(RIR - B 2HR)

Introduction to

Parallel Computing

Second Edition

LA ol AR At
China Machine Press

1

N ———

T RS

Z R W ¥ E

MhR - B 2HR)

(

Kumar

ipin

George K i
T arypis

gg
56
=3
[< =]
52
< <

(X)

Ananth Grama et al.: Introduction to Parallel Computing, Second Edition (ISBN: 0-201-
64865-2).

Copyright © The Benjamin/Cummings Publishing Company, Inc. 1994, Copyright © Pearson
Education Limited 2003.

This edition of Introduction to Parallel Computing, Second Edition is published by
arrangement with Pearson Education Limited. Licensed for sale in the mainland territory of the

People’s Republic of China only, excluding Hong Kong, Macau, and Taiwan.

A B3R EN RS H 2 [Pearson EducationH5 4 B & HIRE R AL IR KM RE B imiF
i, ABUER A KRB RA BAE,

W ER HRFE P E KX HE (AaGFES. ®IT, §EBK).

WU, AT,

EBREWNEFICE: BF: 01-2002-0143
BEHER&RE (CIP) HiE

HATTESIE (BE3CM - 3200 / (K) 225 (Grama, A.) . —Jtat: HUM Tk
WAL, 2003.7

(PRI BIE)

15447 3C: Introduction to Parallel Computing, Second Edition

ISBN 7-111-12512-6

T.He DA W HTiHE - S K - 84 - %3 V. TP301.6
o [i A [BB CIPEUE # % (2003) 550552675

BUAE Tk S BRAL (b st SR IZ 07118 K#22Y #RECARS 100037)
RILHE . B

AL st REAER R CERR - B R s RATRTRAT
200317 H 5 1 RELES VIR EL Y

787mm x 1092mm 1/16 - 41.5E33K

EN¥L: 0001-3 00071

Effr: 68.007C

JUEAA, WERIG. R, ST, s AT

B BYE

XAEXMUE, BRRKEOBFEHNELERNFEARRE, ERFERERFIENS
NEEBE T ZEENEE; CERXBMESL, FEXEEFREARBRNATEZERERKE
. MRS, AL HEES, RENTLRASHERBERBETRE S, TEIERS
MF 2 FLAL L FI SO B FRRITS, AR ERNSBREEEE, MUBERTHR
MEEE, THRETHANEL, REREARANE, XEEFEEME, EMEHASRER R
HE i BB o

EE, EERERAKBNEDNT, REMITENS L ERARE, XEWAFHFRHR
Y, XX ENHEERMEBEAKEEIE, BEKS; MEVHEMYBERERFTEBR LB
BAERE, EREGEHARLKESMEE . MEARBIWIART, EESEREIERELT
BRI ER R EEBIEN BB NIAEFZERE S 2L, B, sI#—#HEIMLET
HIBMAMEEHENHBFTF MR REBRMEDHER, LREHAEN . BREEHH
R PR F R HZ B

PR Ty it e R U RARA AR RS “HREARETRSE ", HI998EFH,
ELAARE TEESORET#E. BREEMBEM L. E3LENTEE S, &5
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann% it R & Z WA GIRT TR
HHEEXR, NENTHAMEERM B M DB % H Tanenbaum, Stroustrup, Kernighan, Jim
Gray % RINA R —MABMER, L “HEIBEAE" HEHRER, #iEE%d. RkE
B, KIEASGRMEE, WEARRTXENBRSAIERE,

“HEHRAAR" MR TS TERMEENS N B, BERNERAMUERMRTHE
WIS T, EAES EHBETHEMERNTE; MEBNEESOHYETEEAREDE
ML, AMEEHARBODFERET, &4, “HENREAE" CRHRTET R,
EEHBELEPR LT REVWOR, HEFEZEKRRANEREM NS L BE, it S
TS REITT T REMER,

