BEEP B I& I (& EniR)

Marshall T. Rose &
BEEXFEHMRMT

O'REILLY®

BEEP X B iE R (% e

BEEP: The Definitive Guide

Marshall T. Rose

O'REILLY"

Beijing + Cambridge + Farnham « Koln « Paris « Sebastopol + Taipei « Tokyo

O'Reilly & Associates, Inc. #AUH % X 5 & At h R

BEXFHRE

EB#ERSE (CIP) ¥iE

BEEP BUEHiR: / (3£) 7 (Rose, T. M.) #F — HEHR . — dboi: i§EK

2002.11

545 3C: BEEP: The Definitive Guide
ISBN 7-302-05983-7

I B. I0.%. II.$k#TH.BEEP IV.TP311.56
HERCA B 4558 CIP B (2002) 45078713 5

AR RBUR Z LA TR I
EF: 01-2002-4487 &

©2002 by O'Reilly & Associates, Inc.

SRR

Reprint of the English Edition, jointly published by O'Reilly & Associates, Inc. and TsingHua University Press,
2002, Authorized reprint of the original English edition, 2002 O'Reilly & Associates, Inc., the owner of all

rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

3% X B M & O'Reilly & Associates, Inc. & #& 2002,

WP RRB A K A R 2002, S FP Rk e R A 4 AT E] RAR A K B B T AT B —— O'Reilly

& Associates, Inc. 84 T,

WAHR , KBHEHT, KBGETRS P 2 RRAUETH X EH,

FHHAEMAREXFHEHERABNFE,. TREETHHE,

¥ 4%/ BEEP WRIEM (RERR)

4 B/ ISBN 7-302-05983 - 7/TP - 3565
FHiEHE/ LER

#HEi%3t/ Ellie Volckhausen, FK{#

HEREAT/ BHHEAFHEBA (www. tup. tsinghua. edu. cn)
o Hb/ JEEIERRFFEHAE (BREZRHS 100084)
% B/ FHFERE

R/ JCEHEHEERIERA R

A%/ 787 Zk x980 X 16 FFA 14 EHIFK

W/ 2002 %11 A% 2003 4 6 A5 IREDR
¥/ 1501 - 2000

#r7 99.00 T ()

e s IS

O'Reilly & Associates /> Gl /43

O'Reilly & Associates 2y al &ttt [/£ UNIX. X. Internet FI1Ht{th il & 4 &
PHBAA RN SR AT HARA], R B R .

M B4 55 W The Whole Internet User's Guide & Catralog(# 41 £ 2% B B B g E A
20828 B FHEAISOA A 2 —) BIGNN(B RHylnternet| T PRI B) . /7 E]WebSite
(% -/ 511 PC) Web IR &5 & %4), O'Reilly & Associates — F A1 Internet % Jig
) B BT

P& BIEMIRIRFE W, OReilly & Associates & B fa E BT EHLIE B H R —
- ABEH-RER. 5SREEFEVLE BB, O'Reilly & Associates 2%]
HAREDIEIL L5, X{EH OReilly & Associates JEpL [—AMHEFH A+ 3
fib (1 RECRS 4 HE AR B . O'Reilly & Associates B A R4 A S LARTERR BT 1. 30&
BETRBmEAEER. OReilly & Associates T A £ EERIEEHE — 1A
HRMETHOBAER . BRNER, HRERSEME, OReilly & Associates fk§i
fiu {1 Bt b4 H B 45 . [4 O'Reilly & Associates B # 5 HHRHLLREBEAE . BrL
O'Reilly & Associates &% it F R EEE 4B 45

tH hii5 A

RS 58 E AR BRCEFI{Z R M, LK Internet 5 Web Fill#i K &, A
ANERI T A sl iESHFn H E A G R TE RRIEm. Mg S5REHARERR
MR Z SR C L) IZ A, B T B KRB . KM, BSRABR €57
JEZ 2 A H IR . O THRBYE NER N AR & BN B 5 I Rl S 4R S
BWIE A, EeRFHRESIH T EEOReilly & Associates 2y R —#E7E T B
W& B R F R A O AR AT B ARSI ENE, LURIRE . A BN B RHZER R
X, DREEMEE “RE7 W, “HHFEER RIS IR & AR AR
BARRIE, & FHETLARREARANR. FHEFHUHEZ A 5 F &R BT % .

