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The Geometry of Physics

This book is intended to provide a working knowledge of those parts of exterior differential
forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles,
and Chern forms that are essential for a deeper understanding of both classical and modern
physics and engineering. Included are discussions of analytical and fluid dynamics, elec-
tromagnetism (in flat and curved space), thermodynamics, elasticity theory, the geometry
and topology of Kirchhoff’s electric circuit laws, soap films, special and general relativity,
the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov—
Bohm effect, Berry phase, and instanton winding numbers, quarks, and the quark model for
mesons. Before a discussion of abstract notions of differential geometry, geometric intuition
is developed through a rather extensive introduction to the study of surfaces in ordinary
space; consequently, the book should be of interest also to mathematics students.

This book will be useful to graduate and advance undergraduate students of physics,
engineering, and mathematics. It can be used as a course text or for self-study.

This Third Edition includes a new overview of Cartan’s exterior differential forms. It
previews many of the geometric concepts developed in the text and illustrates their appli-
cations to a single extended problem in engineering; namely, the Cauchy stresses created
by a small twist of an elastic cylindrical rod about its axis.

THEODORE FRANKEL received his Ph.D. from the University of California, Berkeley. He is
currently Emeritus Professor of Mathematics at the University of California, San Diego.
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Preface to the Third Edition

A main addition introduced in this third edition is the inclusion of an Overview

An Informal Overview of Cartan’s Exterior Differential Forms,
Illustrated with an Application to Cauchy’s Stress Tensor

which can be read before starting the text. This appears at the beginning of the text,
before Chapter 1. The only prerequisites for reading this overview are sophomore
courses in calculus and basic linear algebra. Many of the geometric concepts developed
in the text are previewed here and these are illustrated by their applications to a single
extended problem in engineering, namely the study of the Cauchy stresses created by
a small twist of an elastic cylindrical rod about its axis.

The new shortened version of Appendix A, dealing with elasticity, requires the
discussion of Cauchy stresses dealt with in the Overview. The author believes that
the use of Cartan’s vector valued exterior forms in elasticity is more suitable (both in
principle and in computations) than the classical tensor analysis usually employed in
engineering (which is also developed in the text.)

The new version of Appendix A also contains contributions by my engineering
colleague Professor Hidenori Murakami, including his treatment of the Truesdell stress
rate. | am also very grateful to Professor Murakami for many very helpful conversations.

Xix



Preface to the Second Edition

This second edition differs mainly in the addition of three new appendices: C, D, and
E. Appendices C and D are applications of the elements of representation theory of
compact Lie groups.

Appendix C deals with applications to the flavored quark model that revolutionized
particle physics. We illustrate how certain observed mesons (pions, kaons, and etas)
are described in terms of quarks and how one can “derive” the mass formula of Gell-
Mann/Okubo of 1962. This can be read after Section 20.3b.

Appendix D is concerned with isotropic hyperelastic bodies. Here the main result
has been used by engineers since the 1850s. My purpose for presenting proofs is that
the hypotheses of the Frobenius—Schur theorems of group representations are exactly
met here, and so this affords a compelling excuse for developing representation theory,
which had not been addressed in the earlier edition. An added bonus is that the group
theoretical material is applied to the three-dimensional rotation group SO(3), where
these generalities can be pictured explicitly. This material can essentially be read after
Appendix A, but some brief excursion into Appendix C might be helpful.

Appendix E delves deeper into the geometry and topology of compact Lie groups.
Bott’s extension of the presentation of Morse theory that was given in Section 14.3c is

sketched and the example of the topology of the Lie group U (3) is worked out in some
detail.

xxi



Preface to the Revised Printing

In this reprinting I have introduced a new appendix, Appendix B, Harmonic Chains
and Kirchhoff’s Circuit Laws. This appendix deals with a finite-dimensional version
of Hodge’s theory, the subject of Chapter 14, and can be read at any time after Chapter
13. It includes a more geometrical view of cohomology, dealt with entirely by matrices
and elementary linear algebra. A bonus of this viewpoint is a systematic “geometrical”
description of the Kirchhoff laws and their applications to direct current circuits, first
considered from roughly this viewpoint by Hermann Weyl in 1923.

I have corrected a number of errors and misprints, many of which were kindly
brought to my attention by Professor Friedrich Heyl.

