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EXRBERE S
<EFRHEBCHE 24, 1~105 (1990).

THE TENSOR PROPERTIES OF
DIELECTRIC CRYSTALS
AND THEIR RELATIONS TO
THE CRYSTAL SYMMETRY

CHEN GANG#*

INTRODUCTION

The aim of following lectures is to show how to study the subject rather than to serve:
as a reference work containing all the conclusions, in other words, only the methods but not the
results are concerned here, if some results shown up, they just play the role of giving examples
of how the methods are used.

Tensors are the majorly used mathematics in these lectures, and the treatment of crystal:
symmetry is limited to the 32 point groups, since only the macroscopic physical properties
are dealt with.  Also, only the properties of dielectric crystals are treated here, the conductivity
and magnetic properties are excluded because being transport phenomena, they have the com-
plexity of magnetic groups which are beyond our mathematic and symmetry bases used in.
these lectures.

I should like to give the courses according to the following sequence:

(1) Tensor transformations and definition of tensors.
(11) Elementaries of tensor mathematics.
(III) Symmetry properties of tensors (Intrinsic symmetry of tensors).
(IV) Point groups and crystal classes, crystal systems.
(V) Neumann’s Principle.
(VD) Tensor quantities from 1st- to 4th-rank.
Ist-rank polar tensor proparty.
2nd-rank polar tensors.
3rd-rank polar tensor properties.
. 4th—rank polar tensor properties.
. 2nd-rank axial tensor property.
6. Fourth-rank axial tensor property.
(VIDThermodynamics of dielectric crystals.
The attempt at comprehensiveness has been made to include 2 more topics on “Tensor-
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properties in the cyclic axes frames” (Appendix A), and “The group theoretical method
for determination of non-zero independent components of tensor properties of crystals”
{Appendix B).

NOTES ON THE COURSE

The field of tensor properties of crystals is probably the oldest chapter of solid state
‘physics, it deals with the macroscopic physics of anisotropic solids. This knowledge follows
from a purely macroscopic formulation of the physics of anisotropic media. Such a formula-
tion, built on the combined symmetries of physical processes and of crystal structure, effectively
«establishes the framework within which all microscopic theories must operate. But it is largely
bypassed in introductory courses, and is often neglected even in advanced presentations of
‘solid state physics, which nowadays very much emphasizes the microscopic description of
phenomena. Of coutse, crystal physics at the macroscopic level is equally important in its own
right in dealing with the great variety of new phenomena.

In recent years, the progresses of science and technology show that more and more ma-
croscopic properties of anisotropic media get in use on the frontiers of different fields, such
as laser technigues, electrooptics, acoustooptics, the technique of recording and displaying
information, and various new functional devices are being made of crystals to meet the
tapid needs of scientific and technological developments.

" So, a systematic study of macroscopic properties of crystals will not only help to deepen
the microscopic formulation of phenomena, but also will benefit the proceeding of science
-and technology.

The necessity of introducing tensors to describe the macroscopic physical properties of
crystals:

In the traditional theories of physics, the properties of matter are defined by relations
between measurable quantities, i.e. the relations between the response quantities of the ma-
terial to applied forces or fields and the quantities that characterizing the latters. For example,
if the relation is linear, we can write

B=C4 (0.1)
where B—the response quantity, 4—the applied field quantity, and then C—the physical
property of that material.

There may be two cases: The representation of the properties of matter doesn’t de-
pend on the direction of measurements, such non-directional physical quantities are called
as scalars, and by giving a single number a scalar is completely specified, For example,
density is defined from a relation between mass and volume, and mass and volume are measured
without reference to direction, so, accordingly, density is a property that does not depend
oa direction, such a proparty is taken as an isotropic property. The other case is that the re-
presentation of the properties of matter does depend on the direction of measurements. Under
this condition, a single number—scalar will not suffice, a set of number is needed instead.
When electric field E applies 1o a crystal, as the response to the field, electric polarization P
is induced inside the crystal. Since electric field and electric polarization are all quantities
characterized not only by their magnitudes but also by their orientations, the dielectric su-
sceptibility—defined by the relation between E and P, is a property does depend on direction,
that is to say, for cryatals, X is anlsotroplc

