// B i HE MM % E MR G

AL ﬁn

— PR 55k

Artificial Intelligence:

Theory and Practice

ety

.. RS & T v : "l

= S

W,
“lﬁ.

Thomas Dean
[£] James Allen &
Yiannis Aloimonos

A
vy ® = 2l e
PEARSON —— ® ;' 2 = & AR %3
% e i Publishing House of Electronics Industry
Wesley =sa== http://www.phei.com.cn

Bl Sh+ BN FEHF R

ALBHgE—IEBiE 5T

(F&XR)

Artificial Intelligence:
Theory and Practice

Thomas Dean
[£] James Allen %

Yiannis Aloimonos

TF I¥ & A AL
Publishing House of Electronics Industry
Jt3t + BEUING

AEEN

HR—FERATEEEARE SR LIRANEA, i = RROA LR BES L RE TR F 3L
HEERGITRFRAL WRB SHE NS, ZBARTBFRFFRER, 1R T RELH+HH RBIKLEH
B, EEEARN THTHRRYEST . MUATREE RN AAR THREER, FIINRERE ., MERE,
FNBTHERME . BMERBESFEAR., BPHANEEREAEG TG EHHA R Lisp TIMITAG, LI
HELBHHFTEH., FH5, FHEAET EFENATEENHRENLH.

AR BRI AL BH . YU BEF LA TR HRRMNEN, GiTEAEATRERAR
RAMBETEENIBERARESSE,

English reprint Copyright © 2003 by PEARSON EDUCATION NORTH ASIA LIMITED and Publishing House of Elec—
tronics Industry.

Artificial Intelligence: Theory and Practice, ISBN: 0805325476 by Thomas Dean, James Allen, and Yiannis Aloimonos.
Copyright © 1995.

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of
Hong Kong and Macau).

A AFECREN KR AL F Tl 4 AR Pearson Education 324 8 H HARIL E WA RA T & H AR . REHIER
FHEAT, FRLUUEM T RE H R EAR BEEAERD

Z B EEH Pearson Education # 4 # F tH ARE AR B RS, THEEFGHEE.

AR B S FIBIES: B 01-2003-0356

EHEMSE (CIP) BiE

ATH8E—38 558k - Artificial Intelligence: Theory and Practice/ (%) i#1% (Dean, T.) &%
-dt5: BT HAREE, 2003.6

(BESMTEVPL S 25)

ISBN 7-5053-8780-4

ToA. I3E. M ATEEE -84 -3 Iv. TP18
HE A EBE CIPEIREZ T (2003) 250432005

ﬁ'ﬁﬁﬁ: B/hIT

Bp R F. dEREARERIT

HARERAT: BFIA AR hitp://www.phei.com.cn
CEREER T HER 173548 BR4%: 100036

% 8. BHFERE

F A 787 x980 1/16 EI: 37 F¥: 829FF

M W: 200346 AS1RR 20034FE 6 A% 1 KERR

E fr: 49.00T

RMECT LN ES, A RB M, AORELEEHR, 2HEE6k, HEEALFHRBLL, BA
wi%5: (010) 68279077

x

£

£

&

1A%

EI

5K BT

HHMHEERS

HHEKFHF
HhER BBt
LR E RS TSR EE
R KEFA LR

FEARREFERERBRK ., &

WKL SHA R
BEIR 5 A RE £ 2 15 R R 7

WHESE BB 2E SHOR R
RS 2SR BRI

SEUNN O EX RN T
EEMBRARR AL L, HLASIR

LBZEREH BB S TRAHR
Lo REAR L EE

F B EPRRIEE L . BB REHE
HEHBIFEFFEE, HETiTEISAEEK

BB ERARRFEH B FBeH R . LA R
HEHITBNEMRBREFIERE RSB FAER

FORFEER LBR¥HE

tH kR % A

QLW S Z 104 EREEREF AR BHERENY, WRERm bR AR KR
AT, AREMAWTO GRS K, BF—LBMRRMEESFH—RITATMLERESSFHEH
HEMAFZ —, BRA¥EMEATHAA WIS SLE, RREENEFRERRIRRXRRER.

