixing Go and C code 63
Calling Go functions from C code 64
The Go package 64
The C code 66
The defer keyword 67
Panic and Recover 69
Using the panic function on its own 71
Two handy Unix utilities 72
The strace tool 73
The dtrace tool 74
Your Go environment 76
The Go Assembler 78
Node Trees 79
Learning more about go build 85
General Go coding advices 86
Additional Resources 86
Exercises 87
Summary 87
Chapter 3: Working with Basic Go Data Types 89
Go loops 90
The for loop 90
The while loop 91
The range keyword 91
Examples of Go for loops 91
Go arrays 93
Multi-dimensional arrays 94
The shortcomings of Go arrays 97
Go slices 97
Performing basic operations on slices 98
Slices are being expanded automatically 100
Byte slices 102

[ii]

Table of Contents

The copy() function 102
Multidimensional slices 105
Another example of slices 105
Sorting slices using sort.slice() 108
Go maps 110
Storing to a nil map 112
When you should use a map? 113
Go constants 113
The constant generator iota 115
Go pointers 118
Dealing with times and dates 121
Working with times 123
Parsing times 123
Working with dates 125
Parsing dates 125
Changing date and time formats 127
Additional resources 129
Exercises 129
Summary 129
Chapter 4: The Uses of Composite Types 131
About composite types 132
Structures 132
Pointers to structures 135
Using the new keyword 137
Tuples 137
Regular expressions and pattern matching 139
Now for some theory 140

A simple example 140

A more advanced example 143
Matching IPv4 addresses 146
Strings 151
What is a rune? 154
The Unicode package 156
The strings package 157
The switch statement 161
Calculating Pi with great accuracy 165
Developing a key/value store in Go 168
Additional resources 173
Exercises 174
Summary 174
Chapter 5: Enhancing Go Code with Data Structures 175
About graphs and nodes 176

[iii]

Table of Contents

Algorithm complexity 176
Binary trees in Go 177
Implementing a binary tree in Go 178
Advantages of binary trees 180
Hash tables in Go 181
Implementing a hash table in Go 182
Implementing the lookup functionality 185
Advantages of hash tables 186
Linked lists in Go 186
Implementing a linked list in Go 187
Advantages of linked lists 191
Doubly linked lists in Go 191
Implementing a doubly linked list in Go 193
Advantages of doubly linked lists 196
Queues in Go 196
Implementing a queue in Go 197
Stacks in Go 200
Implementing a stack in Go 200
The container package 203
Using container/heap 204
Using container/list 207
Using container/ring 209
Generating random numbers 211
Generating random strings 214
Additional Resources 217
Exercises 217
Summary 218
Chapter 6: What You Might Not Know About Go Packages 219
About Go packages 220
About Go functions 220
Anonymous functions 221
Functions that return multiple values 221
The return values of a function can be named! 223
Functions with pointer parameters 225
Functions that return pointers 226
Functions that return other functions 228
Functions that accept other functions as parameters 229
Developing your own Go packages 231
Compiling a Go package 233
Private variables and functions 233
The init() function 233
Reading the Go code of a standard Go package 236
Exploring the code of the net/url package 236

[iv]

Table of Contents

Looking at the Go code of the log/syslog package 238
Creating good Go packages 239
The syscall package 241

Finding out how fmt.Printin() really works 244
Text and HTML templates 246

Generating text output 247

Constructing HTML output 249

Basic SQLite3 commands 257
Additional resources 257
Exercises 258
Summary 258

Chapter 7: Reflection and Interfaces for All Seasons 259
Type methods 259
Go interfaces 262
About type assertion 263
Developing your own interfaces 265

Using a Go interface 266

Using switch with interface and data types 268
Reflection 270

A simple Reflection example 271

A more advanced reflection example 273

The three disadvantages of reflection 276
Object-oriented programming in Go! 277
Additional resources 281
Exercises 281
Summary 282

