FRER®R « 2R\ C++ &7

L+ GOICNAS)

@mvamu&a

www.infopower.com.cn

NEAR - EA C++ 25

C++ Gotchas (=)

[2]Stephen C. Dewhurst %

t@D AL 2

C++ Gotchas: Avoiding Common Problems in Coding and Design(ISBN 0-321-12518-5)
Stephen C. Dewhurst

Copyright © 2003 Addison Wesley , Inc.

Original English Language Edition Published by Addison Wesley longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

AP ER A Pearson Education I FE &8 H AT EEA (. BIISNITRR NG
RERS) BFINR. RIT.
RAHIREBEET, AEUEAARERRDELBREMTS.

i 4 HWH Pearson Education (MfEMH HRER BOLBIHRE, THHEEARIKE.
For sale and distribution in the People’s Republic of China exclusively(except Taiwan, Hong Kong
SAR and Macao SAR)

NBTFHEARAMEEN (RAFTEEE. RIEFHNTBREAPEGERK) #HERT
ItETHINEEESRRIZS: EF: 01-2003-2440

BBEMSBE (CI1P) BUE

C++ Gotchas / () HiFiEE. Beik, —Ibng. THE®EHRRE, 2003
RAR AR « A C++RFD)

ISBN 7-5083-1494-8

[.C.. I NLCEF-BF&I—XXL N.TP3I12

vh R AR B Crp HiEZE (2003) 3 023116 5

WiEaS: St

A B 4 FRRAE - BACHRT

$ 4: C++ Gotchas GEENRRD

% 3E: () Stephen C. Dewhurst

H R & hEEHHARR
Wbk LR =REAKES MBI 100044 -
BiE: (010) 88515918 fEE: (010) 88423191

B: bR ENR)

A: 787X1092 1/16 B 3k: 215

B ISBN 7-5083-1494-8

W 20034E6 AL B IR

W: 200346 HE—KETR

. 45.00 7

oA HD

To John Carolan

Preface

This book is the result of nearly two decades of minor frustrations, serious bugs,
late nights, and weekends spent involuntarily at the keyboard. This collection
consists of 99 of some of the more common, severe, or interesting C++ gotchas,
most of which I have (I'm sorry to say) experienced personally.

The term “gotcha” has a cloudy history and a variety of definitions. For purposes of
this book, we’ll define C++ gotchas as common and preventable problems in C++
programming and design. The gotchas described here run the gamut from minor
syntactic annoyances to basic design flaws to full-blown sociopathic behavior.

Almost ten years ago, I started including notes about individual gotchas in my
C++ course material. My feeling was that pointing out these common miscon-
ceptions and misapplications in apposition to correct use would inoculate the
student against them and help prevent new generations of C++ programmers
from repeating the gotchas of the past. By and large, the approach worked, and 1
was induced to collect sets of related gotchas for presentation at conferences.
These presentations proved to be popular (misery loves company?), and I was
encouraged to write a “gotcha” book.

Any discussion of avoiding or recovering from C++ gotchas involves other sub-
jects, most commonly design patterns, idioms, and technical details of C++ lan-
guage features.

This is not a book about design patterns, but we often find ourselves referring to
patterns as a means of avoiding or recovering from a particular gotcha. Conven-
tionally, the pattern name is capitalized, as in “Template Method” pattern or
“Bridge” pattern. When we mention a pattern, we describe its mechanics briefly if
they’re simple but delegate detailed discussion of patterns to works devoted to
them. Unless otherwise noted, a fuller description of a pattern, as well as a richer
discussion of patterns in general, may be found in Erich Gamma et al’s Design
Patterns. Descriptions of the Acyclic Visitor, Monostate, and Null Object patterns
may be found in Robert Martin’s Agile Software Development.

From the perspective of gotchas, design patterns have two important properties.
First, they describe proven, successful design techniques that can be customized
in a context-dependent way to new design situations. Second, and perhaps more

xi

Xii

Preface

important, mentioning the application of a particular pattern serves to document

not only the technique applied but also the reasons for its application and the
effect of having applied it.

For example, when we see that the Bridge pattern has been applied to a design, we
know at a mechanical level that an abstract data type implementation has been
separated into an interface class and an implementation class. Additionally, we
know this was done to separate strongly the interface from the implementation,
so changes to the implementation won’t affect users of the interface. We also
know this separation entails a runtime cost, how the source code for the abstract
data type should be arranged, and many other details.