401, EHEXEESHERNEERAFIENAERE . TENERNY, hEREHEK
S EBMLE B R AR SRR IETE N F 25 B AR B R @%ﬁ[ﬂ?ﬁﬁ LTS IR AL
b, LR BT RN R - E PRk

B I R AZERFIFEIMEBEBNEE, BFEHRT “BEINTEVREEM &
)" AE, XEFHMBERFFET . S8R, BRE, BELREVIRESH , BEWR A RS
A, LLUERIARIBER . AREL . AERW AT X S TR, T RIGA AT A hse# M A
B XEBMH REOFRT I EIEMSE SEE . RERE. ITENASE5EH . Bk 58I
. BEESESAE ., HEES . BREGREZEEK. S 1TES, Fat, BITHES3HT—
ST R AR, A BB RRUA RSO RAR H 2 AR, X2 5 B EEAR (38 S AR 4444
MR B RR S

FEE B L, BATREERESINES B AR 7 H RS, 1 Pearson Education B4 #{
HHARSEH | MY - BORHE AR . PR TR A . SN A 2, 1S Sk
FEEERMRES A B E , BB - R Douglas E. Comer)., BUEE - $iHEAEH William
Stallings), P4k - B¥F/K (Harvey M. Deitel). JuFHT - 3R (Uyless Black) %,

AR BA BT RMBIERE, RN THERE., Y. tEmsir ke 8
BRF. EWSERAE, BRRE. WA, M/RETI RS, SRy RAERE .
@%ﬂ%&&ﬁ#ﬁ&%ﬁlﬁ%%%@%&%ﬁﬁﬁ%?ﬁﬂ%ﬁT¢%ﬂﬁﬁ%ﬁ@ﬁW%
REALTAE, M 1PBEE PHE RIS A B FHOT . 81, WHRE T IILHFE AR E 5 S
@RI, '

FERRFIBH G, BEMAERIN TR, MRS ERR, RIS T KB@sW T/,
BN BT BT 2SI, BEFAREBE HRIABIE N O XTHERR . EPSIR BT AR L
XHFRSCEH PR BAR, BITET SEEBRSMMN L FTRMRES TR, BT TIET.

M, RATER SEIESL HRA TS, RSB OB, 780 EHR 2T
REFER. /5, RIVEALEINER S EHRBOTHBYVIER, NI K045 E £ ESMEE S
MEEH, AREHENRSHEER SEREEER N BB S,

AL Ll B At

About the Authors

Thomas Dean is a Professor in the Computer Science Department at Brown
University. His general research interests include temporal and spatial rea-
soning, planning, robotics, learning, and probabilistic inference. Professor
Dean’s recent work has led to the design and implementation of a temporal
database system for applications involving mobile robots and factory au-
tomation. He is on the executive council and is a Fellow of the American
Association for Artificial Intelligence (AAAI). He served as the program
co-chair for the 1991 National Conference on Artificial Intelligence. Profes-
sor Dean was also a recipient of the NSF Presidential Young Investigator
Award (1989-1994).

James Allen is the John H. Dessaurer Professor of Computer Science at
the University of Rochester. He is a fellow of the AAAI and was a recipient
of the NSF Presidential Young Investigator Award (1985-1989). In addition,
Professor Allen was the Editor-in-Chief of Computational Linguistics from
1983 to 1993.

Yiannis Aloimonos is an Associate Professor at the Computer Science
Department and the Institute for Advanced Computer Studies of the Uni-
versity of Maryland. He also heads the Computer Vision Laboratory of the
Center for Automation Research. His research interests include computer
vision and the integration of perception, reasoning, and action. He is a re-
cipient of the NSF Presidential Young Investigator Award (1990-1995).

