O'REILLY"

otreaming
oystems

TMIVRLG (ZEER)

Tyler Akidau, Slava Chernyak,
¥ b KT Reuven Lax &

MRS wam)

Streaming Systems

Tyler Akidau, Slava Chernyak,
Reuven Lax &

J ®
Beijing « Boston « Farnham - Sebastopol * Tokyo O REILLY

O'Reilly Media, Inc. #% 4 2R’ K 3 HH R At BR

MR REAFHRGT

BB ERS B (CIP) ¥

W R G P 30/(3E) ZE) - B 5 18 (Tyler Akidau),
G WIRIE « YI/RJE T 5 (Slava Chernyak), (358 3C - $iI
e ii(Reuven Lax)#. — R ENA. —Fg 5l AR R K# Hh R
#£.2019.6

4544 JFL 3L : Streaming Systems

ISBN 978 -7 564183677

L OF: I OF- O Q& . 0%
B RgE -3 V. OTP274

[A [51 CIP B 7 (20195 074538 %
Bl .10 - 2019 - 064 =

© 2018 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2019. Authorized reprint of the original English edition, 2019 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

3 Bl O'Reilly Media, Inc. & 2018,

YIRS A d K h AL B AR 2019, b EP AR 89 B iR e 4h 1T 3] R AR A A W T A
—— O'Reilly Media, Inc.8934 7 .

WA A R AT B @ T, A B TR Ao oS R MEFT T X EH] .

M FR GE GEEIRD

WAREAT : ZRmd Ko Rt

o bk MRUREH 2 5 44 : 210096
R A gt

& ik . http://www.seupress.com

B TR {4 . press@seupress.com

Wil T4 B AT BR 2

A 787 B X980 2K 16 A<
k. 22

. 431 TF

W 20194F 6 A% 1 Il

W 2019 4F 6 H 55 1 IRERRI

2. ISBN 978 — 75641 - 8367~ 7
#r: 128.00 7T

MEIFNHIHI

Akt H A EN R)L R S A AR . iR (fF D 025- 83791830

* Preface Or: What Are You Getting
Yourself Into Here?

Hello adventurous reader, welcome to our book! At this point, I assume that you're
either interested in learning more about the wonders of stream processing or hoping
to spend a few hours reading about the glory of the majestic brown trout. Either way,
I salute you! That said, those of you in the latter bucket who don’t also have an
advanced understanding of computer science should consider how prepared you are
to deal with disappointment before forging ahead; caveat piscator, and all that.

To set the tone for this book from the get go, I wanted to give you a heads up about a
couple of things. First, this book is a little strange in that we have multiple authors,
but we're not pretending that we somehow all speak and write in the same voice like
we're weird identical triplets who happened to be born to different sets of parents.
Because as interesting as that sounds, the end result would actually be less enjoyable
to read. Instead, we've opted to each write in our own voices, and we've granted the
book just enough self-awareness to be able to make reference to each of us where
appropriate, but not so much self-awareness that it resents us for making it only into
a book and not something cooler like a robot dinosaur with a Scottish accent.!

As far as voices go, there are three you'll come across:

Tyler
That would be me. If you haven’t explicitly been told someone else is speaking,
you can assume that it’s me, because we added the other authors somewhat late in
the game, and I was basically like, “hells no” when I thought about going back
and updating everything I'd already written. 'm the technical lead for the Data

1 Which incidentally is what we requested our animal book cover be, but O'Reilly felt it wouldn't translate well
into line art. I respectfully disagree, but a brown trout is a fair compromise.

vii

Processing Languages ands Systems® group at Google, responsible for Google
Cloud Dataflow, Google’s Apache Beam efforts, as well as Google-internal data
processing systems such as Flume, MillWheel, and MapReduce. I'm also a found-
ing Apache Beam PMC member.

Slava OREILLY’

Slava was a long-time member
of the MillWheel team at Goo-
gle, and later an original mem-
ber of the Windmill team that y

built MillWheel’s successor, the Stre amlng
heretofore unnamed system

that powers the Streaming Syste I l S
Engine in Google Cloud Data- G SR A E

flow. Slava is the foremost OF LARGE'SCALE CATA PROCESSING

expert on watermarks and time g
semantics in stream processing
systems the world over, period.
You might find it unsurprising
then that hes the author of
Chapter 3, Watermarks.