BEE 7B B IR 58 EMEM SRR IR, 8 R EINT B 805k N H
WEA—NFHHE . R, £FAREMRSIEBMANE, & “LEHET WA ZT
AR = RFIM T EILEA . B “HHENRREAR" 25, SHEEDARAISR, W83 TFRE
“RMFRRBE" ; FAT, 5IELEBEBITHHEH I “Schaum’s Outlines” RINAM “£EL
IR IR ATRIEBXZEABHAURYE, R T EF s R mEmims, &
BAABET PERERE . EEA¥ . HER¥E EREAY. EBRYE. FEEKRY.
BAKE, HILRE, PEBE XY, MRELWRE, AEKERY. PEARKE, dt5
MR KE . LFERE K% PR, MEEETAYE, BMNAE, BitTYr. PEE

G B R AMPAEHOFEENES KX ERBIETBMNE S8 EL ¥ EHR ‘%
KEIFEREY”, AR EEE R HREE.

XEEABRWEMNHTHRREAOFERASMRBEMNSE, IENERKITEILRHXE LR
HFEHITER. HPFEZ8MYE M. I T., Stanford, U.C. Berkeley, C. M. U. %t R4
REMKA. MUBRE TR, BIESH. BERE. HEIKRESH ., BEE. KPR
B, BRGTE, BEY. 8E5M%. BEHEFESEARETTEIS LEEFROEOIRE,
MAZEAHE—FARNHLEEERITEZT . AWHE=1TENAE, ARCHUANILA
B, EXERBEENZMKENEIIZT, EELBETENAENER PR EE
MAZ,

BEMES . MO . —RNiEE . BRHK. FAesE, SEEEFERTINE
HETHEBHRIE, BRIOWEFRERERE, MRBHELERRNZBX LR EHRNE
EHEY. EIMUERERERNOFERF VRS, REAFRIEEIMNAEE N RATH TAER
BWES THRIE, RITMEKRTENT .

B, T-H84 ;. hzedu@hzbook.com
BERHIE: (010) 68995264
BARMAE. ETRRE A REEELS
BRI 4 f5 . 100037

KB
% #k
3B
B
AAE
LS
Bt %

ERERERS

EA
5
FH A
I 7
Rl 3%
3648 1R
R
O

(F Y REENT)

ERGES
hEF
207)%
FoE
A B
£ 8

X &AL
2
FP
i e B¢
ERTE
R
LB 3%

¥ £+
F W&
e
R
S
WA=

Preface

Since the 1994 release of the text “Introduction to Parallel Computing: Design and Anal-
ysis of Algorithms” by the same authors, the field of parallel computing has undergone
significant changes. Whereas tightly coupled scalable message-passing platforms were the
norm a decade ago, a significant portion of the current generation of platforms consists of
inexpensive clusters of workstations, and multiprocessor workstations and servers. Pro-
gramming models for these platforms have also evolved over this time, Whereas most
machines a decade back relied on custom APIs for messaging and loop-based parallelism,
current models standardize these APIs across platforms. Message passing libraries such as
PVM and MPI, thread libraries such as POSIX threads, and directive based models such as
OpenMP are widely accepted as standards, and have been ported to a variety of platforms.

With respect to applications, fluid dynamics, structural mechanics, and signal process-
ing formed dominant applications a decade back. These applications continue to chal-
lenge the current generation of parallel platforms. However, a variety of new applications
have also become important. These include data-intensive applications such as transac-
tion processing and information retrieval, data mining and analysis, and multimedia ser-
vices. Applications in emerging areas of computational biology and nanotechnology pose
tremendous challenges for algorithms and systems development. Changes in architectures,
programming models, and applications are also being accompanied by changes in how
parallel platforms are made available to the users in the form of grid-based services.

