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Preface

-I':lis book is designed to introduce students to a set of theoretical and com-
putational techniques that serve as a foundation for the study of artificial
intelligence (Al). The presentation is aimed at students with a background
in computer science at about the sophomore or junior level in college. The
emphasis is on algorithms and theoretical machinery for building and an-
alyzing Al systems. Traditional symbolic Al techniques such as deductive
inference, game-tree search, and natural language parsing are covered, as
are hybrid approaches such as those employed in neural networks, proba-
bilistic inference, and machine vision. The coverage is broad, with selected
topics explored in greater depth but with no attempt to exhaustively sur-
vey the entire field.

Representation

The book focuses on the importance of representation in the core chapters
dealing with logic, search, and learning. It incorporates a more formal treat-
ment of Al than is found in most introductory textbooks. This formal treat-
ment is reflected in the attention given to syntax and semantics in logic and
in the material concerning the computational complexity of Al algorithms.



The material on learning draws on recent unifying work in computational
learning theory to explain a variety of techniques from decision trees to
neural networks.

The book provides a consistent pedagogic example of Al in the real
world through examples focusing on Al systems corresponding to robots
and software automation “softbots.” A wide range of other examples are
also introduced to characterize both the potential and the variety of Al
applications. The chapters on natural language processing, planning, un-
certainty, and vision supply a state-of-the-art perspective unifying existing
approaches and summarizing challenging areas for future research.

This book is not meant as an exhaustive survey of Al techniques. Sub-
jects such as qualitative reasoning about physical systems and analogical
reasoning are only briefly touched on in this text. Other subjects are given
much more attention in this book than in traditional texts. Learning, plan-
ning, and probabilistic reasoning are treated in some depth, reflecting their
increased importance in the field. The chapter on vision (Chapter 9, Image
Understanding) is substantial in its coverage of topics to reflect the impor-
tance of perception in understanding intelligence and building artifacts that
interact with the world in useful and interesting ways.

Theory and Practice

Although the text emphasizes theoretical foundations, practical problems
involved with the implementation of Al algorithms are addressed in every
chapter. A selfcontained introduction to symbolic programming in Com-
mon Lisp is provided to encourage students to perform computational ex-
periments. Lisp code is given for many of the important algorithms de-
scribed in the text; however, the text is designed so that the student can
ignore Lisp and implementation issues altogether if he or she chooses. The
code uses a carefully chosen subset of Common Lisp to teach algorithmic
issues in Al In contrast, other texts use Al algorithms to teach Lisp pro-
gramming techniques.

All the algorithms in the text are described in English prose and pseudo
code. In the case of algorithms that are also given in Lisp, most of the
time the code appears in a Lisp Implementation appendix at the end of
the chapter, but on some occasions it appears in the main body of the
chapter. Code appears in the main body when it is considered particularly
important that the student explore the underlying issues empirically. With
most of the Lisp code relegated to appendices, instructors are free to choose
the areas they want to emphasize empirically. The tight coupling between
the descriptions of algorithms in the text and the accompanying Lisp code
makes it easy for students to experiment, without the bother of using two
texts with different perspectives and algorithmic approaches.



We use Lisp instead of Prolog because Lisp is closest in structure to
languages such as Pascal and C that students are likely to be familiar with.
We use Lisp instead of Pascal or C because the list processing and symbuolic
manipulation routines available in Lisp allow for elegant implementations
of important algorithms that can be compactly listed. Note, however, that
a library of C++ code is available (see the section on “Supplements”) thai
mirrors the Comron Lisp treatment in the text function for function and

algorithm for algorithm.

To the Student

Preface material is usually aimed at instructors who are thinking of adopting
a text for a course. Generally, students cut straight to the first chapter or the
table of contents to get some idea of what the book is about. This book is (i
signed to teach students about the theory and practice of building computer
programs that perform interesting and useful tasks. With the exception of
some diversions in the introductory chapter, we leave the philosophical co-
nundrums to the philosophers and focus on techniques, algorithms, and
analytical tools that we believe students will find useful in building sophis-
ticated (even intelligent) computer programs.