Reuven
Reuven is at the bottom of this
list because he has more expe-
rience with stream processing Figure P-1. The cover that could have been...
than both Slava and me com-
bined and would thus crush us
if he were placed any higher. Reuven has created or led the creation of nearly all
of the interesting systems-level magic in Google’s general-purpose stream pro-
cessing engines, including applying an untold amount of attention to detail in
providing high-throughput, low-latency, exactly-once semantics in a system that
nevertheless utilizes fine-grained checkpointing. You might find it unsurprising
that he’s the author of Chapter 5, Exactly-Once and Side Effects. He also happens
to be an Apache Beam PMC member.

Akidau, Slava Chernyak
& Reuven Lax

Navigating This Book

Now that you know who you’ll be hearing from, the next logical step would be to find
out what you’ll be hearing about, which brings us to the second thing I wanted to

2 Or DataPLS, pronounced Datapals—get it?

mention. There are conceptually two major parts to this book, each with four chap-
ters, and each followed up by a chapter that stands relatively independently on its
own.

The fun begins with Part I, The Beam Model (Chapters 1-4), which focuses on the
high-level batch plus streaming data processing model originally developed for Goo-
gle Cloud Dataflow, later donated to the Apache Software Foundation as Apache
Beam, and also now seen in whole or in part across most other systems in the indus-
try. It's composed of four chapters:

« Chapter 1, Streaming 101, which covers the basics of stream processing, establish-
ing some terminology, discussing the capabilities of streaming systems, distin-
guishing between two important domains of time (processing time and event
time), and finally looking at some common data processing patterns.

+ Chapter 2, The , Where, When, and How of Data Processing, which covers in
detail the core concepts of robust stream processing over out-of-order data, each
analyzed within the context of a concrete running example and with animated
diagrams to highlight the dimension of time.

« Chapter 3, Watermarks (written by Slava), which provides a deep survey of tem-
poral progress metrics, how they are created, and how they propagate through
pipelines. It ends by examining the details of two real-world watermark imple-
mentations.

« Chapter 4, Advanced Windowing, which picks up where Chapter 2 left off, diving
into some advanced windowing and triggering concepts like processing-time
windows, sessions, and continuation triggers.

Between Parts I and II, providing an interlude as timely as the details contained
therein are important, stands Chapter 5, Exactly-Once and Side Effects (written by
Reuven). In it, he enumerates the challenges of providing end-to-end exactly-once
(or effectively-once) processing semantics and walks through the implementation
details of three different approaches to exactly-once processing: Apache Flink,
Apache Spark, and Google Cloud Dataflow.

Next begins Part II, Streams and Tables (Chapters 6-9), which dives deeper into the
conceptual and investigates the lower-level “streams and tables” way of thinking
about stream processing, recently popularized by some upstanding citizens in the
Apache Kafka community but, of course, invented decades ago by folks in the data-
base community, because wasn’t everything? It too is composed of four chapters:

 Chapter 6, Streams and Tables, which introduces the basic idea of streams and
tables, analyzes the classic MapReduce approach through a streams-and-tables
lens, and then constructs a theory of streams and tables sufficiently general to
encompass the full breadth of the Beam Model (and beyond).

Preface Or: What Are You Getting Yourself Into Here? | ix

Chapter 7, The Practicalities of Persistent State, which considers the motivations
for persistent state in streaming pipelines, looks at two common types of implicit
state, and then analyzes a practical use case (advertising attribution) to inform
the necessary characteristics of a general state management mechanism.

Chapter 8, Streaming SQL, which investigates the meaning of streaming within
the context of relational algebra and SQL, contrasts the inherent stream and table
biases within the Beam Model and classic SQL as they exist today, and proposes a
set of possible paths forward toward incorporating robust streaming semantics in
SQL.

Chapter 9, Streaming Joins, which surveys a variety of different join types, ana-
lyzes their behavior within the context of streaming, and finally looks in detail at
a useful but ill-supported streaming join use case: temporal validity windows.