Preface

-I':lis book is designed to introduce students to a set of theoretical and com-
putational techniques that serve as a foundation for the study of artificial
intelligence (Al). The presentation is aimed at students with a background
in computer science at about the sophomore or junior level in college. The
emphasis is on algorithms and theoretical machinery for building and an-
alyzing Al systems. Traditional symbolic Al techniques such as deductive
inference, game-tree search, and natural language parsing are covered, as
are hybrid approaches such as those employed in neural networks, proba-
bilistic inference, and machine vision. The coverage is broad, with selected
topics explored in greater depth but with no attempt to exhaustively sur-
vey the entire field.

Representation

The book focuses on the importance of representation in the core chapters
dealing with logic, search, and learning. It incorporates a more formal treat-
ment of Al than is found in most introductory textbooks. This formal treat-
ment is reflected in the attention given to syntax and semantics in logic and
in the material concerning the computational complexity of Al algorithms.

The material on learning draws on recent unifying work in computational
learning theory to explain a variety of techniques from decision trees to
neural networks.

The book provides a consistent pedagogic example of Al in the real
world through examples focusing on Al systems corresponding to robots
and software automation “softbots.” A wide range of other examples are
also introduced to characterize both the potential and the variety of Al
applications. The chapters on natural language processing, planning, un-
certainty, and vision supply a state-of-the-art perspective unifying existing
approaches and summarizing challenging areas for future research.

This book is not meant as an exhaustive survey of Al techniques. Sub-
jects such as qualitative reasoning about physical systems and analogical
reasoning are only briefly touched on in this text. Other subjects are given
much more attention in this book than in traditional texts. Learning, plan-
ning, and probabilistic reasoning are treated in some depth, reflecting their
increased importance in the field. The chapter on vision (Chapter 9, Image
Understanding) is substantial in its coverage of topics to reflect the impor-
tance of perception in understanding intelligence and building artifacts that
interact with the world in useful and interesting ways.

Theory and Practice

Although the text emphasizes theoretical foundations, practical problems
involved with the implementation of Al algorithms are addressed in every
chapter. A selfcontained introduction to symbolic programming in Com-
mon Lisp is provided to encourage students to perform computational ex-
periments. Lisp code is given for many of the important algorithms de-
scribed in the text; however, the text is designed so that the student can
ignore Lisp and implementation issues altogether if he or she chooses. The
code uses a carefully chosen subset of Common Lisp to teach algorithmic
issues in Al In contrast, other texts use Al algorithms to teach Lisp pro-
gramming techniques.

All the algorithms in the text are described in English prose and pseudo
code. In the case of algorithms that are also given in Lisp, most of the
time the code appears in a Lisp Implementation appendix at the end of
the chapter, but on some occasions it appears in the main body of the
chapter. Code appears in the main body when it is considered particularly
important that the student explore the underlying issues empirically. With
most of the Lisp code relegated to appendices, instructors are free to choose
the areas they want to emphasize empirically. The tight coupling between
the descriptions of algorithms in the text and the accompanying Lisp code
makes it easy for students to experiment, without the bother of using two
texts with different perspectives and algorithmic approaches.

We use Lisp instead of Prolog because Lisp is closest in structure to
languages such as Pascal and C that students are likely to be familiar with.
We use Lisp instead of Pascal or C because the list processing and symbuolic
manipulation routines available in Lisp allow for elegant implementations
of important algorithms that can be compactly listed. Note, however, that
a library of C++ code is available (see the section on “Supplements”) thai
mirrors the Comron Lisp treatment in the text function for function and

algorithm for algorithm.

To the Student

Preface material is usually aimed at instructors who are thinking of adopting
a text for a course. Generally, students cut straight to the first chapter or the
table of contents to get some idea of what the book is about. This book is (i
signed to teach students about the theory and practice of building computer
programs that perform interesting and useful tasks. With the exception of
some diversions in the introductory chapter, we leave the philosophical co-
nundrums to the philosophers and focus on techniques, algorithms, and
analytical tools that we believe students will find useful in building sophis-
ticated (even intelligent) computer programs.

