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Preface

This textbook is intended for use in undergraduate chemical engineering curriculums.
The material is suitable for courses in equilibrium-stage processes, stagewise separation
processes, mass transfer operations, separation processes, and rate-controlled separations.
Those schools that teach a two-semester sequence in equilibrium stages and mass transfer
may find that this textbook satisfies all the needs of that sequence. Some schools may find
some of the material suitable for graduate courses in separations.

In 1963, E. J. Henley and H. K. Staffin authored a book, entitled Sragewise Process
Design, that introduced chemical engineering students to nondiffusional aspects of material
and energy balances under phase equilibria constraints, using mainly graphical methods.
Most of that book was incorporated, in 1981, into a greatly expanded textbook, Equilibrium-
Stage Separation Operations in Chemical Engineering, by E. J. Henley and J. D. Seader.
The objective of this expanded book was to enhance the 1963 book by adding material
on the mathematics and science associated with staged calculations as implemented in
commercial, steady-state process simulation computer programs, which were becoming
widely available and relied on numeric, rather than graphical, methods of solution. Today,
the use of simulation programs is taught to undergraduate students in virtually every
chemical engineering department. These programs are easy to use, but, to avoid conver-
gence problems and impossible specifications, the user must have a firm understanding of
the fundamentals of chemical engineering. Hopefully, the 1981 textbook provided that
understanding.

Since publication of our 1981 textbook, interest in the design and simulation of separation
operations using mass transfer (rate-based) principles has increased considerably. This
resulted from the availability of improved packings for packed columns used in absorption,
distillation, and stripping, and also from the development of theory and applications
for the less mature separation operations of adsorption, crystallization, and membrane
separations. At the same time, batch distillation, for which rigorous, computer-based
calculation methods have been developed, has found wider application. Also, greatly
improved procedures for the development of separation processes using enhanced distilla-
tion (azeotropic, extractive, pressure-swing, and reactive) have been published, and new
applications of supercritical-fluid extraction and chromatography have been commercial-
ized. Our 1981 textbook contained little material on these topics; however, this new text-
book contains substantial material on these important topics, as well as those covered in
the 1981 textbook. Both equilibrium-based and rate-based methods are covered extensively.

This textbook is organized and divided into four parts. Part one, which consists of five
chapters, presents introductory concepts. Chapter 1 describes the many ways in which
chemical mixtures are separated industrially. Chapter 2 reviews solution thermodynamics,
for both equilibrium-based and rate-based approaches to separation operations. This chap-
ter can be omitted and used only for reference if students have completed or are taking
concurrently a course in chemical engineering thermodynamics. Chapter 3 covers the basic
principles of diffusion and mass transfer required for the rate-based approach to separation
operations. The use of phase equilibrium and material-balance equations to solve a wide
range of single equilibrium-stage separations is covered in Chapter 4, while Chapter 5
introduces the student to cascades of equilibrium stages.

vii
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Preface

The remaining three parts of the textbook are organized according to the method of
separation. In Part two, separations achieved by phase creation or addition are presented.
Chapters 6 through 8 cover absorption and stripping of dilute solutions, binary distillation,
and ternary liquid-liquid extraction. Chapters 9 through 11 detail computer-based methods
used in simulation programs for vapor-liquid and liquid-liquid separations. Chapter 12
presents new rate-based methods for multicomponent, multistage separations, while Chap-
ter 13 focuses on batch distillation.

Separations by barriers and solid agents are presented in Part three, with membrane
separations in Chapter 14 and adsorption, ion exchange, and chromatography in Chapter
15. This first edition of Separation Process Principles does not include Part four, which
consists of three chapters on separations that involve a solid phase: leaching and washing;
crystallization, desublimation, and evaporation; and drying. These chapters may be obtained
from the senior author. If there is sufficient demand for these three chapters, they will be
included in the next edition of this textbook.

Almost every topic in this textbook is illustrated by a detailed example and is accompa-
nied by at least three homework exercises. There are a total of 157 examples and 538
homework exercises, and solutions to most homework exercises are included in an instruc-
tor’s manual. In addition, the authors plan to add examples and exercises to a web site
located at www.wiley.com/college/seader.