Finally, I would like to take this opportunity to express my great appreciation to my
editor, Dr. Alan Harvey of Cambridge University Press.



Preface to the First Edition

The basic ideas at the foundations of point and continuum mechanics, electromag-
netism, thermodynamics, special and general relativity, and gauge theories are geomet-
rical, and, I believe, should be approached, by both mathematics and physics students,
from this point of view.

This is a textbook that develops some of the geometrical concepts and tools that
are helpful in understanding classical and modern physics and engineering. The math-
ematical subject material is essentially that found in a first-year graduate course in
differential geometry. This is not coincidental, for the founders of this part of geom-
etry, among them Euler, Gauss, Jacobi, Riemann and Poincaré, were also profoundly
interested in “natural philosophy.”

Electromagnetism and fluid flow involve line, surface, and volume integrals. An-
alytical dynamics brings in multidimensional versions of these objects. In this book
these topics are discussed in terms of exterior differential forms. One also needs
to differentiate such integrals with respect to time, especially when the domains of
integration are changing (circulation, vorticity, helicity, Faraday’s law, etc.), and this
is accomplished most naturally with aid of the Lie derivative. Analytical dynamics,
thermodynamics, and robotics in engineering deal with constraints, including the puz-
zling nonholonomic ones, and these are dealt with here via the so-called Frobenius
theorem on differential forms. All these matters, and more, are considered in Part One
of this book.

Einstein created the astonishing principle field strength = curvature to explain
the gravitational field, but if one is not familiar with the classical meaning of surface
curvature in ordinary 3-space this is merely a tautology. Consequently I introduce
differential geometry before discussing general relativity. Cartan’s version, in terms
of exterior differential forms, plays a central role. Differential geometry has applications
to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical
systems. Differential geometry occupies the bulk of Part Two.

Einstein’s principle has been extended by physicists, and now all the field strengths
occurring in elementary particle physics (which are required in order to construct a

XXV



XXVi PREFACE TO THE FIRST EDITION

Lagrangian) are discussed in terms of curvature and connections, but it is the cur-
vature of a vector bundle, that is, the field space, that arises, not the curvature of
space—time. The symmetries of the quantum field play an essential role in these gauge
theories, as was first emphasized by Hermann Weyl, and these are understood today in
terms of Lie groups, which are an essential ingredient of the vector bundle. Since many
quantum situations (charged particles in an electromagnetic field, Aharonov—Bohm ef-
fect, Dirac monopoles, Berry phase, Yang—Mills fields, instantons, etc.) have analogues
in elementary differential geometry, we can use the geometric methods and pictures of
Part Two as a guide; a picture is worth a thousand words! These topics are discussed
in Part Three.

Topology is playing an increasing role in physics. A physical problem is “well
posed” if there exists a solution and it is unique, and the topology of the configuration
(spherical, toroidal, etc.), in particular the singular homology groups, has an essential
influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory
play roles not only in modern gauge theories but also, for example, in the theory of
“defects” in materials.

Topological methods are playing an important role in field theory; versions of the
Atiyah-Singer index theorem are frequently invoked. Although I do not develop this
theorem in general, 1 do discuss at length the most famous and elementary exam-
ple, the Gauss-Bonnet-Poincaré theorem, in two dimensions and also the meaning
of the Chern characteristic classes. These matters are discussed in Parts Two and
Three.

The Appendix to this book presents a nontraditional treatment of the stress ten-
sors appearing in continuum mechanics, utilizing exterior forms. In this endeavor I
am greatly indebted to my engineering colleague Hidenori Murakami. In particular
Murakami has supplied, in Section g of the Appendix, some typical computations in-
volving stresses and strains, but carried out with the machinery developed in this book.
We believe that these computations indicate the efficiency of the use of forms and Lie
derivatives in elasticity. The material of this Appendix could be read, except for some
minor points, after Section 9.5.

