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Preface

Since the 1994 release of the text “Introduction to Parallel Computing: Design and Anal-
ysis of Algorithms” by the same authors, the field of parallel computing has undergone
significant changes. Whereas tightly coupled scalable message-passing platforms were the
norm a decade ago, a significant portion of the current generation of platforms consists of
inexpensive clusters of workstations, and multiprocessor workstations and servers. Pro-
gramming models for these platforms have also evolved over this time, Whereas most
machines a decade back relied on custom APIs for messaging and loop-based parallelism,
current models standardize these APIs across platforms. Message passing libraries such as
PVM and MPI, thread libraries such as POSIX threads, and directive based models such as
OpenMP are widely accepted as standards, and have been ported to a variety of platforms.

With respect to applications, fluid dynamics, structural mechanics, and signal process-
ing formed dominant applications a decade back. These applications continue to chal-
lenge the current generation of parallel platforms. However, a variety of new applications
have also become important. These include data-intensive applications such as transac-
tion processing and information retrieval, data mining and analysis, and multimedia ser-
vices. Applications in emerging areas of computational biology and nanotechnology pose
tremendous challenges for algorithms and systems development. Changes in architectures,
programming models, and applications are also being accompanied by changes in how
parallel platforms are made available to the users in the form of grid-based services.

This evolution has a profound impact on the process of design, analysis, and implemen-
tation of parallel algorithms. Whereas the emphasis of parallel algorithm design a decade
back was on precise mapping of tasks to specific topologies such as meshes and hyper-
cubes, current emphasis is on programmability and portability, both from points of view of
algorithm design and implementation. To this effect, where possible, this book employs an
architecture independent view of the underlying platforms and designs algorithms for an
abstract model. With respect to programming models, Message Passing Interface (MPI),
POSIX threads, and OpenMP have been selected. The evolving application mix for parallel
computing is also reflected in various examples in the book.

This book forms the basis for a single concentrated course on parallel computing or a
two-part sequence. Some suggestions for such a two-part sequence are:

1. Introduction to Parallel Computing: Chapters 1-6. This course would provide the
basics of algorithm design and parallel programming.
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2. Design and Analysis of Parallel Algorithms: Chapters 2 and 3 followed by Chap-

ters 8—12. This course would provide an in-depth coverage of design and analysis of
various parallel algorithms.

The material in this book has been tested in Paraliel Algorithms and Parallel Computing
courses at the University of Minnesota and Purdue University. These courses are taken pri-
marily by graduate students and senior-level undergraduate students in Computer Science.
In addition, related courses in Scientific Computation, for which this material has also
been tested, are taken by graduate students in science and engineering, who are interested
in solving computationally intensive problems.

Most chapters of the book include (i) examples and illustrations; (ii) problems that sup-
plement the text and test students’ understanding of the material; and (iii) bibliographic
remarks to aid researchers and students interested in learning more about related and ad-
vanced topics. The comprehensive subject index helps the reader locate terms they might
be interested in. The page number on which a term is defined is highlighted in boldface
in the index. Furthermore, the term itself appears in bold italics where it is defined. The
sections that deal with relatively complex material are preceded by a ‘*’. An instructors’
manual containing slides of the figures and solutions to selected problems is also available
from the publisher (http://www.booksites.net /kumar).

As with our previous book, we view this book as a continually evolving resource. We
thank all the readers who have kindly shared critiques, opinions, problems, code, and other
information relating to our first book. It is our sincere hope that we can continue this in-
teraction centered around this new book. We encourage readers to address communication
relating to this book to book - vkecs . umn . edu. All relevant reader input will be added
to the information archived at the site http://www.cs.umn.edu/ parbook with
due credit to (and permission of) the sender(s). An on-line errata of the book will also be
maintained at the site. We believe that in a highly dynamic field such as ours, a lot is to be
gained from a healthy exchange of ideas and material in this manner.
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