An attempt has been made to present the development of industrial equipment and the
accompanying theory for each separation operation, together with pertinent references to
the literature, in an historical context. To assist students in gaining a suitable understanding
of this descriptive material, the authors have prepared extensive sets of questions for each
chapter (available on the Web site).

The authors wish to acknowledge Professors Vincent Van Brunt of the University of
South Carolina, William L. Conger of Virginia Polytechnic Institute and State University,
William A. Heenan of Texas A&M University-Kingsville, James H. McMicking of Wayne
State University, and Ross Taylor of Clarkson University, who provided advice and detailed
reviews for many of the chapters. The draft of the manuscript was typed by Anna Zoe
Simmons and Christie J. Perry of the University of Utah, with the effort facilitated by
Vickie S. Jones. Chemical engineering students at the University of Utah and the University
of Houston, who used early drafts of many of the chapters in their undergraduate courses
in equilibrium-stage calculations, mass transfer, and separations, also provided valuable
suggestions that improved the presentations of this material. Finally, we are indebted to
A. Wayne Anderson of John Wiley & Sons, who provided valuable guidance from a
publisher’s perspective.

J. D. Seader
Ernest J. Henley
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Nomenclature

Latin Capital and Lowercase Letters

Ay
Ad
A{hr

=1}

G

B, G, D,

constant in equations of state; constant in
Margules equation; area for mass transfer;
areca for heat transfer; area; coefficient in
Freundlich equation; absorption factor=_L/
KV total area of a tray; frequency factor

active area of a sieve tray

active bubbling area of a tray
downcomer cross-sectional area of a tray
area for liquid flow under downcomer
hole area of a sieve tray

binary interaction parameter in van Laar
equation

binary interaction parameter in Margules
two-constant equation

material-balance parameters de-
fined by (10-7) to (10-11)

membrane surface area
pre-exponential (frequency) factor
specific surface area of a particle

activity: constants in the ideal-gas heat capac-
ity equation; constant in equations of state:
interfacial area per unit volume; surface area:
characteristic dimension of a solid particle;
equivalents exchanged in ion exchange; in-
terfacial area per stage

interfacial area per unit volume of equivalent
clear liquid on a tray

specific hydraulic area of packing

group interaction parameter in UNIFAC
method

surface area per unit volume

consiant in equations of state, bottoms flow
rate; number of binary azeotropes

rate of nucieation per unit volume of solution

molar availability function = h — T5; con-
stant in equations of state; component flow
rate in bottoms; surface perimeter

general composition variable such as concen-
tration, mass fraction, mole fraction, or vol-
ume fraction; number of components; con-
stant; capacity parameter in (6-40); constant
in tray liquid holdup expression given by
(6-50); rate of production of crystals

constant in (6-115)

C, constant in (6-116)

Cp  drag coefficient

Cc  constant in (6-122) and Table 6.8

C,  constant in (6-121) and Table 6.8

Cr entrainment flooding factor in Fig. 6.24 and
(6-42)

Cy packing constant in Table 6.8

C, orifice coefficient

Cr  specific heat at constant pressure: packing
constant in Table 6.8

C%,  ideal gas heat capacity at constant pressure

c concentration; constant in the BET equation;
speed of light

c* liquid concentration in equilibrium with gas
at its bulk partial pressure

¢’ concentration in liquid adjacent to a mem-
brane surface

Con metastable limiting solubility of crystals

s humid heat; normal solubility of crystals

¢, total molar concentration

Acjimi  limiting supersaturation

D diffusivity; distillate flow rate; amount of dis-
tillate; desorbent (purge) flow rate; discrep-
ancy functions in inside-out method of Chap-
ter 10.

Dy bubble diameter

Dy eddy diffusion coefficient in (6-36)

D..D.y effective diffusivity

Dy diameter of perforation for a sieve tray

D;  impeller diameter

D;  mutual diffusion coefficient of i in j

Dy Knudsen diffusivity

D,  longitudinal eddy diffusivity

BN arithmetic-mean diameter

Dy diffusion constant in (3-57)

Dp, D, effective packing diameter; particle di-
ameter

D, average of apertures of two successive
screen sizes

D, surface diffusivity

B, surface (Sauter) mean diameter

D;  tower or vessel diameter



