THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Computer
Programming

VOLUME 3 o
> Sorting and Searching
Second Edition

TR EA
£ 3% HIFMEX
(% 2 k)

[3%] DONALD E. KNUTH %

S "‘VV*—r*_-vr-w-v—“(rv-‘t-,q—wv-r A Ay ok an asfhd e d
L el TR

(EXBER) :
‘ 2 ALK 2 i it

&

-

HENREFEEitE A
[22] DONALD E. KNUTH %

. EBBEETERVANMERTENMEZRNENER. L+EK, TREFE FARA
RERBEBNAUAR FZEFHH=EBRMENFIREEL HAITREIRNERAR,

BR—EEFAEBEEZIRBRNERZAE, SSERBTFEAARTERGLR $HTH
A Bk it s iR AR R R T b, —Byte

O BRBERREANSEZA, EERANER, EXEANE - EALEHRTRETHE
M, MBERFEEEENN. —MTENERFREZBAM0RIEEH LHMHE,

4o FAR R S E A R e e Kuth 0 (5 JEAUAR 2 K)o o R i 4

- B RBERE - RH - —_Bill ‘Gates

TR E LB R Knuth £ 233 {1114 A7 00 B AR B 2 R N100F F o £ 38
B4 (BB S 75 5, 0 5 T2 P 3R 00 R 4R G 07 SRR B % TR B I, B
B i 1) KRS BRI T BT A OB

Knuth 3 S A A2 b PALTARK AL, ALY AEBE ARZ ..
EEABINFIBEREGRNMEASRIF LB, —AT#kHFE KRGk, ——Charles Long

AEEMOM, ARFBANRBREEATENESF RBELERXERNEM—EA
B3R , WA 75 R 5 =) F0 T £F & B 4% il et 88 0

&A= A PR S| e GHE AV A B3 2 R) T H R AR - #RAHRF KK
I, X EBRAEFAERE, TSN 4 E X GH4,

Jonathan Laventhol

ﬁ&&ﬁﬁﬂﬁﬁ%ﬁﬁ&ﬁxmm:+§$%¥—&ﬁ£%¥é%ﬁ?@ﬂQmWﬁ!
ITEBEHER E—RUESE A AATHHFNIL, SLBRNEE, U REFITLEEE,

'.ﬁﬁﬁ*#ﬂ‘lﬂﬁﬁ ELHERMAITEN TR TG LESMTEN; ﬁ*ﬁ#‘ﬂfﬂ'
%@\Mtﬁ;*ﬁi‘i%ﬂﬁﬁ FARAIIRER AR D BEAEHE IR T EE; HEmMALEG
mﬁ#ﬁ;ﬁmn&ﬁﬁjﬁo

e -» e w *l:,' Tew : 3, ISBN 7-302-05816-4
SR 1 ot SR - -

: AR SRS ey
Addison ‘ 3 “
Wesley

302""058

3 % 1 E:E\Em: 248 7[', (*‘%zé) EHr: 85.00 5T

THE CLASSIC WORK

NEWLY UPDATED AND REVISED

The Art of Computer
Programming

VOLUME 3
Sorting and Searching

Second Edition

HENEFRITZ AR
F3LE HFMERX

(%8 2 kD

[22] DONALD EXNUTH #
(FELRERRO

BHEXF LA

() HEF 158 5

The Art of Computer Programming Volume 3: Sorting and Searching (Second Edition).
Donald E.Knuth

Copyright © 1998 by Addison-Wesley

Original English Language Edition Published by Addison-Wesley
All Rights Reserved

For sale in Mainland China only

A S IR 2 TR A A HH USRI BRGSO FE P BT (VB K
AR AT X . R R R TEUX N G V) JER AL RAT -
ARAHEEPEFE, FEUEMAREHSZRENERTRS .

ABHES Pearson Education BRI HARE, FAREETENE.
LB WA S EER A FHFid 5. 01-2001-5312

B & WHEPEREFER B3 E: HFRAR (B280

@3 #: Donald E.Knuth

BB Fe HERELURA (ERESRFEETIRIE, M4 100084)
http://www.tup.tsinghua.edu.cn

B R #F: JRRT iR ARk R 22 F]