This evolution has a profound impact on the process of design, analysis, and implemen-
tation of parallel algorithms. Whereas the emphasis of parallel algorithm design a decade
back was on precise mapping of tasks to specific topologies such as meshes and hyper-
cubes, current emphasis is on programmability and portability, both from points of view of
algorithm design and implementation. To this effect, where possible, this book employs an
architecture independent view of the underlying platforms and designs algorithms for an
abstract model. With respect to programming models, Message Passing Interface (MPI),
POSIX threads, and OpenMP have been selected. The evolving application mix for parallel
computing is also reflected in various examples in the book.

This book forms the basis for a single concentrated course on parallel computing or a
two-part sequence. Some suggestions for such a two-part sequence are:

1. Introduction to Parallel Computing: Chapters 1-6. This course would provide the
basics of algorithm design and parallel programming.

XX Preface

2. Design and Analysis of Parallel Algorithms: Chapters 2 and 3 followed by Chap-

ters 8—12. This course would provide an in-depth coverage of design and analysis of
various parallel algorithms.

The material in this book has been tested in Paraliel Algorithms and Parallel Computing
courses at the University of Minnesota and Purdue University. These courses are taken pri-
marily by graduate students and senior-level undergraduate students in Computer Science.
In addition, related courses in Scientific Computation, for which this material has also
been tested, are taken by graduate students in science and engineering, who are interested
in solving computationally intensive problems.

Most chapters of the book include (i) examples and illustrations; (ii) problems that sup-
plement the text and test students’ understanding of the material; and (iii) bibliographic
remarks to aid researchers and students interested in learning more about related and ad-
vanced topics. The comprehensive subject index helps the reader locate terms they might
be interested in. The page number on which a term is defined is highlighted in boldface
in the index. Furthermore, the term itself appears in bold italics where it is defined. The
sections that deal with relatively complex material are preceded by a ‘*’. An instructors’
manual containing slides of the figures and solutions to selected problems is also available
from the publisher (http://www.booksites.net /kumar).

As with our previous book, we view this book as a continually evolving resource. We
thank all the readers who have kindly shared critiques, opinions, problems, code, and other
information relating to our first book. It is our sincere hope that we can continue this in-
teraction centered around this new book. We encourage readers to address communication
relating to this book to book - vkecs . umn . edu. All relevant reader input will be added
to the information archived at the site http://www.cs.umn.edu/ parbook with
due credit to (and permission of) the sender(s). An on-line errata of the book will also be
maintained at the site. We believe that in a highly dynamic field such as ours, a lot is to be
gained from a healthy exchange of ideas and material in this manner.

Acknowledgments

We would like to begin by acknowledging our spouses, Joanna, Rinku, Krista, and Renu
to whom this book is dedicated. Without their sacrifices this project would not have been
seen completion. We also thank our parents, and family members, Akash, Avi, Chethan,
Eleni, Larry, Mary-Jo, Naina, Petros, Samir, Subhasish, Varun, Vibhav, and Vipasha for
their affectionate support and encouragement throughout this project.

QOur respective institutions, Computer Sciences and Computing Research Institute (CRI)
at Purdue University, Department of Computer Science & Engineering, the Army High
Performance Computing Research Center (AHPCRC), and the Digital Technology Cen-
ter (DTC) at the University of Minnesota, and the IBM T. J. Watson Research Center at
Yorktown Heights, provided computing resources and active and nurturing environments
for the completion of this project.