HHEBREU T LR

e (WebXLHRHFHE)

o (JC£k Java ALY

e (Web)

e (BEEP fU&¥EE)

o (802.11 ok ML A B A& »
o (RHBREMIZIY

o« (IPH)

e (DNS 5 BINDY

Dedicated to my good friend, Lee

Foreword

In 1998, in the middle of what looked like a boom but turned out to be a bubble, I
started a company with the modest goal of “mapping the Internet.” Our company
didn’t become the next Yahoo!, but we followed the yellow brick road all the way
into the magic kingdom, which unfortunately turned out to be made of sand hills.

Much of the heavy lifting for our company was done by three people. I got all law-
yered up and spent 18 months writing financial doodles and honing our pitch. My
soon-to-be wife and long-time colleague, Rebecca Malamud, became our creative
director. And Marshall Rose wrote (and implemented) a protocol.

Our company did the “dot-com” thing. We built something pretty cool, raised lots of
money, and hired professionals who were better at spending money than we were.
The professionals proceeded to spend money, Becky and I moved on to co-found
betterdogfood.com, and Marshall worked on his protocol. When the professionals
were done, there was no money left and the company dissolved.

The part that lasted was the protocol. Marshall thought long and hard abour the
problems we were trying to solve and, as he has always done, decided to solve
another problem. He invented BEEP. BEEP helped us solve our metadata manage-
ment problems, but it’s also a core that supports a wide range of applications. BEEP
is an application layer framework, a long-missing building block for the Internet.

Once Marshall wrote (and implemented) the protocol, some of the best minds in the
Internet were asked to review the work. It was then submitted to the IETF for stan-
dardization. This fundamental piece of technology has been a quiet revolution, used
by a growing cadre of developers trying to build new kinds of applications without
repeating old kinds of mistakes.

Marshall has always been one of the seminal thinkers on the Internet. He helped the
Internet vanquish OSI by the then-novel technique of implementing the specs and
showing that they tried to solve so many problems that they solved none. His work
on network management and messaging helped make those two crucial applications

Xi

work. He was releasing open source software long before the term was invented.
And, with BEEP, Marshall has shown us a better way to write network applications.

—Carl Malamud

San Francisco, California

e
xi | Foreword

Preface

BEEP is something like “the missing link between the application layer and TCP.”

This statement is a horrific analogy because TCP is a transport protocol that pro-
vides reliable connections, and it makes no sense to compare a protocol to a layer.
TCP is a highly-evolved protocol; many talented engineers have, over the last 20
years, built an impressive theory and practice around TCP. In fact, TCP is so good at
what it does that when it came to survival of the fittest, it obliterated the competi-
tion. Even today, any serious talk about the transport protocol revolves around
minor tweaks to TCP. (Or, if you prefer, the intersection between people talking
about doing an “entirely new” transport protocol and people who are clueful is the
empty set.)

Unfortunately, most application protocol design has not enjoyed as excellent a his-
tory as TCP. Engineers design protocols the way monkeys try to get to the moon—i.c.,
by climbing a tree, looking around, and finding another tree to climb. Perhaps this is
because there are more distractions at the application layer. For example, as far as
TCP is concerned, its sole reason for being is to provide a full-duplex octet-aligned
pipe in a robust and network-friendly fashion. The natural result is that while TCP’s
philosophy is built around “reliability through retransmission,” there isn’t a com-
mon mantra at the application layer.