Finally, closing out the book is Chapter 10, The Evolution of Large-Scale
Data Processing, which strolls through a focused history of the MapReduce lineage of
data processing systems, examining some of the important contributions that have
evolved streaming systems into what they are today.

Takeaways

As a final bit of guidance, if you were to ask me to describe the things I most want
readers to take away from this book, I would say this:

The single most important thing you can learn from this book is the theory of
streams and tables and how they relate to one another. Everything else builds on
top of that. No, we won't get to this topic until Chapter 6. That’s okay; it'’s worth
the wait, and you'll be better prepared to appreciate its awesomeness by then.

Time-varying relations are a revelation. They are stream processing incarnate: an
embodiment of everything streaming systems are built to achieve and a powerful
connection to the familiar tools we all know and love from the world of batch.
We won't learn about them until Chapter 8, but again, the journey there will help
you appreciate them all the more.

A well-written distributed streaming engine is a magical thing. This arguably
goes for distributed systems in general, but as you learn more about how these
systems are built to provide the semantics they do (in particular, the case studies
from Chapters 3 and 5), it becomes all the more apparent just how much heavy
lifting they’re doing for you.

LaTeX/Tikz is an amazing tool for making diagrams, animated or otherwise. A
horrible, crusty tool with sharp edges and tetanus, but an incredible tool none-
theless. I hope the clarity the animated diagrams in this book bring to the com-
plex topics we discuss will inspire more people to give LaTeX/Tikz a try (in

x | Preface Or: What Are You Getting Yourself Into Here?

“Figures” on page xii, we provide for a link to the full source for the animations
from this book).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

r This element indicates a warning or caution.

Online Resources

There are a handful of associated online resources to aid in your enjoyment of this
book.

Preface Or: What Are You Getting Yourself Into Here? | xi

Figures

All the of the figures in this book are available in digital form on the book’s website.
This is particularly useful for the animated figures, only a few frames of which appear
(comic-book style) in the non-Safari formats of the book:

« Online index: http://www.streamingbook.net/figures

« Specific figures may be referenced at URLs of the form:
http://www.streamingbook.net/fig/< FIGURE-NUMBER>
For example, for Figure 2-5: http://www.streamingbook.net/fig/2-5

The animated figures themselves are LaTeX/Tikz drawings, rendered first to PDF,
then converted to animated GIFs via ImageMagick. For the more intrepid among
you, full source code and instructions for rendering the animations (from this book,
the “Streaming 1017 (http://oreil.ly/1p]1AKux) and “Streaming 102" (http://oreil.ly/
1TV7YGU) blog posts, and the original Dataflow Model paper (http://bit.ly/2sXgV]3))
are available on GitHub at http://github.com/takidau/animations. Be warned that this
is roughly 14,000 lines of LaTeX/Tikz code that grew very organically, with no intent
of ever being read and used by others. In other words, it’s a messy, intertwined web of
archaic incantations; turn back now or abandon all hope ye who enter here, for there
be dragons.

Code Snippets

Although this book is largely conceptual, there are are number of code and psuedo-
code snippets used throughout to help illustrate points. Code for the more functional
core Beam Model concepts from Chapters 2 and 4, as well as the more imperative
state and timers concepts in Chapter 7, is available online at http://github.com/taki
dau/streamingbook. Since understanding semantics is the main goal, the code is pro-
vided primarily as Beam PTransform/DoFn implementations and accompanying unit
tests. There is also a single standalone pipeline implementation to illustrate the delta
between a unit test and a real pipeline. The code layout is as follows:

src/main/java/net/streamingbook/BeamModel.java
Beam PTransform implementations of Examples 2-1 through 2-9 and
Example 4-3, each with an additional method returning the expected output
when executed over the example datasets from those chapters.

src/test/java/net/streamingbook/BeamModel Test.java
Unit tests verifying the example PTransforms in BearmModel.java via generated
datasets matching those in the book.

xii | Preface Or: What Are You Getting Yourself Into Here?

src/main/java/net/streamingbook/Example2_1.java
Standalone version of the Example 2-1 pipeline that can be run locally or using a
distributed Beam runner.

src/main/java/net/streamingbook/inputs.csv
Sample input file for Example2_1.java containing the dataset from the book.