RAT . FEBEBE IR

787X1092 1/16 ENgK: 50

200249 AW LR 2002 4E 9 HI L IXETRY

0001~ 3000

ISBN 7-302-05816-4/TP - 3441

—£ (=) BEfr: 248 G

o D& H
S oSy

XEBHIEHM

F£1% BXxHE

B 1GEANARENEAMEMBEA,
RIGHERNREEEM T HHAE, BHERFR
FETHE O A R R T7 i R T R Z B 45
FI R AR, LB (S BAL BT Ik BS54
E R T R BUE T % S K
{5 F Gt it 45 77 T 0 9L o 7 WA
TR AR EERAEEER R
Hil BF 2 2 i i 9 7 350 B4 SR U T A TR
BEY.
$£2% ¥HEHRZE

F2EXLRER R SEM T 2Em AN A,
ﬁ‘;ﬁﬁﬂtﬁ"*ﬂ“ﬁ*"ﬁﬁc*#a%TEE%
T B Box S vk A S T AT T3
BB SEE TR KR % 3

_ f’ﬁ#’%%l/\i’iﬁ 972 , Knuth X B 4L %5 E A%

>

:ﬁ»‘vﬁo

ﬁﬁTi%ﬂlﬁE AR RLOTRAE T BRA

%3#$ﬁﬂ§&

BCRA 3 B0 % — KT AR R 2
SR LT R SRR R R A 4, T L
VA 1 4 A MO B AR T —
0955 i 5 T R A A1
38 R T — B85 IR SR R Y B L
M, 3 BRI R R . B3 BR
6 R R BRI — 5 M T 4697, X1 96
I 5 PR BT T 2 Bt

Donald.E.Knuth{ fE 448 .E. & 4% ,
NELEENREZNBEFETEAHER
&, BRitEHHRE % TX #n METAFONT
WEBE hEXERRNAEYEENR
e 3R 3 (9 2 16 (19 SR B #n 160 H iR) M #
HEK, EABBRAFHENEFRITE
ROFRERAET LYMELHRET
MEXFHENMNENESENLEER, X
— AT 1962 & i 2 mF 8 R L2
TEEORRERMFLET . Knuth HHBH
BTHSRBMNEE, GFEZEITENDS
E R % (ACM Turing Award), % E#7 & %
4512 F R F & ¥ (Medal of Science),
LEMEELMERE (AMS Stecle
Prize) , A% 1996 £ 11 BB F&RBAE#H I
AR FEHRNE T ENHEHBR (Kyoto
Prize) . Knuth #3230 5 H & Jill £7& :FEHE! :
wmRER, , 1 %y

AL Addlson-WesIey W'Tuﬁfﬁiﬁ

f%*&MHéﬁﬁszmmaﬁﬂﬁgéhé‘

S 3 *2—.

e

WWW.aW. com/cseng/authors/knuth S

8 Knuth HEH A AER, TIJﬁﬁ"'

AXREBRBR 5‘]§fﬂ.’.5§ﬂiﬁﬁ# B‘JE?
Fa: ‘ \ X -3 . BT ¢
www—és’—faculty.stanford.ed u/ knuth*

e

2

PREFACE

Cookery is become an art,
a noble sclence;
cooks are gentlemen.

-— TITUS LIVIUS, Ab Urbe Condita XXXIX.vi
(Robert Burton, Anatomy of Melancholy 1.2.2.2)

THIS BOOK forms a natural sequel to the material on information structures in
Chapter 2 of Volume 1, because it adds the concept of linearly ordered data to
the other basic structural ideas.

The title “Sorting and Searching” may sound as if this book is only for those
systems programmers who are concerned with the preparation of general-purpose
sorting routines or applications to information retrieval. But in fact the area of
sorting and searching provides an ideal framework for discussing a wide variety
of important general issues:

e How are good algorithms discovered?

e How can given algorithms and programs be improved?

e How can the efficiency of algorithms be analyzed mathematically?

e How can a person choose rationally between different algorithms for the
same task?
In what senses can algorithms be proved “best possible”?
¢ How does the theory of computing interact with practical considerations?

e How can external memories like tapes, drums, or disks be used efficiently
with large databases?

Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!

This volume comprises Chapters 5 and 6 of the complete series. Chapter 5
is concerned with sorting into order; this is a large subject that has been divided
chiefly into two parts, internal sorting and external sorting. There also are
supplementary sections, which develop auxiliary theories about permutations
(Section 5.1) and about optimum techniques for sorting (Section 5.3). Chapter 6
deals with the problem of searching for specified items in tables or files; this is
subdivided into methods that search sequentially, or by comparison of keys, or
by digital properties, or ’)by hashing, and then the more difficult problem of
secondary key retrieval is considered. Trlere is a surprising amount of interplay

vi PREFACE

between both chapters, with strong analogies tying the topics together. Two
important varieties of information structures are also discussed, in addition to
those considered in Chapter 2, namely priority queues (Section 5.2.3) and linear
lists represented as balanced trees (Section 6.2.3).

