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PART I BASIC KNOWLEDGE OF MECHANICS

Unit 1 General Equilibrium Conditions of A System

In this section, we shall consider the conditions that the forces and couples acting upon a
body must satisfy in order for it to be in equilibrium®.

According to Newton’s first law, the sum of the forces exerted on a body at rest must be
zero. Notice, however, that this law says nothing about the moments, or rotational effects,
of the forces. Clearly, the total moment must also be zero, else the body would rotate.

The fundamental problem here is that Newton’s first law (and second law), as
originally stated, applies only for very small bodies, or particles, with negligible dimensions
and nonzero mass. However, it can be extended to bodies of finite size as follows.

Consider a system consisting of two
particles, and let f, and f, be the forces due
to the interaction between them (Fig. 1. 1).
These forces are called internal forces, since
they are due to interactions between bodies
within the system. Assuming that the

internal forces obey Newton’s third law, we

have f,= — f,. Suppose that there are also

forces, such as F,, F,, and F;, exerted on

the particles due to interactions with bodies T
outside the system. Such forces are called Fig.1.1 A system of forces

external forces. Clearly, and the forces acting _ ,
upon a particular particle must have the same point of application because a particle has
negligible dimensions.

We shall say that the system is in equilibrium if each particle within it is in equilibrium.

In this case, by Newton’s first law, the sum of the forces acting upon each particle must be

zero. For particle A we have
t

EFA=F1+F2+f1=0
and for particle B
2Fs= S+ F;=0
The total force acting upon the system is
2F=2Fs+2XFs=F,+F;+F;+fi+f:=0
Now let us consider the total moment of these forces about some point P. Referring to Fig.

1.1, we have



2Me=r X (XFa)+r, X (XFp)
But > Fa= > Fs=0;s0 the total moment must also be zero, as stated previously.

Since the forces f, and f, have the same line of action, the moment condition can be
rewritten as

2Mp=r X (F\+F,+ fi+f;) +r, XF;=0
But f,=— f,;;s0 the conditions on the forces and moments reduce to

> F=F,+F,+F;=0

and

2Mp=(r XF)+(ry XF) 4+ (ry XF3) =0
In other words, if the system is in equilibrium, the sum of the external forces acting upon it
is zero and so is the sum of the moments of these forces about an arbitrary point. The
internal forces need not be considered because their effects cancel out.

Although we shall not go through the details, it should not be too difficult to see that
the preceding results hold for a system consisting of any number of particles acted upon by
any number of external forces, provided the internal forces obey Newton’s third law. In
particular, these results apply to bodies of finite extent, since such bodies can be thought of
as consisting of a large number of very small pieces, or particles?. Thus, we have the
following general equilibrium conditions ;

If a system is in equilibrium , then

>F=0 and >M;=0 a.v
where 2 F is the sum of the external forces acting upon the system and >, My is the total
moment of these forces about an arbitrary point, including the moments of any couples which
may be acting.

Equations (1. 1) are necessary conditions for equilibrium; i. e., if the system is in
equilibrium, these equations must be satisfied. They are not, in general, sufficient
conditions for equilibrium; satisfaction of these equations does not necessarily guarantee that
the system will be in equilibrium. This presents no difficulties, however, for we shall be
dealing only with systems known to be in equilibrium. Equations (1. 1) are both necessary
and sufficient conditions for equilibrium of a rigid body. Proof that they are sufficient
requires use of Newton’s second law and other knowledge beyond the level of this text.

It is important to note that Egs. (1.1) hold for any system in equilibrium, regardless of
the material of which it is comprised®. For example, they hold for a mass of fluid at rest, as
well as for solid bodies. They also apply to moving systems under certain conditions, since
Newton’s first law, upon which they are based, applies to particles moving with constant
velocity as well as to particles at rest®. For instance, Egs. (1.1) hold for bodies that move
in a straight line at constant speed without rotation and for bodies that rotate at a constant
rate about a fixed axis through their mass center. Typical examples are an airplane in
straight, level flight at constant speed and the pulley on an electric motor rotating at

constant speed. However, problems involving motion of any kind are usually relegated to
texts on dynamics.