The book describes precise problems, analyzes them from a computa-
tional perspective, and specifies efficient algorithms for their solution where
possible. Along the way, we provide the necessary logic, computer science,
and mathematics for you to understand the important issues and ultimately
develop your own solutions and propose your own problems. Our hope is
that you will find the techniques and ideas in this book useful, whether you
pursue a career in engineering, computer science, business management, ot
any other area that requires you to think in terms of computational pro-
cesses that have to interact with a complex and changing world.

To the Instructor
The core material in the book is in the first five chapters covering basic
introductory and motivational material, symbolic programming for courses
interested in implementation, representation and logic, search, and learning.
Within these core chapters, instructors have considerable flexibility regard-
ing what to include and how much time to spend on particular topics.
The choice of topics and allocation of lecture time will depend on the
background of the students taking the course. Often students have a rea-
sonable background in boolean logic from a previous course in computer
science, engineering, or mathematics, in which case the chapter on represen-
tation and Iogic can move along rather quickly. Search issues are generaily
familiar to computer science students, and the basic blind-search methods,
including depth-first and breadth-first search, should take very little time.

~

Image Understanding Natrral Language Processing Uncertainty Planning

Figure 1 This graph illustrates some of the dependencies and connections among
the chapters in this text. A solid line indicates a strong dependency between two
chapters, and a dashed line indicates a connection or conditional dependency be-
tween two chapters that an instructor may wish to consider.

We recommend spending a significant amount of time on learning since
the area is reasonably mature, the issues dramatically illustrate the role of
representation and search, and students are generally fascinated with the
prospect of building systems that learn.

Representation appears before search in the order of chapters because
representation is the more fundamental idea as far as Al is concerned. We
emphasize logic because it enables students to think precisely about rep-
resentation. Pedagogically, there are situations that merit covering search
before representation; if you are teaching Lisp and this is the students’
first exposure to Lisp and symbolic programming, consider covering the
search chapter first because the examples of search procedures provide a
somewhat easier introduction to Lisp programming issues. With the ex-
ception of the section on discrimination networks at the end of the search
chapter, the representation and search chapters can be covered in either
order.

Figure 1 illustrates some of the dependencies and connections among
the chapters in this text. A solid line indicates that one chapter should be
covered before another chapter in order to fully understand all the material.
A dashed line indicates a connection between two chapters that an instruc-
tor may wish to emphasize or a conditional dependency that an instructor
may wish to account for. For example, the section on spatial representa-
tion and robot navigation in Chapter 6 (Advanced Representation) can be
used to motivate and set the stage for topics covered in Chapter 9 (Image
Understanding). All the chapters are conditionally dependent on Chapter 2
(Symbolic Programming) if implementation issues are to be covered and the
students require instruction in symbolic programming methods. Additional
information regarding chapter dependencies and synergies as well as sug-
gestions for course syllabi are available in the Instructors Resource Guide
(see the section on “Supplements”).

Supplements

Source supplemental materials for this book are available via anonymous
FTP from aw.com in the subdirectory aw/dean. The supplemental materials for
the book include the following items:

¢ Instructor’s Guide and Sclutions Manual—contain notes on each chapter,
solutions to selected exercises, additional exercises for the Lisp (Chapter 2)
and vision (Chapter 9) chapters, and sample exams with answers. This
guide is available only on a 33” disk from the publisher (ISBN 32548-4).

e Selected figures—selected figures in encapsulated PostScript format are
available for overhead transparencies.

o Source code—the sample source code contained in the text is available
in both Lisp and C++ implementations. Other implementations may be
available (for example, the Scheme dialect of Lisp); check the README file
in bc/dean for current status and recent developments.

To obtain the supplemental materials, FIP to bc.aw.com as follows:

% ftp av.com

and log on as anonymous. Use your electronic mail address as your password
and connect to the directory for this book by typing

% cd aw/dean

Before retrieving supplements, it is a good idea to look at the README file
to see if changes have been made since this book went to press. You can
retrieve this file by typing

% get README

Type quit to exit FIP and read the README file. (Although you could read
the file online, it is courteous not to load the FTP server while you are just
reading.) Then log back on when you are ready to download the files that
you want. Using FTP to retrieve archived files can get complicated. The
README file will give you some additional advice, but you may find it helpful
to consult your favorite UNIX guide or local artwork wizard.