Chapter 8: Telling a Unix System What to Do 283
About Unix processes 284
The flag package 284
The io.Reader and io.Writer interfaces 290

Buffered and unbuffered file input and output 290
The bufio package 290
Reading text files 291

Reading a text file line by line 291

Reading a text file word by word 293

Reading a text file character by character 295

Reading from /dev/random 297
Reading the amount of data you want from a file 299
Why are we using binary format? 301
Reading CSV files 302
Writing to a file 305
Loading and saving data on disk 308

[v]

Table of Contents

The strings package revisited 312
About the bytes package 314
File permissions 316
Handling Unix signals 317
Handling two signals 318
Handling all signals 320
Programming Unix pipes in Go 323
Implementing the cat(1) utility in Go 323
Traversing directory trees 325
Using eBPF from Go 328
About syscall.PtraceRegs 329
Tracing system calls 331
User ID and group ID 336
Additional resources 337
Exercises 338
Summary 339
Chapter 9: Go Concurrency — Goroutines, Channels, and Pipelines 341
About processes, threads, and goroutines 342
The Go scheduler 343
Concurrency and parallelism 343
Goroutines 344
Creating a goroutine 344
Creating multiple goroutines 346
Waiting for your goroutines to finish 348
What if the number of Add() and Done() calls do not agree? 350
Channels 352
Writing to a channel 352
Reading from a channel 354
Channels as function parameters 356
Pipelines 357
Additional resources 361
Exercises 361
Summary 362
Chapter 10: Go Concurrency — Advanced Topics 363
The Go scheduler revisited 364
The GOMAXPROCS environment variable 366
The select keyword 367
Timing out a goroutine 370
Timing out a goroutine — take 1 370
Timing out a goroutine — take 2 372
Go channels revisited 375

Signal channels 376

[vi]

Table of Contents

Buffered channels 376

Nil channels 379
Channel of channels 380
Specifying the order of execution for your goroutines 383
Shared memory and shared variables 386
The sync.Mutex type 387
What happens if you forget to unlock a mutex? 389

The sync.RWMutex type 391
Sharing memory using goroutines 395
Catching race conditions 397
The context package 403
An advanced example of the context package 407
Worker pools 412
Additional resources 417
Exercises 418
Summary 419
Chapter 11: Code Testing, Optimization, and Profiling 421
The Go version used in this chapter 422
Comparing Go version 1.10 with Go version 1.9 422
Installing a beta or RC version of Go 423
About optimization 425
Optimizing Go code 425
Profiling Go code 426
The net/http/pprof standard Go package 427

A simple profiling example 427

A convenient external package for profiling 435
The web interface of the Go profiler 437

A profiling example that uses the web interface 437

A quick introduction to Graphviz 440

The go tool trace utility 441
Testing Go code 447
Writing tests for existing Go code 448
Benchmarking Go code 452
A simple benchmarking example 452
A wrong benchmark function 458
Benchmarking buffered writing 459
Finding unreachable Go code 464
Cross-compilation 465
Creating example functions 467
Generating documentation 469
Additional resources 475
Exercises 476
Summary 477

[vii]

Table of Contents

Chapter 12: The Foundations of Network Programming in Go 479
About net/http, net, and http.RoundTripper 480
The http.Response type 480
The http.Request type 481
The http.Transport type 482
About TCP/IP 483
About IPv4 and IPv6 484
The nc(1) command-line utility 484
Reading the configuration of network interfaces 485
Performing DNS lookups 490
Getting the NS records of a domain 492
Getting the MX records of a domain 494
Creating a web server in Go 496
Profiling an HTTP server 499
Creating a website in Go 504
HTTP tracing 514
Testing HTTP handlers 517
Creating a web client in Go 520
Making your Go web client more advanced 522
Timing out HTTP connections 526
More information about SetDeadline 528
Setting the timeout period on the server side 529
Yet another way to time out! 531
Wireshark and tshark tools 533
Additional resources 533
Exercises 534
Summary 535
Chapter 13: Network Programming — Building Servers and Clients 537
The net standard Go package 538
A TCP client 538
A slightly different version of the TCP client 540