A pattern name is an efficient, unambiguous handle to a wealth of information
and experience about a technique. Careful, accurate use of patterns and pattern
terminology in design and documentation clarifies code and helps prevent gotchas
from occurring.

C++ is a complex programming language, and the more complex a language, the
more important is the use of idiom in programming. For a programming lan-
guage, an idiom is a commonly used and generally understood combination of
lower-level language features that produces a higher-level construct, in much the
same way patterns do at higher levels of design. Therefore, in C++ we can discuss
copy operations, function objects, smart pointers, and throwing an exception
without having to specify these concepts at their lowest level of implementation.

It’s important to emphasize that an idiom is not only a common combination of
language features but also a common set of expectations about how these com-
bined features should behave. What do copy operations mean? What can we
expect to happen when an exception is thrown? Much of the advice found in this
book involves being aware of and employing idioms in C++ coding and design.
Many of the gotchas listed here could be described simply as departing from a
particular C++ idiom, and the accompanying solution to the problem could
often be described simply as following the appropriate idiom (see Gotcha #10).

A significant portion of this book is spent describing the nuances of certain areas
of the C++ language that are commonly misunderstood and frequently lead to
gotchas. While some of this material may have an esoteric feel to it, unfamiliarity
with these areas is a source of problems and a barrier to expert use of C++. These
“dark corners” also make an interesting and profitable study in themselves. They
are in C++ for a reason, and expert C++ programmers often find use for them in
advanced programming and design.

Preface xiii

Another area of connection between gotchas and design patterns is the similar
importance of describing relatively simple instances. Simple patterns are impor-
tant. In some respects, they may be more important than technically difficult pat-
terns, because they’re likely to be more commonly employed. The benefits
obtained from the pattern description will, therefore, be leveraged over a larger
body of code and design.

In much the same way, the gotchas described in this book cover a wide range
of difficulty, from a simple exhortation to act like a responsible professional
(Gotcha #12) to warnings to avoid misunderstanding the dominance rule under
virtual inheritance (Gotcha #79). But, as in the analogous case with patterns,
acting responsibly is probably more commonly applicable on a day-to-day basis
than is the dominance rule.

Two common themes run through the presentation. The first is the overriding
importance of convention. This is especially important in a complex language
like C++. Adherence to established convention allows us to communicate effi-
ciently and accurately with others. The second theme is the recognition that
others will maintain the code we write. The maintenance may be direct, so that
our code must be readily and generally understood by competent maintainers,
or it may be indirect, in which case we must ensure that our code remains cor-
rect even as its behavior is modified by remote changes.

The gotchas in this book are presented as a collection of short essays, each of which
describes a gotcha or set of related gotchas, along with suggestions for avoiding
or correcting them. I'm not sure any book about gotchas can be entirely cohesive,
due to the anarchistic nature of the subject. However, the gotchas are grouped into
chapters according to their general nature or area of (mis)applicability.

Additionally, discussion of one gotcha inevitably touches on others. Where it
makes sense to do so—and it generally does—I've made these links explicit.
Cohesion within each item is sometimes at risk as well. Often it’s necessary,
before getting to the description of a gotcha, to describe the context in which it
appears. That description, in turn, may require discussion of a technique, idiom,
pattern, or language nuance that may lead us even further afield before we return
to the advertised gotcha. I've tried to keep this meandering to a minimum, but it
would have been dishonest, I think, to attempt to avoid it entirely. Effective pro-
gramming in C++ involves intelligent coordination of so many disparate areas
that it’s impractical to imagine one can examine its etiology effectively without
involving a similar eclectic collection of topics.

It’s certainly not necessary—and possibly inadvisable—to read this book straight
through, from Gotcha #1 to Gotcha #99. Such a concentrated dose of mayhem

xiv Preface

may put you off programming in C++ altogether. A better approach may be to
start with a gotcha you’ve experienced or that sounds interesting and follow links
to related gotchas. Alternatively, you may sample the gotchas at random.

The text employs a number of devices intended to clarify the presentation. First,
incorrect or inadvisable code is indicated by a gray background, whereas correct and
proper code is presented with no background. Second, code that appears in the text
has been edited for brevity and clarity. As a result, the examples as presented often
won’t compile without additional, supporting code. The source code for nontrivial
examples is available from the author’s Web site: www.semantics.org. All such code
is indicated in the text by an abbreviated pathname near the code example, as in
»» gotcha00/somecode.cpp.