Like Volumes 1 and 2, this book includes a lot of material that does not
appear in other publications. Many people have kindly written to me about
their ideas, or spoken to me about them, and I hope that I have not distorted
the material too badly when I have presented it in my own words.

I have not had time to search the patent literature systematically; indeed,
I decry the current tendency to seek patents on algorithms (see Section 5.4.5).
If somebody sends me a copy of a relevant patent not presently cited in this
book, I will dutifully refer to it in future editions. However, I want to encourage
people to continue the centuries-old mathematical tradition of putting newly
discovered algorithms into the public domain. There are better ways to earn a
living than to prevent other people from making use of one’s contributions to
computer science.

Before I retired from teaching, I used this book as a text for a student’s
second course in data structures, at the junior-to-graduate level, omitting most
of the mathematical material. I also used the mathematical portions of this book
as the basis for graduate-level courses in the analysis of algorithms, emphasizing
especially Sections 5.1, 5.2.2, 6.3, and 6.4. A graduate-level course on concrete
computational complexity could also be based on Sections 5.3, and 5.4.4, together
with Sections 4.3.3, 4.6.3, and 4.6.4 of Volume 2. -

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Second Edition

This new edition matches the third editions of Volumes 1 and 2, in which I have
been able to celebrate the completion of TEX and METAFONT by applying those
systems to the publications they were designed for.

The conversion to electronic format has given me the opportunity to go
over every word of the text and every punctuation mark. I've tried to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear
everywhere, but most significantly in Sections 5.1.4 (about permutations and
tableaux), 5.3 (about optimum sorting), 5.4.9 (about disk sorting), 6.2.2 (about
entropy), 6.4 (about universal hashing), and 6.5 (about multidimensional trees
and tries).

PREFACE Vil

The Art of Computer Programming is, however, still a work in progress.

Research on sorting and searching continues to grow at a phenomenal rate.
Therefore some parts of this book are headed by an “under construction” icon,
to apologize for the fact that the material is not up-to-date. For example, if I
were teaching an undergraduate class on data structures today, 1 would surely
discuss randomized structures such as treaps at some length; but at present, 1
am only able to cite the principal papers on the subject, and to announce plans
for a future Section 6.2.5 (see page 478). My files are bursting with important
material that I plan to include in the final, glorious, third edition of Volume 3,
perhaps 17 years from now. But I must finish Volumes 4 and 5 first, and I do
not want to delay their publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and refine this material during the past 35 years. Most of the
hard work of preparing the new edition was accomplished by Phyllis Winkler
(who put the text of the first edition into TEX form), by Silvio Levy (who
edited it extensively and helped to prepare several dozen illustrations), and by
Jeffrey Oldham (who converted more than 250 of the original illustrations to
METAPOST format). The production staff at Addison-Wesley has also been
extremely helpful, as usual.

I have corrected every error that alert readers detected in the first edition —
as well as some mistakes that, alas, nobody noticed —and I have tried to avoid
introducing new errors in the new material. However, I suppose some defects still
remain, and I want to fix them as soon as possible. Therefore I will cheerfully
pay $2.56 to the first finder of each technical, typographical, or historical error.
The webpage cited on page iv contains a current listing of all corrections that
have been reported to me.

Stanford, California D. E. K.
February 1998

There are certain common Privileges of a Writer,

the Benefit whereof, | hope, there will be no Reason to doubt;
Particularly, that where | am not understood, it shall be concluded,
that something very useful and profound is coucht underneath.

— JONATHAN SWIFT, Tale of a Tub, Preface (1704)

NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take — otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it's a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.

X NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may

involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far

" as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 45 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to be
the most valuable have been singled out. (This is not meant to detract from the
other exercises!) Each reader should at least make an attempt to solve all of the
problems whose rating is 10 or less; and the arrows may help to indicate which
of the problems with a higher rating should be given priority.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to

NOTES ON THE EXERCISES xi

solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and heipful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 80 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

» 1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that when n is an integer, n > 2, the equation z" +y" = z" has
no solution in positive integers x, ¥, 2.

Two hours' daily exercise ... will be enough
to keep a hack fit for his work.

