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Preface

The book you are reading right now is called Mastering Go and is all about helping you
become a better Go developer!

I tried to include the right amount of theory and hands on practice, but only you, the reader,
can tell if I succeeded or not! Additionally, all presented examples are self-contained, which
means that they can be used on their own or as templates for creating more complex
applications.

Please try to do the exercises located at the end of each chapter and do not hesitate to
contact me with ways to make any future editions of this book even better!

Who this book is for

This book is for amateur and intermediate Go programmers who want to take their Go
knowledge to the next level as well as for experienced developers in other programming
languages who want to learn Go without learning again how a for loop works.

Some of the information found in this book can be also found in my other book, Go Systems
Programming by Packt Publishing. The main difference between these two books is that Go
Systems Programming is about developing system tools using the capabilities of Go, whereas
Mastering Go is about explaining the capabilities and the internals of Go in order to become
a better Go developer. Both books can be used as a reference after reading them for the first
or the second time.

What this book covers

Chapter 1, Go and the Operating System, begins by talking about the history of Go and the
advantages of Go before describing the godoc utility and explaining how you can compile
and execute Go programs. After that, it talks about printing the output and getting user
input, working with the command-line arguments of a program, and using log files. The
last topic of the first chapter is error handling, which plays a key role in Go.
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Chapter 2, Understanding Go Internals, discusses the Go garbage collector and the way it
operates. Then it talks about unsafe code and the unsafe package, how to call C code from a
Go program, and how to call Go code from a C program. After that, it showcases the use of
the defer keyword and presents the strace (1) and dtrace (1) utilities. In the remaining
sections of the chapter, you will learn how to find information about your Go environment
and the use of the Go assemb]er.

Chapter 3, Working with Basic Go Data Types, talks about the data types offered by Go,
which includes arrays, slices, and maps as well as Go pointers, constants, loops, and
working with dates and times. You would not want to miss this chapter!

Chapter 4, The Uses of Composite Types, begins by teaching you about Go structures and the
struct keyword before discussing tuples, strings, runes, byte slices, and string literals. The
rest of the chapter talks about regular expressions and pattern matching, the switch
statement, the strings package, the math/big package, and about developing a key-value
store in Go.

Chapter 5, Enhancing Go Code with Data Structures, is about developing your own data
structures when the structures offered by Go do not fit a particular problem. This includes
developing binary trees, linked lists, hash tables, stacks, and queues and learning about
their advantages. This chapter also showcases the use of the structures found in the
container standard Go package. The last topic of this chapter is random number generation.

Chapter 6, What You Might Not Know About Go Packages, is all about packages and
functions, which also includes the use of the init () function, the syscall standard Go
package, and the text/template and html/template packages. This chapter will
definitely make you a better Go developer!

Chapter 7, Reflection and Interfaces for All Seasons, discusses three advanced Go concepts:
reflection, interfaces, and type methods. The last part of the chapter is about object oriented
programming in Go!

Chapter 8, Telling a Unix System What to Do, is about systems programming in Go, which
includes subjects such as the £1ag package for working with command-line arguments,
handling Unix signals, file input and output, the bytes package, and the io.Reader and
io.Writer interfaces. AsI told you before, if you are really into systems programming in
Go, then getting Go Systems Programming after reading Mastering Go is highly
recommended!
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