Mathematical applications to physics occur in at least two aspects. Mathematics is
of course the principal tool for solving technical analytical problems, but increasingly
it is also a principal guide in our understanding of the basic structure and concepts
involved. Analytical computations with elliptic functions are important for certain
technical problems in rigid body dynamics, but one could not have begun to understand
the dynamics before Euler’s introducing the moment of inertia tensor. I am very much
concerned with the basic concepts in physics. A glance at the Contents will show
in detail what mathematical and physical tools are being developed, but frequently
physical applications appear also in Exercises. My main philosophy has been to attack
physical topics as soon as possible, but only after effective mathematical tools have
been introduced. By analogy, one can deal with problems of velocity and acceleration
after having learned the definition of the derivative as the limit of a quotient (or even
before, as in the case of Newton), but we all know how important the machinery of
calculus (e.g., the power, product, quotient, and chain rules) is for handling specific
problems. In the same way, it is a mistake to talk seriously about thermodynamics
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before understanding that a total differential equation ir. more than two dimensions
need not possess an integrating factor.

In a sense this book is a “final” revision of sets of notes for a year course that I
have given in La Jolla over many years. My goal has been to give the reader a working
knowledge of the tools that are of great value in geometry and physics and (increasingly)
engineering. For this it is absolutely essential that the reader work (or at least attempt)
the Exercises. Most of the problems are simple and require simple calculations. If you
find calculations becoming unmanageable, then in all probability you are not taking
advantage of the machinery developed in this book.

This book is intended primarily for two audiences, first, the physics or engineering
student, and second, the mathematics student. My classes in the past have been pop-
ulated mostly by first-, second-, and third-year graduate students in physics, but there
have also been mathematics students and undergraduates. The only real mathemati-
cal prerequisites are basic linear algebra and some familiarity with calculus of several
variables. Most students (in the United States) have these by the beginning of the third
undergraduate year.

All of the physical subjects, with two exceptions to be noted, are preceded by a brief
introduction. The two exceptions are analytical dynamics and the quantum aspects of
gauge theories.

Analytical (Hamiltonian) dynamics appears as a problem set in Part One, with very
little motivation, for the following reason: the problems form an ideal application of
exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part
Two, after geodesics have been discussed, do we return for a discussion of analytical
dynamics from first principles. (Of course most physics and engineering students will
already have seen some introduction to analytical mechanics in their course work any-
way.) The significance of the Lagrangian (based on special relativity) is discussed in
Section 16.4 of Part Three when changes in dynamics are required for discussing the
effects of electromagnetism.

An introduction to quantum mechanics would have taken us too far afield. Fortunately
(for me) only the simplest quantum ideas are needed for most of our discussions. I
would refer the reader to Rabin’s article [R] and Sudbery’s book [Su] for excellent
introductions to the quantum aspects involved.

Physics and engineering readers would profit greatly if they would form the habit
of translating the vectorial and tensorial statements found in their customary reading
of physics articles and books into the language developed in this book, and using the
newer methods developed here in their own thinking. (By “newer” I mean methods
developed over the last one hundred years!)

As for the mathematics student, I feel that this book gives an overview of a large
portion of differential geometry and topology that should be helpful to the mathematics
graduate student in this age of very specialized texts and absolute rigor. The student
preparing to specialize, say, in differential geometry will need to augment this reading
with a more rigorous treatment of some of the subjects than that given here (e.g., in
Warner’s book [Wa] or the five-volume series by Spivak [Sp]). The mathematics student
should also have exercises devoted to showing what can go wrong if hypotheses are
weakened. I make no pretense of worrying, for example, about the differentiability
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classes of mappings needed in proofs. (Such matters are studied more carefully in
the book [A, M, R] and in the encyclopedia article [T, T]. This latter article (and the
accompanying one by Eriksen) are also excellent for questions of historical priorities.)
I hope that mathematics students will enjoy the discussions of the physical subjects
even if they know very little physics; after all, physics is the source of interesting
vector fields. Many of the “physical” applications are useful even if they are thought
of as simply giving explicit examples of rather abstract concepts. For example, Dirac’s
equation in curved space can be considered as a nontrivial application of the method
of connections in associated bundles!

This is an introduction and there is much important mathematics that is not developed
here. Analytical questions involving existence theorems in partial differential equations,
Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there
is no discussion of Kaehler manifolds nor the algebraic—geometric notions used in
string theory. Infinite dimensional manifolds are not considered. On the physical side,
topics are introduced usually only if I felt that geometrical ideas would be a great help
in their understanding or in computations.

[ have included a small list of references. Most of the articles and books listed have
been referred to in this book for specific details. The reader will find that there are
many good books on the subject of “geometrical physics” that are not referred to here,
primarily because I felt that the development, or sophistication, or notation used was
sufficiently different to lead to, perhaps, more confusion than help in the first stages of
their struggle. A book that I feel is in very much the same spirit as my own is that by
Nash and Sen [N, S]. The standard reference for differential geometry is the two-volume
work [K, NJ of Kobayashi and Nomizu.