— M. H. MAHON, The Handy Horse Book (1865)

CONTENTS

Chapter 5—Sorting 1
*5.1. Combinatorial Properties of Permutations 11
*5.1.1. Inversions . . . e e e e e e e e e 11
*5.1.2. Permutations of a Multlset C e e e e e e e e e 22
*5.13. Runs e e e e e e e e e e 35
*5.1.4. Tableaux and Involutlons e e e e e e e e e 47
5.2. Internal sorting . . . e e e e e e e e s e e 73
5.2.1. Sorting by Insertxon. e e e e e e e e e e e e e e 80
5.2.2. Sorting by Exchanging 105
5.2.3. Sorting by Selection 138
5.24. Sortingby Merging 158
5.2.5. Sorting by Distribution 168
5.3. Optimum Sorting B £ 14)
5.3.1. memum—Compa.nson Sorting 180
*5.3.2. Minimum-Comparison Merging 197
*5.3.3. Minimum-Comparison Selection 207
*5.34. Networksfor Sorting 219
5.4. External Sortingz 1
5.4.1. Multiway Merging and R,eplacement Selectlon e e e .. 282
*5.4.2. The Polyphase Merge 267
*5.43. TheCascade Merge 288
*5.4.4. Reading TapeBackwards 299
*5.4.5. The Oscillating Sort S) |
*5.4.6. Practical Considerations for Tape Mergmg B) 4
*5.4,7. External Radix Sorting 343
*5.48. Two-Tape Sorting 348
*5.4.9. Disks and Drums . . . O 11
5.5. Summary, History, and B1bhography e 111
Chapter 6—Searching 392
6.1. Sequential Searching P 1* 1
6.2. Searching by Comparison of Keys Y 4]
6.2.1. Searching an Ordered Table 409
6.2.2. Binary Tree Searching 426
6.2.3. Balanced Trees 458
6.2.4. Multiway Trees « . . . o« 4 o o .. 481

xii

CONTENTS

6.3. Digital Searching
6.4. Hashing
6.5. Retrieval on Seconda.ry Keys e e e e e e e

Answers to Exercises e e e e

Appendix A — Tables of Numerical Quantities

L Fundamental Constants (decimal)
2. Fundamental Constants (octal)

3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers ..

Appendix B—Index to Notations

Indexand Glossary

xiii

492
513
559

584

748

748
749
750
752

757

CHAPTER FIVE

SORTING

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in its success,
than to take the lead in the introduction of

a new order of things.

— NICCOLO MACHIAVELLI, The Prince (1513)

“But you can't look up all those license

numbers in time,” Drake objected.

“We don't have to, Paul. We merely arrange a list
and look for duplications.”

— PERRY MASON, in The Case of the Angry Mourner (1951)

“Treesort” Computer-— With this new ‘computer-approach’
to nature study you can quickly identify over 260

different trees of U.5., Alaska, and Canada,

even palms, desert trees, and other exotics.

To sort, you simply insert the needle.

— Catalog of Edmund Scientific Company (1964)

IN THIS CHAPTER we shall study a topic that arises frequently in programming:
the rearrangement of items into ascending or descending order. Imagine how
hard it would be to use a dictionary if its words were not alphabetized! We
will see that, in a similar way, the order in which items are stored in computer
memory often has a profound influence on the speed and simplicity of algorithms
that manipulate those items.

Although dictionaries of the English language define “sorting” as the process
of separating or arranging things according to class or kind, computer program-
mers traditionally use the word in the much more special sense of marshaling
things into ascending or descending order. The process should perhaps be called
ordering, not sorting; but anyone who tries to call it “ordering” is soon led
into confusion because of the many different meanings attached to that word.
Consider the following sentence, for example: “Since only two of our tape drives
were in working order, I was ordered to order more tape units in short order,
in order to order the data several orders of magnitude faster.” Mathematical
terminology abounds with still more senses of order (the order of a group, the
order of a permutation, the order of a branch point, relations of order, etc.; etc.).
Thus we find that the word “order” can lead to chaos.

Some people have suggested that “sequencing” would be the best name for
the process of sorting into order; but this word often seems to lack the right

1

2 SORTING 5

connotation, especially when equal elements are present, and it occasionally
conflicts with other terminology. It is quite true that “sorting” is itself an
overused word (“I was sort of out of sorts after sorting that sort of data”),
but it has become firmly established in computing parlance. Therefore we shall
use the word “sorting” chiefly in the strict sense of sorting into order, without
further apologies.