Finally, a warning: the one thing you should not do with gotchas is elevate them
to the same status as idioms or patterns. One of the signs that you're using pat-
terns and idioms properly is that the pattern or idiom appropriate to the design
or coding context will arise “spontaneously” from your subconscious just when
you need it.

Recognition of a gotcha is analogous to a conditioned response to danger: once
burned, twice shy. However, as with matches and firearms, it’s not necessary to suf-
fer a burn or a gunshot wound to the head personally to learn how to recognize
and avoid a dangerous situation; generally, all that’s necessary is advance warning.
Consider this collection a means to keep your head in the face of C++ gotchas.

Stephen C. Dewhurst
Carver, Massachusetts
July 2002

Acknowledgments

Editors often get short shrift in a book’s acknowledgments, sometimes receiving
only a token “ .. and I also thank my editor, who surely must have been doing
something while I was slaving over the manuscript.” Debbie Lafferty, my editor, is
responsible for the existence of this book. When I came to her with a mediocre
proposal for a mediocre introductory programming text, she instead suggested
expanding a section on gotchas into a book. I refused. She persisted. She won.
Fortunately, Debbie is gracious in victory, and she has yet to utter an editorial
“We told you so.” Additionally, she surely must have been doing something while
1 slaved over the manuscript.

I would also like to thank the reviewers who lent their time and expertise to help
make this a better book. Reviewing an unpolished manuscript is a time-consuming,
often tedious, sometimes irritating, and nearly thankless task of professional cour-
tesy (see Gotcha #12), and the reviewers’ insightful and incisive comments were
much appreciated. Steve Clamage, Thomas Gschwind, Brian Kernighan, Patrick
McKillen, Jeffrey Oldham, Dan Saks, Matthew Wilson, and Leor Zolman con-
tributed advice on technical issues and social propriety, corrections, code snippets,
and an occasional snide remark.

Leor started review long before the manuscript was written, by sending me
barbed comments on Web postings that were early versions of some of the
gotchas appearing in this book. Sarah Hewins, my best friend and severest critic,
earned both titles while reviewing various versions of the manuscript. David R.
Dewhurst frequently put the entire project into perspective. Greg Comeau lent
use of his marvelously standard C++ compiler for checking the code.

Like any nontrivial work about C++, this book is an amalgam of the work of
many people. Over the years, many of my students, clients, and colleagues have
augmented my unhappy facility for stumbling across C++ gotchas, and many of
them have helped find solutions for them. While most of these contributions can
no longer be acknowledged explicitly, it is possible to acknowledge more direct
contributions:

The Select template of Gotcha #11 and the OpNewCreator policy of Gotcha #70
appear in Andrei Alexandrescu’s Modern C++ Design.

Xv

xvi

Acknowledgments

I first encountered the problem of returning a reference to constant argument,
described in Gotcha #44, in Cline et al’s C++ FAQs (it began to appear in my
clients’ code immediately thereafter). Cline et al. also describe the technique men-
tioned in Gotcha #73 for circumventing overloaded virtual functions.

The Cptr template of Gotcha #83 is a modified version of the CountedPtr tem-
plate that appeared in Nicolai Josuttis’s The C++ Standard Library.

Scott Meyers has more to say about the improper overloading of operators &,
[, and ,, described in Gotcha #14, in his More Effective C++. He describes in
more detail the necessity of value return from a binary operator, as discussed in
Gotcha #58, in Effective C++ and describes the improper use of auto_ptr, treated
in Gotcha #68, in Effective STL. The technique, mentioned in Gotcha #87, of
returning a const from postfix increment and decrement operators is described in
his More Effective C++.

Dan Saks presented the first cogent arguments [had heard for the forward decla-
ration file approach described in Gotcha #8; he was also the first to identify the
“Sergeant operator” of Gotcha #17, and he convinced me not to range-check
increment and decrement on enum types, mentioned in Gotcha #87.

Herb Sutter’s More Exceptional C++, Item 36, caused me to reread section 8.5 of
the standard and update my understanding of formal argument initialization (see
Gotcha #57).

Some of the material of Gotchas #10, #27, #32, #33, #38—#41, #70, #72-#74, #89,
#90, #98, and #99 appeared in my “Common Knowledge” column that ran ini-
tially in C++ Report and later in The C/C++ Users Journal.