This project evolved from our first book. We would therefore like to acknowledge all
of the people who helped us with both editions. Many people contributed to this project
in different ways. We would like to thank Ahmed Sameh for his constant encouragement
and support, and Dan Challou, Michael Heath, Dinesh Mehta, Tom Nurkkala, Paul Saylor,
and Shang-Hua Teng for the valuable input they provided to the various versions of the
book. We thank the students of the introduction to parallel computing classes at the Uni-
versity of Minnesota and Purdue university for identifying and working through the errors
in the early drafts of the book. In particular, we acknowledge the patience and help of
Jim Diehl and Rasit Eskicioglu, who worked through several early drafts of the manuscript
to identify numerous errors. Ramesh Agarwal, David Bailey, Rupak Biswas, Jim Bot-
tum, Thomas Downar, Rudolf Eigenmann, Sonia Fahmy, Greg Frederickson, John Gun-
nels, Fred Gustavson, Susanne Hambrusch, Bruce Hendrickson, Christoph Hoffmann, Kai
Hwang, loannis loannidis, Chandrika Kamath, David Keyes, Mehmet Koyuturk, Piyush
Mehrotra, Zhiyuan Li, Jens Palsberg, Voicu Popescu, Alex Pothen, Viktor Prasanna, San-
jay Ranka, Naren Ramakrishnan, Elisha Sacks, Vineet Singh, Sartaj Sahni, Vivek Sarin,
Wojciech Szpankowski, Srikanth Thirumalai, Jan Vitek, and David Yau have been great
technical resources. It was a pleasure working with the cooperative and helpful staff at
Pearson Education. In particular, we would like to thank Keith Mansfield and Mary Lince
for their professional handling of the project.

The Army Research Laboratory, ARO, DOE, NASA, and NSF provided parallel com-
puting research support for Ananth Grama, George Karypis, and Vipin Kumar. In partic-

XX Ack nowledgments

ular, Kamal Abdali, Michael Coyle, Jagdish Chandra, Frederica Darema, Stephen Davis,
Wm Randolph Franklin, Richard Hirsch, Charles Koelbel, Raju Namburu, N. Radhakrish-
nan, John Van Rosendale, Subhash Saini, and Xiaodong Zhang have been supportive of
our research programs in the area of parallel computing. Andrew Conn, Brenda Dietrich,

John Forrest, David Jensen, and Bill Pulleyblank at IBM supported the work of Anshul
Gupta over the years.

Contents

Preface xix

Acknowledgments Xxl1

CHAPTER 1

Introduction to Parallel Computing 1

1.1

1.2

1.3
1.4

Motivating Parallelism 2

1.1.1 The Computational Power Argument — from Transistors to FLOPS
1.1.2 The Memory/Disk Speed Argument 3

1.1.3 The Data Communication Argument 4
Scope of Parallel Computing 4

1.2.1 Applications in Engineering and Design 4
1.2.2 Scientific Applications 5

1.2.3 Commercial Applications 5

1.2.4 Applications in Computer Systems 6
Organization and Contents of the Text 6
Bibliographic Remarks 8

Problems 9

CHAPTER 2

Parallel Programming Platforms 11

2.1

2.2

Implicit Parallelism: Trends in Microprocessor Architectures 12
2.1.1 Pipelining and Superscalar Execution 12

2.1.2 Very Long Instruction Word Processors 15

Limitations of Memory System Performance* 16

2.2.1 Improving Effective Memory Latency Using Caches 17
2.2.2 Impact of Memory Bandwidth i8

2.2.3 Alternate Approaches for Hiding Memory Latency 21

X Contents

2.2.4 Tradeoffs of Multithreading and Prefetching 23
2.3 Dichotomy of Parallel Computing Platforms 24
2.3.1 Control Structure of Parallel Platforms 25
2.3.2 Communication Model of Parallel Platforms 27
2.4 Physical Organization of Parallel Platforms 31
2.4.1 Architecture of an Ideal Parallel Computer 31
2.4.2 Interconnection Networks for Parallel Computers 32
2.4.3 Network Topologies 33
2.4.4 Evaluating Static Interconnection Networks 43
2.4.5 Evaluating Dynamic Interconnection Networks 44
2.4.6 Cache Coherence in Multiprocessor Systems 45
2.5 Communication Costs in Parallel Machines 53
2.5.1 Message Passing Costs in Parallel Computers 53
2.5.2 Communication Costs in Shared-Address-Space Machines 61
2.6 Routing Mechanisms for Interconnection Networks 63
2.7 Impact of Process-Processor Mapping and Mapping Techniques 65
2.7.1 Mapping Techniques for Graphs 66
2.7.2 Cost-Performance Tradeoffs 73
2.8 Bibliographic Remarks 74
Problems 76