src/main/java/net/streamingbook/StateAndTimers.java
Beam code implementing the conversion attribution example from Chapter 7
using Beam’s state and timers primitives.

src/test/java/net/streamingbook/StateAnd TimersTest.java
Unit test verifying the conversion attribution DoFns from StateAndTimers.java.

src/main/java/net/streamingbook/Validity Windows.java
Temporal validity windows implementation.

src/main/java/net/streamingbook/Utils.java
Shared utility methods.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Streaming Systems by Tyler Akidau,
Slava Chernyak, and Reuven Lax (O’Reilly). Copyright 2018 O’'Reilly Media, Inc.,
978-1-491-98387-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
{ training and reference platform for enterprise, government,
educators, and individuals.

Preface Or: What Are You Getting Yourself Into Here? | xiii

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://www.oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/streaming-systems.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Last, but certainly not least: many people are awesome, and we would like to
acknowledge a specific subset of them here for their help in creating this tome.

The content in this book distills the work of an untold number of extremely smart
individuals across Google, the industry, and academia at large. We owe them all a sin-
cere expression of gratitude and regret that we could not possibly list them all here,
even if we tried, which we will not.

xiv | Preface Or: What Are You Getting Yourself Into Here?

Among our colleagues at Google, much credit goes to everyone in the DataPLS team
(and its various ancestor teams: Flume, MillWheel, MapReduce, et al.), who've helped
bring so many of these ideas to life over the years. In particular, wed like to thank:

Paul Nordstrom and the rest of the MillWheel team from the Golden Age of
MillWheel: Alex Amato, Alex Balikov, Kaya Bekiroglu, Josh Haberman, Tim Hol-
lingsworth, Ilya Maykov, Sam McVeety, Daniel Mills, and Sam Whittle for envi-
sioning and building such a comprehensive, robust, and scalable set of low-level
primitives on top of which we were later able to construct the higher-level mod-
els discussed in this book. Without their vision and skill, the world of massive-
scale stream processing would look very different.

Craig Chambers, Frances Perry, Robert Bradshaw, Ashish Raniwala, and the rest
of the Flume team of yore for envisioning and creating the expressive and power-
ful data processing foundation that we were later able to unify with the world of
streaming.

Sam McVeety for lead authoring the original MillWheel paper, which put our
amazing little project on the map for the very first time.

Grzegorz Czajkowski for repeatedly supporting our evangelization efforts, even
as competing deadlines and priorities loomed.

Looking more broadly, a huge amount of credit is due to everyone in the Apache
Beam, Calcite, Kafka, Flink, Spark, and Storm communities. Each and every one of
these projects has contributed materially to advancing the state of the art in stream
processing for the world at large over the past decade. Thank you.

To shower gratitude a bit more specifically, we would also like to thank:

Martin Kleppmann, for leading the charge in advocating for the streams-and-
tables way of thinking, and also for investing a huge amount of time providing
piles of insightful technical and editorial input on the drafts of every chapter in
this book. All this in addition to being an inspiration and all-around great guy.

Julian Hyde, for his insightful vision and infectious passion for streaming SQL.

Jay Kreps, for fighting the good fight against Lambda Architecture tyranny; it was
your original “Questioning the Lambda Architecture” (https://www.oreilly.com/
ideas/questioning-the-lambda-architecture) post that got Tyler pumped enough to
go out and join the fray, as well.

Stephan Ewen, Kostas Tzoumas, Fabian Hueske, Aljoscha Krettek, Robert
Metzger, Kostas Kloudas, Jamie Grier, Max Michels, and the rest of the data Arti-
sans extended family, past and present, for always pushing the envelope of what’s
possible in stream processing, and doing so in a consistently open and collabora-
tive way. The world of streaming is a much better place thanks to all of you.

« Jesse Anderson, for his diligent reviews and for all the hugs. If you see Jesse, give
him a big hug for me.

« Danny Yuan, Sid Anand, Wes Reisz, and the amazing QCon developer confer-
ence, for giving us our first opportunity to talk publicly within the industry about
our work, at QCon San Francisco 2014.

» Ben Lorica at O'Reilly and the iconic Strata Data Conference, for being repeat-
edly supportive of our efforts to evangelize stream processing, be it online, in
print, or in person.