Historically, when different engineers work on application protocols, they come up
with different solutions to common problems. Sometimes the solutions reflect differ-
ing perspectives on inevitable tradeoffs; sometimes the solutions reflect different skill
and experience levels. Regardless, the result is that the wheel is continuously re-
invented, but rarely improved.

So, what is BEEP and how does it relate to all this? BEEP integrates the best prac-
tices for common, basic mechanisms that are needed when designing an application
protocol over TCP. For example, it handles things like peer-to-peer, client/server,
and server/client interactions. Depending on how you count, there are abouta dozen

or so issues that arise time and time again, and BEEP just deals with them. This
means that you get to focus on the “interesting stuff.”

BEEP has three things going for it:

* It’s been standardized by the IETF, the so-called “governing body” for Internet
protocols.

* There are open source implementations available in different languages.

+ There’s a community of developers who are clueful.
The standardization part is important, because BEEP has undergone a lot of techni-
cal review. The implementation part is important, because BEEP is probably avail-

able on a platform you’re familiar with. The community part is important, because
BEEP has a lot of resources available for you.

The Intended Audience

This book is not for everyone. It is written with two audiences in mind:

* Designers who want to understand how BEEP works and when to use it
» Developers who want to use one of the open source APIs for BEEP

Please note that there are two market segments excluded from this list:

+ Administrators who want to understand what’s being used in their networks
* Developers who want to write a BEEP library

This book doesn’t focus on administrators because the open source APls for BEEP
don’t have much to offer the administrator. In time, that will likely change, but for
now, there just isn’t much to write about.

For the second audience, if you're going to write an API, this book will help by pro-
viding the context for what your customer expects, but you'll probably have a lot of
questions that this book won’t answer. Why is that?

In brief, it’s a lot simpler to use an API for BEEP than to write one. Although most of
BEEP’s concepts are straightforward, there are a lot of interactions between them
that make for some tricky implementation strategies. Considering that there aren’t
thousands of AP! developers for BEEP, you can see why it’s not a good idea to clut-
ter this book with that kind of detail.

However, assuming that you want to develop an API for BEEP, here’s my gift to
you—a list of issues that your API should transparently handle:

« Encoding piggyback data during channel creation
« Avoiding race conditions when closing a channel

« Enforcing the bidirectional “at most once” limitation on using a SASL mecha-
nism with an active security layer or a transport security profile

xiv | Preface

* Enforcing the unidirectional “at most once” limitation on user authentication

* Making sure that stuff sent by the transport mapping doesn’t interfere with
transport security negotiations

Once you know about stuff like this, developing a robust implementation is a simple

matter of coding. However, my point is that this book does not talk about those
kinds of issues.

In fact, this book is a bit different than most of the books in the O’Reilly series, in
that the concepts/software ratio is about 60/40. (I think that the typical O'Reilly
ratio is closer to 20/80.) So keep this in mind.

Conventions Used in This Book

The following font conventions are used in this book:
Italic is used to introduce new terms and for URLs and filenames.

Constant Width is used to indicate code sections and for methods, objects, interfaces,
class names, and package names.

& »

A
0y

as
O %
“ A}

‘-@ This icon indicates a warning or caution.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or [ocal)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

This icon indicates a tip, suggestion, or general note.

http:/fwww.oreilly.com/catalog/beep
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Preface | xv

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com

Acknowledgments

There’s a long list of people whose work led to this book.

The original work leading up to BEEP was done at Invisible Worlds, a company
founded by Carl Malamud. Carl gets credit for providing the initial problem to get
solved, and allowing the solution to be presented to the IETF. The early work on
BEEP was reviewed by the Invisible Worlds’ Protocol Advisory Board, who, at that
time, consisted of David Clark, David Crocker, Steve Deering, Danny Goodman,
Paul Mockapetris, and Paul Vixie. Also during that time Brad Burdick and Frank
Morton implemented the two initial prototypes of BEEP’s predecessor.