A TCP server 542
A slightly different version of the TCP server 544

A UDP client 547
Developing a UDP server 549
A concurrent TCP server 551
A handy concurrent TCP server 556
Remote Procedure Call (RPC) 562
The RPC client 563
The RPC server 564
Doing low-level network programming 566
Grabbing raw ICMP network data 569

[viii]

Table of Contents

Where to go next?
Additional resources
Exercises

Summary

Other Books You May Enjoy

574
574
575
576

577

Index

581

[ix]

Preface

The book you are reading right now is called Mastering Go and is all about helping you
become a better Go developer!

I tried to include the right amount of theory and hands on practice, but only you, the reader,
can tell if I succeeded or not! Additionally, all presented examples are self-contained, which
means that they can be used on their own or as templates for creating more complex
applications.

Please try to do the exercises located at the end of each chapter and do not hesitate to
contact me with ways to make any future editions of this book even better!

Who this book is for

This book is for amateur and intermediate Go programmers who want to take their Go
knowledge to the next level as well as for experienced developers in other programming
languages who want to learn Go without learning again how a for loop works.

Some of the information found in this book can be also found in my other book, Go Systems
Programming by Packt Publishing. The main difference between these two books is that Go
Systems Programming is about developing system tools using the capabilities of Go, whereas
Mastering Go is about explaining the capabilities and the internals of Go in order to become
a better Go developer. Both books can be used as a reference after reading them for the first
or the second time.

What this book covers

Chapter 1, Go and the Operating System, begins by talking about the history of Go and the
advantages of Go before describing the godoc utility and explaining how you can compile
and execute Go programs. After that, it talks about printing the output and getting user
input, working with the command-line arguments of a program, and using log files. The
last topic of the first chapter is error handling, which plays a key role in Go.

Preface

Chapter 2, Understanding Go Internals, discusses the Go garbage collector and the way it
operates. Then it talks about unsafe code and the unsafe package, how to call C code from a
Go program, and how to call Go code from a C program. After that, it showcases the use of
the defer keyword and presents the strace (1) and dtrace (1) utilities. In the remaining
sections of the chapter, you will learn how to find information about your Go environment
and the use of the Go assemb]er.

Chapter 3, Working with Basic Go Data Types, talks about the data types offered by Go,
which includes arrays, slices, and maps as well as Go pointers, constants, loops, and
working with dates and times. You would not want to miss this chapter!

Chapter 4, The Uses of Composite Types, begins by teaching you about Go structures and the
struct keyword before discussing tuples, strings, runes, byte slices, and string literals. The
rest of the chapter talks about regular expressions and pattern matching, the switch
statement, the strings package, the math/big package, and about developing a key-value
store in Go.

Chapter 5, Enhancing Go Code with Data Structures, is about developing your own data
structures when the structures offered by Go do not fit a particular problem. This includes
developing binary trees, linked lists, hash tables, stacks, and queues and learning about
their advantages. This chapter also showcases the use of the structures found in the
container standard Go package. The last topic of this chapter is random number generation.

Chapter 6, What You Might Not Know About Go Packages, is all about packages and
functions, which also includes the use of the init () function, the syscall standard Go
package, and the text/template and html/template packages. This chapter will
definitely make you a better Go developer!

Chapter 7, Reflection and Interfaces for All Seasons, discusses three advanced Go concepts:
reflection, interfaces, and type methods. The last part of the chapter is about object oriented
programming in Go!

Chapter 8, Telling a Unix System What to Do, is about systems programming in Go, which
includes subjects such as the £1ag package for working with command-line arguments,
handling Unix signals, file input and output, the bytes package, and the io.Reader and
io.Writer interfaces. AsI told you before, if you are really into systems programming in
Go, then getting Go Systems Programming after reading Mastering Go is highly
recommended!

[2]