C++ Gotchas

Contents

Chapter 1

Chapter 2

Preface

Acknowledgments

Basics

Gotcha #1:
Gotcha #2:
Gotcha #3:
Gotcha #4:
Gotcha #5:
Gotcha #6:
Gotcha #7:
Gotcha #8:
Gotcha #9:

Gotcha #10:
Gotcha #11:
Gotcha #12;

Syntax

Gotcha #13:
Gotcha #14:
Gotcha #15:
Gotcha #16:
Gotcha #17:
Gotcha #18:
Gotcha #19:
Gotcha #20:
Gotcha #21:
Gotcha #22:
Gotcha #23:
Gotcha #24:

Excessive Commenting

Magic Numbers

Global Variables

Failure to Distinguish Overloading from Default Initialization
Misunderstanding References
Misunderstanding Const

Ignorance of Base Language Subtleties
Failure to Distinguish Access and Visibility
Using Bad Language

Ignorance of Idiom

Unnecessary Cleverness

Adolescent Behavior

Array/Initializer Confusion
Evaluation Order Indecision
Precedence Problems

for Statement Debacle

Maximal Munch Problems

Creative Declaration-Specifier Ordering
Function/Object Ambiguity
Migrating Type-Qualifiers
Self-Initialization

Static and Extern Types

Operator Function Lookup Anomaly
Operator -> Subtleties

.

G O\ W e =

13
14
19
24
26
29
31

35
35
36
42
45
48
50
51
52
53
55
56
58

vii

viii

Contents

Chapter 3

Chapter 4

Chapter 5

The Preprocessor

Gotcha #25:
Gotcha #26:

Gotcha #27
Gotcha #28

#define Literals
#define Pseudofunctions
: Overuseof #if

. Side Effects in Assertions

Conversions

Gotcha #29:
Gotcha #30:
Gotcha #31:
Gotcha #32:
Gotcha #33:
Gotcha #34:
Gotcha #35:
Gotcha #36:
Gotcha #37:
Gotcha #38:
Gotcha #39:
Gotcha #40:
Gotcha #41:
Gotcha #42;
Gotcha #43:
Gotcha #44:
Gotcha #45:
Gotcha #46:

Initializ

Gotcha #47:
Gotcha #48:
Gotcha #49:
Gotcha #50:
Gotcha #51:
Gotcha #52:
Gotcha #53:
Gotcha #54:
Gotcha #55:
Gotcha #56:
Gotcha #57:
Gotcha #58:
Gotcha #59:

Converting through void =

Slicing

Misunderstanding Pointer-to-Const Conversion
Misunderstanding Pointer-to-Pointer-to-Const Conversion
Misunderstanding Pointer-to-Pointer-to-Base Conversion
Pointer-to-Multidimensional-Array Problems

Unchecked Downcasting

Misusing Conversion Operators

Unintended Constructor Conversion

Casting under Multiple Inheritance

Casting Incomplete Types

Old-Style Casts

Static Casts

Temporary Initialization of Formal Arguments
Temporary Lifetime

References and Temporaries

Ambiguity Failure of dynamic_cast

Misunderstanding Contravariance

ation

-Assignment/Initialization Confusion

Improperly Scoped Variables

Failure to Appreciate C++’s Fixation on Copy Operations
Bitwise Copy of Class Objects

Confusing Initialization and Assignment in Constructors
Inconsistent Ordering of the Member Initialization List
Virtual Base Default Initialization

Copy Constructor Base Initialization

Runtime Static Initialization Order

Direct versus Copy Initialization

Direct Argument Initialization

Ignorance of the Return Value Optimizations

Initializing a Static Member in a Constructor

61
6!
64
66
72

75
75
79
81
8
86
87
89
90
95
98

100

102

103

106

110

112

116

120

125
125
129
132
136
139
141
142
147
150
153
156
158
163

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Contents ix

Memory and Resource Management

Gotcha #60:
Gotcha #61:
Gotcha #62:
Gotcha #63:
Gotcha #64;
Gotcha #65:
Gotcha #66:
Gotcha #67:
Gotcha #68:

Failure to Distinguish Scalar and Array Allocation

Checking for Allocation Failure

Replacing Global New and Delete

Confusing Scope and Activation of Member new and delete
Throwing String Literals

Improper Exception Mechanics

Abusing Local Addresses

Failure to Employ Resource Acquisition Is Initialization
Improper Use of auto_ptr

Polymorphism

Gotcha #69:
Gotcha #70:
Gotcha #71:
Gotcha #72:
Gotcha #73;
Gotcha #74:
Gotcha #75:
Gotcha #76:
Gotcha #77:

Gotcha #78:
Gotcha #79:

Type Codes

Nonvirtual Base Class Destructor

Hiding Nonvirtual Functions

Making Template Methods Too Flexible

Overloading Virtual Functions

Virtual Functions with Default Argument Initializers
Calling Virtual Functions in Constructors and Destructors
Virtual Assignment

Failure to Distinguish among Ovetloading, Overriding,
and Hiding

Failure to Grok Virtual Functions and Overriding
Dominance Issues

Class Design

Gotcha #80:
Gotcha #81:
Gotcha #82:
Gotcha #83:
Gotcha #84:
Gotcha #85:
Gotcha #86:
Gotcha #87:
Gotcha #88:

Get/Set Interfaces

Const and Reference Data Members

Not Understanding the Meaning of Const Member Functions
Failure to Distinguish Aggregation and Acquaintance
Improper Operator Overloading

Precedence and Overloading

Friend versus Member Operators

Problems with Increment and Decrement

Misunderstanding Templated Copy Operations

Hierarchy Design

Gotcha #89:
Gotcha #90:
Gotcha #91;

Arrays of Class Objects
Improper Container Substitutability
Failure to Understand Protected Access

167
167
171
173
176
177
180
185
190
195

199
199
204
209
212
214
216
218
220

224
230
236

241
241
245
248
253
258
261
262
264
268

271
271
273
277

x Contents

Gotcha #92:
Gotcha #93:
Gotcha #94:
Gotcha #95:
Gotcha #96:
Gotcha #97:
Gotcha #98:
Gotcha #99:

Bibliography

Index

Public Inheritance for Code Reuse
Concrete Public Base Classes

Failure to Employ Degenerate Hierarchies
Overuse of Inheritance

Type-Based Control Structures

Cosmic Hierarchies

Asking Personal Questions of an Object
Capability Queries

281
285
286
287
292
295
299
302

307
309

1 Basics

That a problem is basic does not mean it isn’t severe or common. In fact, the
common presence of the basic problems discussed in this chapter is perhaps
more cause for alarm than the more technically advanced problems we discuss in
later chapters. The basic nature of the problems discussed here implies that they
may be present, to some extent, in almost all C++ code.

Gotcha #1:

Excessive Commenting

Many comments are unnecessary. They generally make source code hard to read
and maintain, and frequently lead maintainers astray. Consider the following
simple statement:

a=b; // assign b to a

The comment cannot communicate the meaning of the statement more clearly
than the code itself, and so is useless. Actually, it’s worse than useless. It’s deadly.
First, the comment distracts the reader from the code, increasing the volume of
text the reader has to wade through in order to extract its meaning. Second, there
is more source text to maintain, since comments must be maintained as the pro-
gram text they describe is modified. Third, this necessary maintenance is often
not performed.

¢ =bh; // assign b to a

A careful maintainer cannot simply assume the comment is in error and is
obliged to trace through the program to determine whether the comment is erro-
neous, officious (c is a reference to a), or subtle (assigning to ¢ will later cause the
same assignment to be propagated to a somehow). The line should originally
have been written without a comment:

a=b;

The code is maximally clear as it stands, with no comment to be incorrectly
maintained. This is similar in spirit to the well-worn observation that the most

1

2 Chapter 1

Basics

efficient code is code that doesn’t exist. The same applies to comments: the best
comment is one that didn’t have to be written, because the code it would other-
wise have described is self-documenting.

Other common examples of unnecessary comments frequently occur in class def-

initions, either as the result of an ill-conceived coding standard or as the work of
a C++ novice:

class C {

// public Interface

public:
cQ); // default constructor
~C(); // destructor
/.

I H

You get the feeling you're reading someone’s crib notes. If a maintainer has to be
reminded of the meaning of the public: label, you don’t want that person main-
taining your code. None of these comments does anything for an experienced
C++ programmer except clutter the code and provide more source text to be
improperly maintained.

class C {
// public Interface
protected:
c(int); // default constructor
public:
virtual ~C(Q); // destructor
[
1

Programmers also have a strong incentive not to “waste” lines of source text.
Anecdotally, if a construct (function, public interface of a class, and so on) can be
presented in a conventional and rational format on a single “page” of about 3040
lines, it will be easy to understand. If it goes on to a second page, it will be about
twice as hard to understand. If it goes onto a third page, it will be approximately
four times as hard to understand.

A particularly odious practice is that of inserting change logs as comments at the
head or tail of source code files:

/* 6/17/02 scb fixed the gaforniflat bug */