In the standards world, Keith McCloghrie, one of my long-time collaborators on net-
work management, was kind enough to chair the IETF working group for BEEP.
David Crocker, Graham Klyne, and Darren New provided most of the heavy lifting
in the working group and in many BEEP-related activities. Pete Resnick now chairs
the follow-on working group for BEEP.

Back in the real world, Huston Franklin led the group (consisting of Eric Dixon, Jay
Kint, Bill Mills, Scott Pead, and Mark Richardson) that produced two different
implementations of BEEP. Darren New, as Free Radical at Invisible Worlds, was
responsible for design and implementation of the “core” of beepcore-c, while Kris
Magnusson developed and managed the hitp://beepcore.org community web site.
Huston was also kind enough to rework a lot of the beepcore-¢ APl in response to
my first draft of this book. The resulting API is a lot cleaner. (Of course, I then had
to rewrite the chapter, thereby proving the old adage, “In the hell that is the Inter-
net, sinners get exactly what they ask for.”)

Finally, David Crocker, Huston Franklin, Bruce Mitchener, Darren New, Chris New-
man, and Pete Resnick were gracious in their comments as reviewers.

Personal Notes

This is the ninth book I’ve written, and the first for O'Reilly & Associates. If you're
familiar with my earlier works, you may find the following of interest:

e There are no soapboxes or insider index entries in this book, so don't bother
looking—I decided not to renew my liability coverage.

o Cheetah, the alley cat, is now 17 years old and still doing well.

* Heis joined by a 3-year-old, 220-pound Mastiff named Oatman.

xvi | Preface

Or not, as the case may be. Perhaps the more interesting question is, why did I stop
writing books in 1998?

The short answer is that nothing much has happened in the Internet since then—
well, nothing interesting of a technical nature anyway. Although the Internet got a
lot of press, and small fortunes were made and large ones were lost, none of this was
due to technology. T.A. Edison was a brilliant businessman and engineer, yet he
never once applied for a patent on a business process. The things he did patent were
advances in technology. And this, perhaps, provides a concise explanation of the
Internet boom and bust. For myself, I'll confess to having “done” a few start-ups,
and having modestly reduced the performance of several venture funds. While few of
these experiences were good ones, meeting a whole new class of gentry was certainly
educational.

Finally, if you've gorten this far, you've noticed that my writing style is different from
what you find in most of the books in O’Reilly’s excellent series. (Perhaps the pet
update was a tip-off.) While this causes a lot of grief to some, I think it makes my
writing more readable. At the very least, it makes it more writable. Enjoy.

—Marshall T. Rose
Sacramento, California
November, 2001

Preface | xvii

Foreword
Preface

1.

Introduction

Application Protocol Design
The Problem Space

The I[ETF and BEEP
beepcore.org

How This Book Is Organized

Concepts,

Sessions

Channels

Exchanges

Messages

Packet Formats and Traces

Tuning

The Greeting

Channel Management

The TLS Profile

The SASL Family of Profiles

Tuning in Practice

Tuning Profiles Versus Exchange Profiles
The Lifecycle of a Session

Table of Contents

R oRe N S]

10

12
12
15
16
18

21
24
27
28
31
32
32

Appendix: On the Design of Application Protocols

References

Exchanges
Client/Server
Server/Client
Peer-to-Peer
Let’s Recap

BEEP in Java
A Guided Tour
Fundamental Classes

BEEPInG

A Portable Implementation
Echo and Sink
Reliable Syslog

BEEPinTel

Introduction to Tcl SOAP
Adding BEEP Support to the Client
Adding BEEP Support to the Server

Futures

Experiences

Stability and Evolution
Tunneling

Transport Mappings
Finally

34
41
45
46

47
65

78
83
125

143
147
164

175
176
177
178
178

x|

Table of Contents

CHAPTER 1
Introduction

An application protocol is a set of rules that says how your application talks to the
network. Over the last few years, HTTP has been pressed into service as a general-
purpose application protocol for many different kinds of applications, ranging from
the Internet Printing Protocol (IPP) to SOAP. This is great for application designers:
it saves them the trouble of having to design a new protocol and allows them to reuse
a lot of ideas and code.