+ The entire Apache Beam community, and in particular our fellow committers,
for helping push forward the Beam vision: Ahmet Altay, Amit Sela, Aviem Zur,
Ben Chambers, Griselda Cuevas, Chamikara Jayalath, Davor Bonaci, Dan Hal-
perin, Etienne Chauchot, Frances Perry, Ismaél Mejia, Jason Kuster, Jean-Baptiste
Onofré, Jesse Anderson, Eugene Kirpichov, Josh Wills, Kenneth Knowles, Luke
Cwik, Jingsong Lee, Manu Zhang, Melissa Pashniak, Mingmin Xu, Max Michels,
Pablo Estrada, Pei He, Robert Bradshaw, Stephan Ewen, Stas Levin, Thomas
Groh, Thomas Weise, and James Xu.

No acknowledgments section would be complete without a nod to the otherwise face-
less cohort of tireless reviewers whose insightful comments helped turn garbage into
awesomeness: Jesse Anderson, Grzegorz Czajkowski, Marian Dvorsky, Stephan Ewen,
Rafael J. Fernandez-Moctezuma, Martin Kleppmann, Kenneth Knowles, Sam
McVeety, Mosha Pasumansky, Frances Perry, Jelena Pjesivac-Grbovic, Jeff Shute, and
William Vambenepe. You are the Mr. Fusion to our DeLorean Time Machine. That
had a nicer ring to it in my head—see, this is what I'm talking about.

And of course, a big thanks to our authoring and production support team:

« Marie Beaugureau, our original editor, for all of her help and support in getting
this project off the ground and her everlasting patience with my persistent desire
to subvert editorial norms. We miss you!

« Jeff Bleiel, our editor 2.0, for taking over the reins and helping us land this mon-
ster of a project and his everlasting patience with our inability to meet even the
most modest of deadlines. We made it!

o Bob Russell, our copy editor, for reading our book more closely than anyone
should ever have to. I tip my hat to your masterful command of grammar, punc-
tuation, vocabulary, and Adobe Acrobat annotations.

« Nick Adams, our intrepid production editor, for helping tame a mess of totally
sketchy HTMLBook code into a print-worthy thing of beauty and for not getting
mad at me when I asked him to manually ignore Bob’s many, many individual
suggestions to switch our usage of the term “data” from plural to singular. You've
managed to make this book look even better than I'd hoped for, thank you.

xvi | Preface Or: What Are You Getting Yourself Into Here?

Ellen Troutman-Zaig, our indexer, for somehow weaving a tangled web of off-
hand references into a useful and comprehensive index. I stand in awe at your
attention to detail.

Rebecca Panzer, our illustrator, for beautifying our static diagrams and for assur-
ing Nick that I didn’t need to spend more weekends figuring out how to refactor
my animated LaTeX diagrams to have larger fonts. Phew x2!

Kim Cofer, our proofreader, for pointing out how sloppy and inconsistent we
were so others wouldn’t have to.

Tyler would like to thank:

My coauthors, Reuven Lax and Slava Chernyak, for bringing their ideas and
chapters to life in ways I never could have.

George Bradford Emerson II, for the Sean Connery inspiration. That’s my favor-
ite joke in the book and we haven't even gotten to the first chapter yet. It’s all
downhill from here, folks.

Rob Schlender, for the amazing bottle of scotch he’s going to buy me shortly
before robots take over the world. Here’s to going down in style!

My uncle, Randy Bowen, for making sure I discovered just how much I love
computers and, in particular, that homemade POV-Ray 2.x floppy disk that
opened up a whole new world for me.

My parents, David and Marty Dauwalder, without whose dedication and unbe-
lievable perseverance none of this would have ever been possible. You're the best
parents ever, for reals!

Dr. David L. Vlasuk, without whom I simply wouldn’t be here today. Thanks for
everything, Dr. V.

My wonderful family, Shaina, Romi, and Ione Akidau for their unwavering sup-
port in completing this levianthantine effort, despite the many nights and week-
ends we spent apart as a result. I love you always.

My faithful writing partner, Kiyoshi: even though you only slept and barked at
postal carriers the entire time we worked on the book together, you did so flaw-
lessly and seemingly without effort. You are a credit to your species.