The book describes precise problems, analyzes them from a computa-
tional perspective, and specifies efficient algorithms for their solution where
possible. Along the way, we provide the necessary logic, computer science,
and mathematics for you to understand the important issues and ultimately
develop your own solutions and propose your own problems. Our hope is
that you will find the techniques and ideas in this book useful, whether you
pursue a career in engineering, computer science, business management, ot
any other area that requires you to think in terms of computational pro-
cesses that have to interact with a complex and changing world.

To the Instructor
The core material in the book is in the first five chapters covering basic
introductory and motivational material, symbolic programming for courses
interested in implementation, representation and logic, search, and learning.
Within these core chapters, instructors have considerable flexibility regard-
ing what to include and how much time to spend on particular topics.
The choice of topics and allocation of lecture time will depend on the
background of the students taking the course. Often students have a rea-
sonable background in boolean logic from a previous course in computer
science, engineering, or mathematics, in which case the chapter on represen-
tation and Iogic can move along rather quickly. Search issues are generaily
familiar to computer science students, and the basic blind-search methods,
including depth-first and breadth-first search, should take very little time.

~



Image Understanding Natrral Language Processing Uncertainty Planning

Figure 1 This graph illustrates some of the dependencies and connections among
the chapters in this text. A solid line indicates a strong dependency between two
chapters, and a dashed line indicates a connection or conditional dependency be-
tween two chapters that an instructor may wish to consider.

We recommend spending a significant amount of time on learning since
the area is reasonably mature, the issues dramatically illustrate the role of
representation and search, and students are generally fascinated with the
prospect of building systems that learn.

Representation appears before search in the order of chapters because
representation is the more fundamental idea as far as Al is concerned. We
emphasize logic because it enables students to think precisely about rep-
resentation. Pedagogically, there are situations that merit covering search
before representation; if you are teaching Lisp and this is the students’
first exposure to Lisp and symbolic programming, consider covering the
search chapter first because the examples of search procedures provide a
somewhat easier introduction to Lisp programming issues. With the ex-
ception of the section on discrimination networks at the end of the search
chapter, the representation and search chapters can be covered in either
order.

Figure 1 illustrates some of the dependencies and connections among
the chapters in this text. A solid line indicates that one chapter should be
covered before another chapter in order to fully understand all the material.
A dashed line indicates a connection between two chapters that an instruc-
tor may wish to emphasize or a conditional dependency that an instructor
may wish to account for. For example, the section on spatial representa-
tion and robot navigation in Chapter 6 (Advanced Representation) can be
used to motivate and set the stage for topics covered in Chapter 9 (Image
Understanding). All the chapters are conditionally dependent on Chapter 2
(Symbolic Programming) if implementation issues are to be covered and the
students require instruction in symbolic programming methods. Additional
information regarding chapter dependencies and synergies as well as sug-
gestions for course syllabi are available in the Instructors Resource Guide
(see the section on “Supplements”).



Supplements

Source supplemental materials for this book are available via anonymous
FTP from aw.com in the subdirectory aw/dean. The supplemental materials for
the book include the following items:

¢ Instructor’s Guide and Sclutions Manual—contain notes on each chapter,
solutions to selected exercises, additional exercises for the Lisp (Chapter 2)
and vision (Chapter 9) chapters, and sample exams with answers. This
guide is available only on a 33” disk from the publisher (ISBN 32548-4).

e Selected figures—selected figures in encapsulated PostScript format are
available for overhead transparencies.

o Source code—the sample source code contained in the text is available
in both Lisp and C++ implementations. Other implementations may be
available (for example, the Scheme dialect of Lisp); check the README file
in bc/dean for current status and recent developments.

To obtain the supplemental materials, FIP to bc.aw.com as follows:

% ftp av.com

and log on as anonymous. Use your electronic mail address as your password
and connect to the directory for this book by typing

% cd aw/dean

Before retrieving supplements, it is a good idea to look at the README file
to see if changes have been made since this book went to press. You can
retrieve this file by typing

% get README

Type quit to exit FIP and read the README file. (Although you could read
the file online, it is courteous not to load the FTP server while you are just
reading.) Then log back on when you are ready to download the files that
you want. Using FTP to retrieve archived files can get complicated. The
README file will give you some additional advice, but you may find it helpful
to consult your favorite UNIX guide or local artwork wizard.
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