HTTP has become the reuse platform of choice, largely because:
¢ It is familiar.
» It is ubiquitous.
* It has a simple request/response model.

* It usually works through firewalls.

These are all good reasons, and—if HTTP meets your communications require-
ments—you should use it. The problem is that the widespread availability of HTTP
has become an excuse for not bothering to understand what the requirements really
are. It’s easier to use HTTP, even if it’s not a good fit, than to understand your
requirements and design a protocol that does what you really need.

That’s where BEEP comes in. It’s a toolkit that you can use for building application
protocols. It works well in a wide range of application domains, many of which
weren’t of interest when HT TP was being designed.

BEEP’s goal is simple: you, the protocol designer, focus on the protocol details for
your problem domain, and BEEP takes care of the other details. It turns out that the
vast majority of application protocols have more similarities than differences. The
similarities primarily deal with “administrative overhead™—things you need for a
working system, but aren’t specific to the problem at hand. BEEP mechanizes the
similar parts, and lets you focus on the interesting stuff.

Application Protocol Design

Let’s assume, for the moment, that you don’t see a good fit between the protocol
functions you need and either the email or the Web infrastructures. (We’ll talk more

about this later on in the section “The Problem Space.”) It’s time to make something
new.

First, you decide that your protocol needs ordered, reliable delivery. This is a com-
mon requirement for most application protocols, including HTTP and SMTP. The
easiest way to get this is to layer the protocol over TCP.

So, you decide to use TCP as the underlying transport for your protocol. Of course,
TCP sends data as an octet stream—there aren’t any delimiters that TCP uses to
indicate where one of your application’s messages ends and another one begins. This
means you have to design a framing mechanism that your application uses with TCP.,

That’s pretty simple to do—HTTP uses an octet count and SMTP uses a delimiter
with quoting.

Since TCP is just sending bytes for you, you need to not only frame messages but
also have a way of marking what’s in each message (e.g., a data structure, an image,
some text, and so on). This means you have to design an encoding mechanism that
your application uses with the framing mechanism. That’s also pretty simple to do—
HTTP and SMTP both use something called MIME (which you can find out about in
Programming Internet Email).

Back in the early 80s, when I was a young (but exceptionally cynical) computer sci-
entist, my advisor told me that protocols have two parts: data and control. It looks
like the data part is taken care of with MIME, so it’s onto the control part. If you are
fortunate enough to know ahead of time every operation and option that your proto-
col will ever support, there’s no need for any kind of capabilities negotiation. In
other words, your protocol doesn’t need anything that lets the participants tell each
other which operations and options are supported. (Of course, if this is the case, you
have total recall of future events, and really ought to be making the big money in
another, more speculative, field.)

The purpose of negotiation is to find common ground between two different imple-
mentations of a protocol (or two different versions of the same implementation).
There are lots of different ways of doing this and, unfortunately, most of them don’t
work very well. SMTP is a really long-lived, well-deployed protocol, and it seems to
do a pretty good job of negotiations. The basic idea is for the server to tell the client
what capabilities it supports when a connection is established, and then for the cli-
ent to use a subset of that.

* 1f you're not tamiliar with these acronyms, you'll need to consult some books on Internet basics, such as
Internet Core Protocols: The Definitive Guide by Eric Hall for TCP, HTTP Pocket Reference by Clinton Wong
for HTTP, and Programming Internet Email by David Wood for SMTP. (Of course, since you're designing
an application protocol, presumably you're already familiar with the protocols behind these acronyms.)

2 | Chapter1: Introduction