Thanks

We benefited from the efforts of many previous authors in organizing the
material covered in this text and figuring out how to present the mate-
rial to students. In particular, we would like to acknowledge the texts by
Charniak and McDermott [1985], Nilsson [1980], and Winston [1979] that
provided our first introductions to Al. We are also indebted to Davis [1990],
Genesereth and Nilsson [1987], Ginsberg [1993], and Winston [1992], whose
books we consulted while writing this text.

+ 10

A lot of friends and colleagues contributed to this book by providing
feedback to the authors during crucial times during its writing. In particular,
we would like to thank the following people:

Mark Boddy Robert Goldman Bart Selman
Chris Brown Steve Hanks Jude Shavlik
Jack Breese Eric Horvitz Yoav Shoham
Eugene Charniak Leslie Kaelbling =~ Mike Shwe
Ernie Davis Paris Kanellakis Austin Tate
Mark Drummond Richard Korf Prasad Tadepalli
Charles Dyer Tom Mitchell Dan Weld

Nort Fowler Ann Nicholson Mike Wellman

The production and editorial help from Addison-Wesley Publishing
Company was exceptional. We would like to thank Carter Shanklin, the Ac-
quisitions Editor for Computer Science at Addison-Wesley, for shepherding
us through the entire process. Judith Hibbard, the Senior Production Edi-
tor, Melissa Standen, the Editorial Assistant, and Ari Davidow, the Tech-
nical Production Assistant, were amazingly helpful at all the right times.
We would also like to thank Sara Larson from the University of Maryland
at College Park, who helped with the vision chapter, and Mary Andrade
and Dawn Nichols from Brown University, who provided invaluable as-
sistance in keeping track of the many drafts and handling the extensive
correspondence that was required.

A large number of students also provided feedback while we were
writing the text, far too many to list, but the following deserve special
mention:

Scott Baetz Michael Littman

Ted Camus Mike Perkowitz

Lloyd Greenwald Kostadis Roussos

Shieu-Hong Lin Smith Surasmith
A special thanks goes to Jon Monsarrat for his unflagging enthusiasm for
the project and for the many hours he spent hacking UNIX, PostScript, and
WIpX. Finally, each of us would like to thank our respective spouses and
loved ones for being supportive when it was needed most.

Thomas Dean
James Allen
Yiannis Aloimonos

% 1 ﬁ %iﬁ ... 1
Introduction

F = 3=~ DO O P 23
Symbolic Programming

Gl S b O S 71
Representation and Logic

% 4 ﬁ- E% .. 131
Search

% 5 ﬁ 30 D L LT T T P PP 179
Learning

% 6 % Eﬁ%ﬁ .. 255
Advanced Representation

% 7 E %{}Jﬁu .. 297
Planning

% 8 ﬁ‘ Z:m %ﬁ .. 355
Unecertainty)

% 9 ﬁ @@gﬁ .. 409
Image Understanding

% 10 ﬁ 2| %i%g&t}g .. 489
Natural Language Processing

%{%Xﬂ ... 539

Bibliography

TAIEARB| reeeerrrrre i s TN 551

Vocabulary Index

Code Index

1 INTRODUCTION

11

1.2

13
1.4

1.5

1.6

Contents

Robot Explorers, 2

Artificial Intelligence in Practice 3
Examples of Artificial Intelligence Systems, 4
Artificial Intelligence Theory 5
Examples of Artificial Intelligence Theory, 6

Identifying and Measuring Intelligence 7

Computational Theories of Behavior 9
Representation, 10

Syntax and Semantics, 11

Automated Reasoning 12

Inference and Symbolic Manipulation, 13
ing Common-Sense Knowledge, 14
Combinatorial Problems and Search, 14

Complexity and Expressivity, 15
How This Book Is Organized 16

<11

<12 -

Summary 18
Background 19

Exercises 20

2 SYMBOLIC PROGRAMMING

21

22

23

24

25

26

27

28

Rule-Based Reactive System Example 25
Representing Sensors and Sensor Values as Symbols, 26