Slava would like to thank:

Josh Haberman, Sam Whittle, and Daniel Mills for being codesigners and cocrea-
tors of watermarks in MillWheel and subsequently Streaming Dataflow as well as
many other parts of these systems. Systems as complex as these are never
designed in a vacuum, and without all of the thoughts and hard work that each of
you put in, we would not be here today.

Preface Or: What Are You Getting Yourself Into Here? | xvii

« Stephan Ewen of data Artisans for helping shape my thoughts and understanding
of the watermark implementation in Apache Flink.

Reuven would like to thank:

« Paul Nordstrom for his vision, Sam Whittle, Sam McVeety, Slava Chernyak, Josh
Haberman, Daniel Mills, Kaya Bekiroglu, Alex Balikov, Tim Hollingsworth, Alex
Amato, and Ilya Maykov for all their efforts in building the original MillWheel
system and writing the subsequent paper.

« Stephan Ewen of data Artisans for his help reviewing the chapter on exactly-once
semantics, and valuable feedback on the inner workings of Apache Flink.

Lastly, we would all like to thank you, glorious reader, for being willing to spend real
money on this book to hear us prattle on about the cool stuff we get to build and play
with. It’s been a joy writing it all down, and we've done our best to make sure you'll
get your money’s worth. If for some reason you don't like it..well hopefully you
bought the print edition so you can at least throw it across the room in disgust before
you sell it at a used bookstore. Watch out for the cat.?

3 Or don't. T actually don't like cats.

xviii | Preface Or: What Are You Getting Yourself Into Here?

Table of Contents

Preface Or: What Are You Getting Yourself Into Here?. vii
Partl. The Beam Model

B DTN TR & .8 5 i o o o B v e om0 S B 08 1 4 3
Terminology: What Is Streaming? 4
On the Greatly Exaggerated Limitations of Streaming 6
Event Time Versus Processing Time 9
Data Processing Patterns 12
Bounded Data 12
Unbounded Data: Batch 13
Unbounded Data: Streaming 14
Summary 22
2. The , Where, V1en, and How of Data Processing. 25
Roadmap 26
Batch Foundations: and Where 28
: Transformations 28
Where: Windowing 32
Going Streaming: and How 34

: The Wonderful Thing About Triggers Is Triggers Are Wonderful
Things! 34
: Watermarks 39
: Early/On-Time/Late Triggers FTW! 44
: Allowed Lateness (i.e., Garbage Collection) 47
How: Accumulation 51
Summary 55

iv

3.

4.

WAtEHNATKS: iossis crosiresmisaaivners irsirs s S orsrarers s sris o rere sors Sioratoi orats

Definition
Source Watermark Creation
Perfect Watermark Creation
Heuristic Watermark Creation
Watermark Propagation
Understanding Watermark Propagation
Watermark Propagation and Output Timestamps
The Tricky Case of Overlapping Windows
Percentile Watermarks
Processing-Time Watermarks
Case Studies
Case Study: Watermarks in Google Cloud Dataflow
Case Study: Watermarks in Apache Flink
Case Study: Source Watermarks for Google Cloud Pub/Sub
Summary

Advanced Windowing.ovveiiiiiiiiiiiiiiiiiiiiii i

When/ Where: Processing-Time Windows
Event-Time Windowing
Processing-Time Windowing via Triggers
Processing-Time Windowing via Ingress Time
Where: Session Windows
Where: Custom Windowing
Variations on Fixed Windows
Variations on Session Windows
One Size Does Not Fit All
Summary

Exacky-Once and S EBEE. o5 « s ssssminasnsanssssnissecnsssnis

Why Exactly Once Matters
Accuracy Versus Completeness

Side Effects

Problem Definition
Ensuring Exactly Once in Shuffle
Addressing Determinism
Performance

Graph Optimization

Bloom Filters

Garbage Collection
Exactly Once in Sources
Exactly Once in Sinks

Table of Contents

59
62
64
65
67
69
75
80
81
84
86
87
88
90
93

95
95
97
98
100
103
107
108
115
119
119

121
121
122
123
123
125
126
127
127
128
129
130
131

