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Preface

The idea to write this book first came to me in the spring of 1995, shortly after I
joined the faculty of the University of Michigan. At that time, a major review of the
entire undergraduate curriculum was underway, the purpose of which was to ensure that
undergraduate education remain relevant in the face of a rapidly changing world. About
the same time, the Society of Actuaries, which oversees the education of actuaries in
North America through the administration of its professional examinations, embarked on
amajor redesign of its own curriculum to keep abreast of the extraordinary changes taking
place in the financial services industry. This time also saw the emergence of financial
engineering as a new profession and the rise of programs in financial engineering and
financial mathematics around the world. My goal in writing this book was to update the
undergraduate probability curriculum 1o reflect these changes and to incorporate many
of the new and interesting applications of probability arising in the fields of engineering,
insurance, and investments.

Key Features of This Text

This book has several features that distinguish it from other probability texts currently
on the market:

» Key concepts are introduced through detailed motivating examples.

* Random variables and probability distributions are introduced early in the text.

* The text has a large number of detailed worked-out examples and problems with an
emphastis on applications from engineering, insurance, and investments.

 There is a wide range of exercises of varying difficulty, many of which are suitable for
student projects or group work.

* The text includes topics not covered or not emphasized in other probability texts, such
as the geometric expected value, normal power approximations, mixtures, and portfolio
selection models.

» The text is written in a clear, concise, expository style, with extensive graphical
illustrations throughout, making it well suited for individual study or self-learning.
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How to Use This Book

This book can be used in a variety of probability courses with a variety of teaching styles.
There is considerably more material in this book than would normally be covered in a
one-semester course. Hence, an instructor will have to be selective in what is covered.

What [ consider to be core material for an undergraduate probability course is con-
tained in Chapters 3, 4, 5, and 6. An instructor teaching probability should plan on
covering most of the material in these chapters, although discussions of some specialized
topics such as the Pareto distribution and the beta distribution can be omitted without
loss of continuity.

The material in Chapter 7 and Chapter 8 is also important and should be covered
to some extent. Instructors teaching engineering students will probably want to discuss
the techniques for determining the distribution of a transformed random variable and the
distributions of sums and products (§7.1 and §8.1) quite thoroughly. Instructors teaching
other types of students may wish to focus on the law of large numbers (§8.4) instead.
The sections labeled as being “optional” may be omitted without loss of continuity.

Chapter 2 is unique in that it uses four extended examples to motivate many of the key
concepts covered in the rest of the book. I have found that by discussing these examples
at the beginning of the course (i.e., before covering Chapters 3 through 8), students are
able to make important conceptual discoveries early on and end up learning a great deal
of probability theory in a relatively short period of time. Instructors familiar with the
discovery method of learning should be quite comfortable using Chapter 2 in this way.
Instructors accustomed to teaching in a more traditional way can begin the course at
Chapter 3 (after a brief survey of Chapter 1) and use Chapter 2 selectively or omit it
entirely.

The material in Chapters 9 and 10 is supplementary and would not normally be
covered in a one-semester course in probability. However, this material is good for
student projects.

Chapter summaries are provided in the first four chapters to recap the main ideas
and help the reader acquire perspective on the subject. Chapters 5 and 6 are written
in a summary style throughout and hence do not require separate summary sections,
Chapters 7 through 10 are designed to be covered selectively and do not contain summary
sections.

An instructor’s manual with solutions to all of the exercises in the book is available
with a bound-in CD. This manual contains a wealth of material including detailed
descriptions of the Mathematica commands for constructing the graphs in this book.
It is freely available to instructors who adopt this book as a text for their course. For
details on how to obtain a copy, contact your Brooks/Cole representative or visit the
Brooks/Cole Web site at www.brookscole.com.
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1.1

Introduction

Uncertainty is very much a part of the world in which we live. Indeed, one often hears
the well-known cliché that the only certainties in life are death and taxes. However,
even these supposed certainties are far from being completely certain, as any actuary or
accountant can attest; for although one’s eventual death and the requirement that one pay
taxes may be facts of life, the timing of one’s death and the amount of taxes one must
pay are far from certain and are generaily beyond one’s control.

Uncertainty can make life interesting. Indeed, the world would likely be a very dull
place if everything were pertfectly predictable. However, uncertainty can also cause grief
and suffering. For example, the sudden and premature death of a family breadwinner
can cause great financial distress for surviving family members with limited means of
support. The age-old fascination of humans with predicting the future, as evidenced
by the ever-present popularity of astrology and fortune-telling, and the development of
institutions such as insurance to make the effects of an uncertain future less severe are
no doubt due in large part to a recognition of the malevolent role that uncertainty can
play in one’s life.