If all the physical properties of a material are scalars, then we say that the material is
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isotropic. Most crystals are anisotropic. For a few properties, such as density, all crystals
are isotropic. Cubic crystals happen to be isotropic for a certain number of other properties
as well, such as the dielectric constant.e, the dielectric susceptibility X, and the index of
refraction n, etc. But for elasticity, photoelasticity, and certain other properties, cubic cry-
stals are in fact anisotropic. So, cubic crystals are not isotropic media. The lower the crystal
symmetry, the fewer number of isotropic properties the crystal can possess.

To represent the isotropic properties of matter, scalars are sufficient. But, in a crystal,
for characterizing the anisotropic properties, TENSORS—a finite set of coefficients that obey
the transformation laws under the transformations of axes of reference—are to be used, since
tensors can describe both the magnitudes and the directions of the anisotropic properties.

Field quantities and matter quantities:

In Equation (0.1), the quantities A,B,C can be of two kinds. One of them we call as
field quantities, such as stress, strain, electric field, electric polarization .... They only re-
present the external influences or the responses induced inside the material, they are also called
as field tensors. Field tensors don’t represent the properties of matter, they possess only the
symmetries of the physical processes which they represent. The other kind of quantities are
called as matter quantities, or matter tensors, such as density, dielectric constant, piezoelectric
modulus.... They represent the properties of material, and they possess not only the symmetr-
ies of physical processes but also symmetries of crystal structures.

The formulation of crystal physics based on these principles of symmetry determines
primarily the necessary framework of all possible interactions. It separates allowed and
forbidden effects, and it specifies the form of the allowed effects in a crystal of given symmetry.
Our approach focuses on the preliminary aspects of determining the classes of crystals to which
the search for any particular effect can be restricted, and the form of the response by which
this effect is to be identified.

This aspect of crystal physics covers a sufficiently large ground to justify development in
its own right. Surprisingly enough, it is not a closed subject. The systematic exploration of
highly anistropic crystals is just beginning, and some of the effects predicted in such crystals
remain to be discovered experimentally. On the other hand, the recent history of crystal phy-
sics includes instances of “forbidden” effects that were found to be “allowed” after more care- .
ful examination of the inherent symmetries governing the interaction or of the structure sym-
metries of crystals. Crystal physics has had its share of “symmetry violations” and of the
new worlds opened up by each such discovery. There is good reason to believe that the full
intricacy of the interactions possible in crystals is yet to be discovered.

[. Tensop transformations and definition of tensors.

Most of the externally applied influences and the responses of the crystal and the corres-
ponding physical properties of the crystal are represented by quantitiesv that are direction de-
pendent. All such directional aspects are readily described by a mathematical formulation
called tensor which is composed of a set of orderly components.

Before an exact definition of tensor can be given, we’ll draw some preliminary knowledge
of it here:

(1) According to the number of components needed in determmmg a tensor, tensors can
be said to be of zero rank, the 1st rank, the 2nd-rank, ..., and we already know that tensors
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of zero rank are scalars which are direction independent, and tensors of the Ist tank are vectors:
which have 3 components in Cartesian coordinate system. As it will be revealed later soon
that tensors of the 2nd rank have 9 components, ..., and tensors of the mth rank have 3=
components. So, in this way, we can summarize as following:

Table 1.1
Rank of the number of
examples of quantities
tensor m components
0 301 density, temperature
1 3i=3 electric field, electric polarization, pyroelectric coefficient
2 32=9 stress, strain, dielectric const.
3 33=27 piezoelectric modulus, linear electro-optic coefficient
4 3¢=81 clastic coeff., photo-elastic coeff. -

(2) A proper description of the physical properties of a crystal must be invariant under
the operation of the symmetry group of this crystal. In order to assure the above requirement,
we must establish how the description itself transforms under the operations relating different
coordipate systems, This is the reason why we talk about tensor transformations.