CHAPTER 3

Principles of Parallel Algorithm Design 85

3.1 Preliminaries 86

3.1.1 Decomposition, Tasks, and Dependency Graphs 86
3.1.2 Granularity, Concurrency, and Task-Interaction 89
3.1.3 Processes and Mapping 93
3.1.4 Processes versus Processors 94
3.2 Decomposition Techniques 95
3.2.] Recursive Decomposition 95
3.2.2 Data Decomposition 97
3.2.3 Exploratory Decomposition 105
3.2.4 Speculative Decomposition 107
3.2.5 Hybrid Decompositions 109
3.3 Characteristics of Tasks and Interactions 110
3.3.1 Characteristics of Tasks 110
3.3.2 Characteristics of Inter-Task Interactions 112
3.4 Mapping Techniques for Load Balancing 115
3.4.1 Schemes for Static Mapping 117
3.4.2 Schemes for Dynamic Mapping 130

3.5 Methods for Containing Interaction Overheads 132
3.5.1 Maximizing Data Localiry 132
3.5.2 Minimizing Contention and Hot Spots 134
3.5.3 Overlapping Computations with Interactions 135
3.5.4 Replicating Data or Computations 136
3.5.5 Using Optimized Collective interaction Operations 137

3.5.6 Overlapping Interactions with Other Interactions 138
3.6 Parallel Algorithm Models 139

3.6.1 The Data-FParallel Model 139
3.6.2 The Task Graph Model 140
3.6.3 The Work Pool Model 140
3.6.4 The Master-Slave Model 141
3.6.5 The Pipeline or Producer-Consumer Model 141
3.6.6 Hybrid Models 142
3.7 Bibliographic Remarks 142
Problems 143

CHAPTER 4

Contents Xl

Basic Communication Operations 147

4.1 One-to-All Broadcast and All-to-One Reduction 149
4.1.1 Ring or Linear Array 149
4.1.2 Mesh 152
4.1.3 Hypercube 153
4.1.4 Balanced Binary Tree 153
4.1.5 Detailed Algorithms 154
4.1.6 Cost Analysis 156
4.2 All-to-All Broadcast and Reduction 157
4.2.1 Linear Array and Ring 158
4.2.2 Mesh 160
4.2.3 Hypercube 161
4.2.4 CostAnalysis 164
4.3 All-Reduce and Prefix-Sum Operations 166
4.4 Scatter and Gather 167
4.5 All-to-All Personalized Communication 170
4.5.1 Ring 173
4.5.2 Mesh 174
4.5.3 Hypercube 175
4.6 Circular Shift 179
4.6.1 Mesh 179
4.6.2 Hypercube 181

Xl Contents

4.7 Improving the Speed of Some Communication Operations 184
4.7.1 Splitting and Routing Messages in Parts 184
4.7.2 All-Port Communication 186

4.8 Summary 187

4.9 Bibliographic Remarks 188
Probiems 190

CHAPTER 5

Analytical Modeling of Parallel Programs 195

5.1 Sources of Overhead in Parallel Programs 195
5.2 Performance Metrics for Parallel Systems 197
5.2.1 Execution Time 197
5.2.2 Total Parallel Overhead 197
5.23 Speedup 198
5.24 Efficiency 202
525 Cost 203
5.3 The Effect of Granularity on Performance 205
5.4 Scalability of Parallel Systems 208
5.4.1 Scaling Characteristics of Parallel Programs 209
5.4.2 The Isoefficiency Metric of Scalability ~ 212
5.4.3 Cost-Optimality and the Isoefficiency Function 217
5.44 A Lower Bound on the Isoefficiency Function 217
5.4.5 The Degree of Concurrency and the Isoefficiency Function 218
5.5 Minimum Execution Time and Minimum Cost-Optimal Execution Time 218
5.6 Asymptotic Analysis of Parallel Programs 221
5.7 Other Scalability Metrics 222
5.8 Bibliographic Remarks 226
Problems 228