This book presents the scientific approach to uncertainty, known as probability, which
has been developed over the past 350 years and is generally accepted in the scientific
community. There are undoubtedly many other approaches, such as mysticism and
astrology, which some people use to understand uncertainty. However, these approaches
lie beyond the realm of science and will not be considered in this book.

In this introductory chapter, we consider what the nature and scope of probability
is and how it arises in engineering and the sciences. We also consider how the notion
of a probability shouid be defined and how it can be interpreted. We then discuss how
probability models are constructed in practice. We end this introductory chapter with an
outline of the topics covered in the rest of the book.

What Is Probability?

Probability is the branch of science concerned with the study of mathematical techniques
for making quantitative inferences about uncertainty. The key words in this definition
are quantitative and inferences. Indeed, as we will soon see, probability provides a
mechanism for making quantitative statements about uncertainty and, more important,
allows one to draw quantitative conclusions from such statements using the rules of logic.

1



CHAPTER 1 INTRODUCTION

Most historians consider the work of Fermat (1601-1665) and Pascal (1623-1662)
on games of chance to be the first significant contribution to the study of probability;
however, many of Fermat’s and Pascal’s ideas can be traced to earlier works of Cardan,
Kepler, and Galileo. There is also some evidence that the Romans, many centuries before,
used mortality tables' to predict human lifespans. Since Fermat and Pascal’s time, nearly
every great mathematician has made some contribution to probability. Among the more
famous contributors are the Bernoullis, Laplace, DeMoivre, Poisson, DeMorgan, Venn,
Bayes, Markov, and Kolmogorov. A complete and readable account of the history of
the subject from the early 17th to the mid-19th century is given in the classic book by
Todhunter listed at the end of this chapter. Subsequent developments up to the early
20th century are discussed in the scholarly book of the famous economist John Maynard
Keynes, which is also listed at the end of the chapter.

While many scholars have studied probability purely for its intellectual and philo-
sophical appeal, a good deal of the motivation for the subject has come, and continues
to come, from practical problems outside of mathematics. Indeed, the development of
probability since Fermat’s time has been heavily influenced by investigations in gaming,
demography, insurance, genetics, and quantum physics, to name just a few. Moreover,
the subject itself has had profound implications on everything from economics to engi-
neering and, it could be argued, has played a significant role in the history of the world
over the last 200 years. To give a simple example, consider marine insurance, whose
issuance can be justified by the well-known law of averages: The availability of marine
insurance enabled commercial shipping to develop on a large scale (because it freed mar-
itime shippers from the worry of financial ruin due to a catastrophe at sea), which in turn
contributed to the economic and political ascendancy of Britain in the 19th century and
to international commerce as we know it.2

Today, probability is used in a wide range of fields including engineering, finance,
medicine, meteorology, and management. We will encounter numerous applications of
probability to these and other fields throughout this book.

How Is Uncertainty Quantified?

If we agree that probability, from a scientific perspective, is the study of mathematical
techniques for making quantitative inferences about uncertainty, then for the subject to
have any meaningful content, we must have some precise way of quantifying uncertainty
and making inferences about that quantification. That there is considerable controversy
over how to precisely formulate such a quantification of uncertainty is an understatement,
to say the least. Indeed, some philosophers have gone so far as to argue that the very
notion of uncertainty cannot be precisely quantified since to do so would, in effect, make
uncertainty certain.

One approach to quantifying uncertainty is to use the concept of relative frequency.
To describe this concept, consider an experiment with several possible outcomes which

! A mortality table lists the number of deaths each year for a hypothetical group of individuals assumed to be
born at the same time.
2We will have more to say about the connection between insurance and probability in §1.4.
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can be repeated a large number of times.? The relative frequency of a particular outcome
of such an experiment in a sequence of repetitions of the experiment is the fraction of
the total number of repetitions of the experiment that result in the desired outcome. For
example, in the sequence of coin tosses resulting in H, T, T, T, H (where H signifies
heads and T signifies tails), the relative frequency of heads is 2/5, whereas in the
sequence of tosses resulting in T, H, T, H, H, the relative frequency of heads is 3/5.
Experience suggests that as the number of repetitions of the experiment increases, the
relative frequencies associated with a particular outcome converge to a common value.
For example, the relative frequency of heads approaches 1/2 as the number of coin tosses
increases, provided that the coin is not biased.* This common value to which the relative
frequencies converge is called the probability of the desired outcome.