I. 1. Transformations of coordinate axes.

Tensor transformation is closely related to that of the coordinates and makes use of the
same basic description quantities. ‘

Let us choose an orthogonal system of axes for the coordinate system O (not necessarily
identical with crystal axes of symmetry); O is described by 3 orthogonal basis vectors e;

e;eey=08;5 (1.1ay
{e‘ X ej=u; e, (if right-handed) (1.1b)y

where d;; is the Kronecker delta: (=1, for i=j,
{=O, for i=cj (1.2)

and u,,; is the antisymmetric triple product:
=1 for i, j, k in cyclic order;
=—1 for i, j, k in reverse order (1.3)

=0 if 2 or more indices are the same
Another orthogonal system O’, with a set of basis vectors e, Totated with respect to
O and left the origin and length measuring unit unchanged in the 2 systems, is related linearly
to the O system:

3
ef=Sa;e; (i =123) 1.4
. F=1 ’
We now leave out the summation sign:
e’ =a,e; (i j=12,3) (1.5)

and introduce the Einstein summation convention: when a letter suffix occurs twice in the same

term, summation with respect to that suffix is to be automatically understood. The coeffi-

cients a, are the direction cosines between the old and new vectors (see Fig. 1. 1)
a;g=e,e; (1.6}



If we represent the basis vectors by columns and the nine coefficients a;; as a square array

@1 Gz Gyg
(A)=(a;5)={ an a3 ay .7

Ay dgz gy

and use the rules of matrix multiplication, Eq. (1.5) can also be expressed in the form
[4

e G, Q2 Gig e
’

€y = Ay dzp Gy €y (1.8)
’

€3 Q31 Qgy Ugg ég

The square array of transformation parameters (,;) is called the transformation matrix be-

Fig. 1.1 Transformation of axes
tween the two coordinate systems O and O’, and has a few well-known properties as
following:

A,05,=08;
N { 1 (i=j), normalization, (1.9
4710 (i=z j), orthogonality. {1.10)

In general, g, 2t ay,. Because of the above relations, only three of the nine parameters in Eq.
{1.7) are truly independent.

The inverse transformation (ay,) has the relation.
a5y =aj; (1.11)

to the former one.

The matrix (a,) which defines the transformation from O to 0’ contains information about
the sense of the new coordinate system. It is easy to show that there exists two cases. On
the one hand, if the transformation is a proper rotation, the determinant [a,4] has the value
+1, and O aud O’ have the sense: both are either right-handed or left-handed. On the other
hand, if the transformation is an improper rotation (including inversion, reflection and rotation-

inversion), |a;;] =~1, and the sense of O’ is opposite to that of O, that is to say, if Ois
. right-handed, then O’ is left-handed, or vice versa.

Note: (*) The relation between the direction cosineé of the axes may be shown by drawing up the following
table:

e ey ey O—-cld one
1
‘@ | ay Ayy Qs
New one—0O’ ey dyy Aag dss
!
€ | dn a3 Qga



If we have another transformation from O’ to O " after the transformation from O to 0,
and the transformation matrix defining that from O’ to 0" is (B)=(b,,), then we can say

that O transforms directly to O* with a transformation matrix (C)=(c;;) which obeys the
multiplication rule of matrix:

(©)=(B) (4) (1.12a)
or, alternatively

) €y :b,,‘a‘, ' (1.12b)
Note that the order of the matrices in Eq. (1.12) must not be reversed, since it implies that the
transformation from O to O’ happens at first and the corresponding matrix (4) is placed behind
the matrix (B) that represents the transformation from O’ to O " which h‘éppens after that from
O to 0. Itis easy to show that (C) also satisfies Eq. (1.9) — (1.11), if (4) and (B) both meet
the requirement of linear orthogonal rigid transformation.