CHAPTER 6

Programming Using the Message-Passing
Paradigm 233

6.1 Principles of Message-Passing Programming 233

6.2 The Building Blocks: Send and Receive Operations 235
6.2.1 Blocking Message Passing Operations 236
6.2.2 Non-Blocking Message Passing Operations 239

6.3 MPIL: the Message Passing Interface 240

6.3.1 Starting and Terminating the MPI Library 242
6.3.2 Communicators 242
6.3.3 Getting Information ~ 243
6.3.4 Sending and Receiving Messages 244
6.3.5 Example: Odd-Even Sort 248
6.4 Topologies and Embedding 250
6.4.1 Creating and Using Cartesian Topologies 251
6.4.2 Example: Cannon’s Matrix-Matrix Multiplication 253
6.5 Overlapping Communication with Computation 255
6.5.1 Non-Blocking Communication Operations 255
6.6 Collective Communication and Computation Operations 260
6.6.1 Barrier 260
6.6.2 Broadcast 260
6.6.3 Reduction 261
6.6.4 Prefix 263
6.6.5 Gather 263
6.6.6 Scatter 264
6.6.7 All-to-All 265

6.6.8 Example: One-Dimensional Matrix-Vector Multiplication
6.6.9 Example: Single-Source Shortest-Path 268
6.6.10 Example: Sample Sort 270
6.7 Groups and Communicators 272
6.7.1 Example: Two-Dimensional Matrix-Vector Multiplication
6.8 Bibliographic Remarks 276
Problems 277

CHAPTER 7

Contents XIll

266

274

Programming Shared Address Space
Platforms 279

7.1 Thread Basics 280

7.2 Why Threads? 281

7.3 The POSIX Thread API 282

7.4 Thread Basics: Creation and Termination 282

1.5 Synchronization Primitives in Pthreads 287
7.5.1 Mutual Exclusion for Shared Variables 287
7.5.2 Condition Variables for Synchronization 294

7.6 Controlling Thread and Synchronization Attributes 298
7.6.1 Awnributes Objects for Threads 299
7.6.2 Attributes Objects for Mutexes 300

XIV Contents

7.7 Thread Cancellation 301
7.8 Composite Synchronization Constructs 302
7.8.1 Read-Write Locks 302
7.8.2 Barriers 307
7.9 Tips for Designing Asynchronous Programs 310
7.10 OpenMP: a Standard for Directive Based Parallel Programming 311
7.10.1 The OpenMP Programming Model 312
7.10.2 Specifying Concurrent Tasks in OpenMP 315
7.10.3 Synchronization Constructs in OpenMP 322
7.10.4 Data Handling in OpenMP 327
7.10.5 OpenMP Library Functions 328
7.10.6 Environment Variables in OpenMP 330
7.10.7 Explicit Threads versus OpenMP Based Programming 331
7.11 Bibliographic Remarks 332
Problems 332

CHAPTER 8

Dense Matrix Algorithms 337

8.1 Matrix-Vector Multiplication 337
8.1.1 Rowwise 1-D Partitioning 338
8.1.2 2-D Partitioning 341
8.2 Matrix-Matrix Multiplication 345
8.2.1 A Simple Parallel Algorithm 346
8.2.2 Cannon’s Algorithm 347
82.3 The DNS Algorithm 349
8.3 Solving a System of Linear Equations 352
83.1 A Simple Gaussian Elimination Algorithm 353
83.2 Gaussian Elimination with Partial Pivoting 366
83.3 Solving a Triangular System: Back-Substitution 369

83.4 Numerical Considerations in Solving Systems of Linear Equations
8.4 Bibliographic Remarks 371

Problems 372

CHAPTER 9

370

Sorting 379

9.1 Issues in Sorting on Parallel Computers 380

9.1.1 Where the Input and Output Sequences are Stored 380
9.1.2 How Comparisons are Performed 380