Some of the most important applications of sorting are:

a) Solving the “togetherness” problem, in which all jtems with the same identi-
fication are brought together. Suppose that we have 10000 items in arbitrary
order, many of which have equal values; and suppose that we want to rearrange
the data so that all items with equal values appear in consecutive positions. This
is essentially the problem of sorting in the older sense of the word; and it can be
solved easily by sorting the file in the new sense of the word, so that the values
are in ascending order, v; < v2 < --- < vigo00- The efficiency achievable in this
procedure explains why the original meaning of “sorting” has changed.

b} Matching items in two or more files. If several files have been sorted into the
same order, it is possible to find all of the matching entries in one sequential pass
through them, without backing up. This is the principle that Perry Mason used
to help solve a murder case (see the quotation at the beginning of this chapter).
We can usually process a list of information most quickly by traversing it in
sequence from beginning to end, instead of skipping around at random in the
list, unless the entire list is small encugh to fit in a high-speed random-access
memory. Sorting makes it possible to use sequential accessing on large files, as
a feasible substitute for direct addressing.

¢) Searching for information by key values. Sorting is also an aid to searching,
as we shall see in Chapter 6, hence it helps us make computer output more
suitable for human consumption. In fact, a listing that has been sorted into
alphabetic order often looks quite authoritative even when the associated nu-
merical information has been incorrectly computed.

Although sorting has traditionally been used mostly for business data pro-
cessing, it is actually a basic tool that every programmer should keep in mind
for use in a wide variety of situations. We have discussed its use for simplify-
ing algebraic formulas, in exercise 2.3.2-17. The exercises below illustrate the
diversity of typical applications.

One of the first large-scale software systems to demonstrate the versatility
of sorting was the LARC Scientific Compiler developed by J. Erdwinn, D. E.
Ferguson, and their associates at Computer Sciences Corporation in 1960. This
optimizing compiler for an extended FORTRAN language made heavy use of
sorting so that the various compilation algorithms were presented with relevant
parts of the source program in a convenient sequence. The first pass was a
lexical scan that divided the FORTRAN source code into individual tokens, each
representing an identifier or a constant or an operator, etc. Each token was
assigned several sequence numbers; when sorted on the name and an appropriate
sequence number, all the uses of a given identifier were brought together. The

5 SORTING 3

“defining entries” by which a user would specify whether an identifier stood for a
function name, a parameter, or a dimensioned variable were given low sequence
numbers, so that they would appear first among the tokens having a given
identifier; this made it easy to check for conflicting usage and to allocate storage
with respect to EQUIVALENCE declarations. The information thus gathered about
each identifier was now attached to each token; in this way no “symbol table”
of identifiers needed to be maintained in the high-speed memory. The updated
tokens were then sorted on another sequence number, which essentially brought
the source program back into its original order except that the numbering scheme
was cleverly designed to put arithmetic expressions into a more convenient
“Polish prefix” form. Sorting was also used in later phases of compilation, to
facilitate loop optimization, to merge error messages into the listing, etc. In
short, the compiler was designed so that virtually all the processing could be
done sequentially from files that were stored in an auxiliary drum memory, since
appropriate sequence numbers were attached to the data in such a way that it
could be sorted into various convenient arrangements.

Computer manufacturers of the 1960s estimated that more than 25 percent
of the running time on their computers was spent on sorting, when all their
customers were taken into account. In fact, there were many installations in
which the task of sorting was responsible for more than half of the computing
time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldn’t,
or (iii) inefficient sorting algorithms have been in common use. The real truth
probably involves all three of these possibilities, but in any event we can see that
sorting is worthy of serious study, as a practical matter.

Even if sorting were almost useless, there would be plenty of rewarding rea-
sons for studying it anyway! The ingenious algorithms that have been discovered
show that sorting is an extremely interesting topic to explore in its own right.
Many fascinating unsolved problems remain in this area, as well as quite a few
solved ones.

From a broader perspective we will find also that sorting algorithms make a
valuable case study of how to attack computer programming problems in general.
Many important principles of data structure manipulation will be illustrated in
this chapter. We will be examining the evolution of various sorting techniques
in an attempt to indicate how the ideas were discovered in the first place. By
extrapolating this case study we can learn a good deal about strategies that help
us design good algorithms for other computer problems.

Sorting techniques also provide excellent illustrations of the general ideas
involved in the analysis of algorithms—the ideas used to determine performance
characteristics of algorithms so that an intelligent choice can be made between
competing methods. Readers who are mathematically inclined will find quite a
few instructive techniques in this chapter for estimating the speed of computer
algorithms and for solving complicated recurrence relations. On the other hand,
the material has been arranged so that readers without a mathematical bent can
safely skip over these calculations.