I. 2. Teusor transformations:

(1) Transformation of scalars (tensors of zcro~rank)

As is already known, scalars are quantities that are direction independent, and only one
number is needed to specify a scalar. Under the transformation of coordinate system, the value
of a scalar will remain unchanged, but its sign will be different according to whether the trans-
formation is a proper or an improper rotation. When it is a proper rotation, the sign of the
scalar doesn’t change, while for improper rotation the’sign changes. We express as

P'=+¢ (1.13)
where the quantity wuh a ( ) is corréspondmg 10 tbe scalar aftér the coordmate axes transfor-
mation. -

Among the physical quantities of dielectric crystals we’ll deal with later, the rotatory power
which describes the optical activity of crystal is an example of that kind of scalar which will
change its sign under an improper rotation.

The scalars that do not change sign under-any kind of transformation are called “true
scalars”, and those changing signs under improper rotations’are called “pseudo scalars”,
or *‘axial scalars™. ‘

(2) Transformation of vectors (tensors of the first-rank), or, more precisely, transfor-
mation of vector components. :

Suppose now there is a vector r connecting the origin of the coordinate system O and a
fixed point P in a certain'crystal. If the point P has the coordinates (x,,x,,x,,) in O, they are
given by the relation to the vector r:

r=2X16, +Xg€s +Xs€s ' ‘ (1.14)
so, the coordinates of point P are also the components of vector r. We now want to ask how
do the x,s transform into a new set of x,’s when the coordinate system transforms from O
to 0’7 If the transformation from O to O’ leaves the crystal and the point P unmoved, then
in 0, it must be the same vector » but with a new set of coordinates (x,’,x;", X3"):

r=x,"e/’ +x,’e’ X x5'e;’ (1.15)
Take the scalar product of e, with (1.14) and (1.15), and we obtain
e« (xje5)=¢+(x,/¢,")
and make use of Eq. (1.1) and (1.6), we arrive at the final result
x=agx;  (Hj=1,2,3) (1.16)
Hence we have shown that the coordinates of a point or the components of a vector
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transform exactly like basis vectors of the cocrdipate systems,

Fig. 1.2 Transformation of vector components 1(cmrdinég¢§ o;f a point)
For the reverse transformation and by referfing again to Ed. (1.6), we have di
X =a“x,’ ’ (l,]=1,2,3) ' o (1017)
Note that in the O to O’ transformation, ‘new’ (with’s) in terms of *old’ (without’s), the dummy
suffices occur in neighbouring places. In the reverse transformation, they are separated.

Up to this point we have not made any distinction among vectors, but in fact we can divide
the vectors into two kinds: The one which transforms exactly according to Eq. (1.16) under
any kind of transformation of coordinate system and can be represented without ambiguity
by an arrow pointing in a certain direction like that shown in Fig. 1. 2 is called polar vector or
true vector. The examples of this kind are forces, lineary velocity, the strength of electric field.
and many other polar vectors. _

Another kind of vectors such as angular velocity, angular momentum, mechanicaltorque,
etc., which are represented by straight lines with definite orientation and screw motion attached.
to them as shown in Fig. [. 3b, the length of the line is in proportion to the magnitude of the
vector and the ditection of the vector is given by the orientation of the line and the sense of the
screw motion. If the axes are right-handed, then a positive sense of rotation will attach to the:
line given by a right-handed screw motion, and the same for left-handed axes. These
vectors are called axial vectors (or pseudo-vectors). - From Fig. 1.3, we see that there is a.
difference between polar and axial vectors. In a plane perpendicular to the line, reflection
of polar vector reverses its direction but that of axial vector remains unchanged. On the
other hand, reflection in a plane parallel to the line has the opposite effect.

.v (a) /+‘
)
_/ {b)

Fig. 1.3 Symbolic representation of vectors. (a) a polar vector, (b) an axial vector

As for the transformation of vector components, there is also a little different between them.

s 7 o