Almost every section of this book begins with a question or a quotation which may
concern anything from the main thrust of the section to some small remark that should
not be overlooked.

A term being defined will usually appear in bold type.

I wish to express my gratitude to Harley Flanders, who introduced me long ago to
exterior forms and de Rham’s theorem, whose superb book [FI] was perhaps the first to
awaken scientists to the use of exterior forms in their work. I am indebted to my chemical
colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin
for helpful criticisms of earlier versions of my lecture notes. I have already expressed
my deep gratitude to Hidenori Murakami. Joel Broida made many comments on earlier
versions, and also prevented my Macintosh from taking me over. I've had many helpful
conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth
made many helpful comments on various drafts and also served as “beater,” herding
physics students into my course. Above all, my colleague Jeff Rabin used my notes
as the text in a one-year graduate course and made many suggestions and corrections.
I have also included corrections to the 1997 printing, following helpful remarks from
Professor Meinhard Mayer.

Finally I am grateful to the many students in my classes on geometrical physics for
their encouragement and enthusiasm in my endeavor. Of course none of the above is
responsible for whatever inaccuracies undoubtedly remain.



OVERVIEW

An Informal Overview of Cartan’s
Exterior Differential Forms,
Illustrated with an Application to
Cauchy’s Stress Tensor

Introduction

0.a. Introduction

My goal in this overview is to introduce exterior calculus in a brief and informal way
that leads directly to their use in engineering and physics, both in basic physical concepts
and in specific engineering calculations. The presentation will be very informal. Many
times a proof will be omitted so that we can get quickly to a calculation. In some
“proofs” we shall look only at a typical term.

The chief mathematical prerequisites for this overview are sophomore courses deal-
ing with basic linear algebra, partial derivatives, multiple integrals, and tangent vectors
to parameterized curves, but not necessarily “vector calculus,” i.e., curls, divergences,
line and surface integrals, Stokes’ theorem, . . .. These last topics will be sketched here
using Cartan’s “exterior calculus.”

We shall take advantage of the fact that most engineers live in euclidean 3-space
R? with its everyday metric structure, but we shall try to use methods that make sense
in much more general situations. Instead of including exercises we shall consider, in
the section Elasticity and Stresses, one main example and illustrate everything in
terms of this example but hopefully the general principles will be clear. This engineer-
ing example will be the following. Take an elastic circular cylindrical rod of radius a
and length L, described in cylindrical coordinates r, 6, z. with the ends of the cylin-
der at z = 0 and z = L. Look at this same cylinder except that it has been axially
twisted through an angle kz proportional to the distance z; from the fixed end z = 0.

b
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We shall neglect gravity and investigate the stresses in the cylinder in its final twisted
state, in the first approximation, i.e., where we put k% = 0. Since “stress” and “strain”
are “tensors” (as Cauchy and I will show) this is classically treated via “tensor analysis.”
The final equilibrium state involves surface integrals and the tensor divergence of the
Cauchy stress tensor. Our main tool will not be the usual classical tensor analysis
(Christoffel symbols F; x - - -» €tc.) but rather exterior differential forms (first used in
the nineteenth century by Grassmann, Poincaré, Volterra, . . ., and developed especially
by Elie Cartan), which, I believe, is a far more appropriate tool.

We are very much at home with cartesian coordinates but curvilinear coordinates
play a very important role in physical applications, and the fact that there are mwo
distinct types of vectors that arise in curvilinear coordinates (and, even more so, in
curved spaces) that appear identical in cartesian coordinates must be understood, not
only when making calculations but also in our understanding of the basic ingredients
of the physical world. We shall let x’, and «’, i = 1,2, 3, be general (curvilinear)
coordinates, in euclidean 3 dimensional space R, If cartesian coordinates are wanted,
I will say so explicitly.

Vectors, 1-Forms, and Tensors

0.b. Two Kinds of Vectors

There are two kinds of vectors that appear in physical applications and it is important
that we distinguish between them. First there is the familiar “arrow” version.

Consider n dimensional euclidean space R" with cartesian coordinates x!, ..., x"
and local (perhaps curvilinear) coordinates u', ..., u".