This approach to quantifying uncertainty, while intuitively appealing, has some major
drawbacks, the most serious of which is the reliance on the ambiguous notion of a limiting
relative frequency. The early probabilists overcame these logical difficulties by restricting
their attention to experiments in which the number of outcomes is finite and by assuming
that all outcomes of such experiments are equally likely, (1.e., have the same probability).
While the assumption of equal likelihood of outcomes is admittedly idealized,” in the
context of the games of chance with which the early probabilists were concerned, it
is not unrealistic provided that one correctly identifies the outcomes of the experiment.
The key to applying the classical principle of equal likelihood correctly is to identify the
outcomes in such a way that all information on the underlying experiment is captured
and no information is suppressed. ’

To illustrate the difference between a correct and an incorrect application of the
principle of equal likelihood, consider the experiment in which two unbiased coins are
tossed. If one identifies the possible outcomes as being head-head, head-tail, tail-head
and tail-tail, then one correctly assigns a probability of 1/4 to each of these outcomes and
one correctly deduces that the probability of getting exactly one head is 1/2. However,
if one fails to distinguish between the coins and identifies the possible outcomes as two
heads, one head—one tail, and two tails, then one incorrectly. assigns a probability of
1/3 to each of the outcomes head-head, tail-tail, and one incorrectly deduces that the
probability of getting exactly one head is 1/3.%

The great achievement of the classical probabilists was to initiate a logical approach
to the study of uncertainty, which to a great extent is still with us today. By avoiding
the difficulty inherent in considenng probabilities to be limiting relative frequencies and
instead assuming that all experimental outcomes are equally likely, they were able to
focus their energies on developing a logical system for deducing the probabilities of
particular groups of observations that were often too difficult to determine accurately by
successive repetition of an experiment. This system of logical deduction also enabled
them to avoid being misled by potentially faulty intuition.

*The ‘experiment’ to which we refer here could be a scientific experiment or some other procedure, such as
tossing a coin, which can be repeated and which has several possible outcomes.

4 A coin is biased if it has a tendency to land on one side over the other. A coin is unbiased or fair if it has no
such tendency.
51t fails, for example, when considering a coin that is biased.

¢ Interestingly enough, the mathematician D' Alembert is alleged to have believed this incorrect line of reason-
ing at one point in his career. We will have more to say about this particular example in Chapter 3.
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CHAPTER 1t INTRODUCTION

TABLE 1.1 Results from 100 Repetitions
of a “Ten Coin Toss”

Number of Heads Frequency
0 0
1 ]
2 3
3 12
4 21
5 24
6 22
7 13
8 4
9 0

10 0
100

To give a simple illustration of a situation in which the deductive approach succeeds
where intuition might fail, consider the probability of getting exactly five heads in ten
tosses of a coin. One might think that if the coin is as likely to land heads as it is to
land tails, then this probability should be 1/2 since, according to the relative frequency
interpretation of probability, an unbiased coin that is tossed a large number of times
will land heads approximately half the time. However, if you thought this, you would
be wrong! In fact, under the assumption that the probability of getting heads in a
single toss is 50%, one can show deductively (using the methods to be developed in
Chapter 3) that the probability of getting exactly five heads in ten tosses of the coin
is 63/256 = 0.24609375. Interestingly enough, the value 63/256 is in accord with the
relative frequency interpretation of probability, as one can confirm by repeatedly tossing
a fair coin ten times and computing the corresponding relative frequencies. The results
of 100 such repetitions are given in Table 1.1.

The deductive approach to probability taken by the classical probabilists is an example
of the axiomatic approach. The axiomatic approach in mathematics is a deductive
technique in which the topic of interest is described by a collection of axioms in the
language of sets, and all inferences about the topic are made using only these assumptions
and the rules of set theory and formal logic. Mathematicians struggled for many years
to find an axiomatic formulation for probability that would encompass all types of
experiments, not just the ones considered by the classical probabilists. Finally, in the
1930s, the Russian mathematician A. N. Kolmogorov gave an axiomatic description for
the theory of probability that permitted virtually every experiment to be considered. A
greatly simplified version of this axiomatization will be discussed in Chapter 3.

In most applications, an intuitive understanding of probability based on relative
frequencies is generally sufficient. However, it is nice to know that the subject rests
on a firm foundation and that the conclusions we reach have some basis in logic!

Before moving on to the next section, it is instructive to make one more remark about
the meaning of probability statements. While one often makes probability statements