Introduction to Lisp 27
Programming Language Requirements, 27
Common Lisp, 27

Lists and Lisp Syntax, 28

Symbeols, 28

Programs and Documentation, 28

Interacting with Lisp 29
The Lisp Interpreter, 29
Functions in Lisp 31
Function Invocation, 31
Procedural Abstraction, 32
Conditional Statements, 33
Recursive Functions, 35
Evaluating Functions in Files, 35
Environments, Symbols, and Scope 36
Assigning Values to Symbols, 36
Eval and Apply Revisited, 37
Structured Environments, 38
Local Variables, 39

Lexical Scoping, 40

More on Functions 42

Functions with Local State, 42

Lambda and Functions as Arguments, 43
List Processing 44

Suspending Evaluation Using Quote, 44
Building and Accessing Elements in Lists, 45
Lists in Memory, 45

Modifying List Structures in Memory, 46
Alternative Parameter-Passing Conventions, 47
Predicates on Lists, 48

Built-In List Manipulation Functions, 48
Optional Arguments, 49

List-Processing Examples, 49

Data Abstraction, 51

Iterative Constructs 53
Mapping Functions to Arguments, 53

29

210

General lteration, 54
Simple Iteration, 55

Monitoring and Debugging Programs 56

Tracing and Stepping Through Programs, 56
Formatted Output, 58

Rule-Based Reactive System Revisited 58
Summary 64
Background 65

Exercises 65

REPRESENTATION AND LOGIC

3.1

3.2

3.3

34

35

3.6

Propositional Logic 73
Syntax for P, 74
Semantics for P, 75

Formal System for P 76

Logical Axioms of P, 77

Normal Forms, 78

Rules of Inference, 79

Proofs and Theorems, 79

Resolution Rule of Inference, 80
Completeness, Soundness, and Decidability, 81
Computational Complexity, 82

Solving Problems with Logic, 82

Automated Theorem Proving in P 84

Goal Reduction in P, 85
Proof by Contradiction, 87

Predicate Calculus 88

Syntax for PC, 89

Translating English Sentences into Logic, 90
More About Quantification, 91

Semantics for PC, 91

Formal System for PC 93
Specifying Programs in Prolog, 94
Eliminating Quantifiers, 94

Learning and Deductive Inference, 96
Decidability, 98

Automated Theorem Proving in PC 99
Matching and Universal Instantiation, 99
Goal Reduction in PC, 101

Unification, 103

Concept Description Languages, 107
Semantic Networks, 108

71

3.8

Nonmonotonic Logic 109

Closed-World Assumption, 109

Abductive and Default Reasoning, 111
Minitnal Models, 112

Deductive Retrieval Systems 113

Forward and Backward Chaining, 114
Reason Maintenance Systems, 116
MNonmonotenic Data Dependencies, 118

Surnmary 119

Background 121

Exercises 122

Lisp Implementation: Data Dependencies 127

4 SEARCH

41

4.2

43

4.4

4.5

4.6

Basic Search Issues 133

Search Spaces and Operators, 134
Appliance Assembly Example, 135
Exploiting Structure to Expedite Search, 136

Blind Search 137

Depth-First Search, 138

Depth-First Search Is Space Efficient, 139

Breadth-First Search, 140

Breadth-First Search Is Guaranteed, 141
Iterative-Deepening Search, 141

Iterative-Deepening Search Is Asymptotically Optimal, 143
Searching in Graphs, 144

Heuristic Search 144

Best-First Search, 145

Admissible Evaluation Functions, 146
Optimization and Search 149
Hill-Climbing Search, 149

Local Minima and Maxima, 151

Gradient Search, 153

Simulated Annealing, 153

Simulated Evolution and Genetic Algorithms, 154
Application to Vehicle Routing, 158
Adversary Search 160

Minimax Search, 160

a-3 Search, 163

Indexing in Discrimination Trees 166

Storing and Retrieving Predicate Calculus Formulas, 167
Decision Trees, 168

131