Example: R? with cartesian coordinates x' = x, x? = y, and with polar coordinates
u' =r,u*=0.

Example: R® with cartesian coordinates x, v, z and with cylindrical coordinates
R,0,Z.

— =0,
o
® _3
or
%
p
0
t
Example of R2
with polar coordinates

Let p be the position vector from the origin of R" to the point p. In the curvilinear
coordinate system u, the coordinate curve C; through the point p is the curve where all
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ul, J # i, are constants, and where u' is used as parameter. Then the tangent vector to
this curve in R" is

op/du’ which we shall abbreviate to 8; or 8/0u’

At the point p these n vectors 8y, ..., 8, form a basis for all vectors in R" based at

p. Any vector v at p has a unique expansion with curvilinear coordinate components
@', ...,

V= E,‘Uiai = E,-B;vi

We prefer the last expression with the components to the right of the basis vectors since
it is traditional to put the vectorial components in a column matrix, and we can then
form the matrices

=(8,...,8,) and v=|.|=0".."H

(T denotes transpose) and then we can write the matrix expression (with v a 1x1 matrix)
v=0v ©.1)

Please beware though that in 8;v' or (8/du')v' or v = 8v, the bold & does not
differentiate the component term to the right; it is merely the symbol for a basis vector.
Of course we can still differentiate a function f along a vector v by defining

V(f) 1= (Zi8)(f) = Zid/ou' (f)v' 2= Zi(@f /du' v’

replacing the basis vector 8/du’ with bold 8 by the partial differential operator 9/du’
and then applying to the function f. A vector is a first order differential operator on
functions!

Incylindrical coordinates R, ®, Z in R? we have the basis vectors 8 = 8/9R, 8o =
0/00,and 8; = 8/9Z.

Let v be a vector at a point p. We can always find a curve u' = u'(¢) through p
whose velocity vector there is v, v/ = du‘/dt. Then if u’ is a second coordinate system
about p, we then have v/ = du"/ /dt = (3u" /du’)du' /dt = (du"/ /du')v'. Thus the
components of a vector transform under a change of coordinates by the rule

v/ = X;0u’ Jau')v'  oras matrices v = (du’/du)v ©.2)

where (du’/du) is the Jacobian matrix. This is the transformation law for the compo-
nents of a contravariant vector, or tangent vector, or simply vector.

There is a second, different, type of vector. In linear algebra we learn that to each
vector space V (in our case the space of all vectors at a point p) we can associate its
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dual vector space V* of all real linear functionals & : V — R . In coordinates, a (V) is
a number

a(v) = E,'a,-vi

for unique numbers (g;). We shall explain why i is a subscript in a; shortly.
The most familiar linear functional is the differential of a function df. As a function
on vectors it is defined by the derivative of f along v

df (v) := v(f) = Zi(3f/u')v" andso (df); = df/ou’

Let us write df in a much more familiar form. In elementary calculus there is mumbo-
jumbo to the effect that du’ is a function of pairs of points: it gives you the difference in
the u* coordinates between the points, and the points do not need to be close together.
What is really meant is

du' is the linear functional that reads off the ith component of any vector v with
respect to the basis vectors of the coordinate system u

du'(v) = dui(Eijvj) =
Note that this agrees with du'(v) = v(u')since v(u') = (2;8;v/)u’)

=X, (3u' /3w v = B850/ = v'.
Then we can write

df (v) = Z;0f/ou' o' = B;(3f/du’)du' (v)

df = X;0f/ou’)du'
as usual, except that now both sides have meaning as linear functionals on vectors.
Warning: We shall see that this is not the gradient vector of f!

Itis very easy to see thatdu', . . ., du" form a basis for the space of linear functionals
at each point of the coordinate system u, since they are linearly independent. In fact,
this basis of V* is the dual basis to the basis 9y, ..., 8,, meaning

du'(8)) = &
Thus in the coordinate system u, every linear functional « is of the form
o = Bia;()du'  where  «(d)) = ia;(u)du' (8)) = Tia; ()8’ = a;

is the jth component of .
We shall see in Section 0.i that it is not true that every « is equal to df for some f!
Corresponding to (0.1) we can write the matrix expansion for a linear functional as

a=(ay,...,a)du',...,du"" = adu (0.3)

1.e., @ is a row matrix and du is a column matrix !