When expressed in component form, Eqgs. (1.1) yield the six scalar equations:
>E,=0 >F,=0 SF,=0
SM,.=0 >M,,=0 >M,.=0 1.2
These equations can be used in a force analysis of a system to solve for unknown
information concerning the external forces and couples acting. Since there are six equations,
we can generally solve for six unknowns. If all of the unknowns concerning the external |
forces and couples can be determined from the equilibrium equations, the problem is said to
be statically determinate. 1f not, it is said to be statically indeterminate.
When there are more unknowns than equations of equilibrium in a problem, it is
tempting to try to obtain additional equations by considering moments about more than one

point. Unfortunately, this procedure does not work.

(Selected from;Karl K. Stevens,Statics & Strength of Materials, 2nd Edition, Prentice-Hall Inc. 1987.)
Words and Expressions

couple ['kapl]. =»n. H{B, BE

exert [ig'zeit] wv. #iM (KEJ), A (U1

fundamental [fanda'mentl] a. EAH, KK, TEHKN
negligible ['neglidzebl] a. RILAZWEH, MAREH
moment ['msument| =n. H%E, T, BE

equilibrium [ikwi'libriem] =». ¥ (R&E, #)

cancel out A4,

preceding [pri'siidin] a. PAGIH, LRK

pulley ['puli] =». B#%, R¥E®

10. relegate ['religeit] wt. 1H¥, &I

11. component [kem'psunent] =. 2411, 2 &, W, R
12. scalar ['skeilo] n.; a. 2i (B, B ()

13. statically determinate #EK

14. statically indeterminate FARER, WBREN
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Exercises

1. After reading the text above, summarize the main idea of it in oral English.
2. Answer the following questions, according to the text:

(1) Can you describe Newton’s first law? what’s it?

(2) What forces are called internal forces?

(3) What are the general equilibrium conditions of a system?

(4) Can Egs. (1.1) apply to moving systems under certain conditions? why?
3. Translate paragraph 3 into Chinese.
4. Put the following into Chinese, by reference to the text:

at rest rotational effects interaction negligible arbitrary fundamental
5. Put the following into English;:

W Shh FE LEXHE ROoKH BEN BBEN
6. Translate the following sentences into English:

) WREREDE EOBENERIT, WERERERKS.

Q) MRREAMETRABLETFERS, HFAKXRELWRFHHN.

Reading Material 1

Static Analysis of Beams

A bar that is subjected to forces acting transverse to its axis is called a beam. In this section
we will consider only a few of the simplest types of beams, such as those shown in Fig. 1. 2.
In every instance it is assumed that the beam has a plane of symmetry that is parallel to the
plane of the figure itself. Thus, the cross section of the beam has a vertical axis of
symmetry. Also, it is assumed that the applied loads act in the plane of symmetry, and
hence bending of the beam occurs in that plane. Later we will consider a more general kind of

bending in which the beam may have an unsymmetrical cross section.

P,
— i ,
*Aév -\@i MA{%f—a b ] A Ij B C

(a) A simple supported beam (b) A’ cantilever beam (c) A beam with an overhang

Fig. 1.2 Types of beams

The beam in Fig. 1. 2(a), with a pin support at one end and a roller support at the

other, is called a simply supported beam, or a simple beam. The essential feature of a simple



beam is that both ends of the beam may rotate freely during bending, but they cannot
translate in the lateral direction. Also, one end of the beam can move freely in the axial
direction (that is, horizontally). The supports of a simple beam may sustain vertical
reactions acting either upward or downward.

The beam in Fig. 1. 2(b) which is built-in or fixed at one end and free at the other end,
is called a cantilever beam. At the fixed support the beam can neither rotate nor translate,
while at the free end it may do both. The third example in the figure shows a beam with an
overhang. This beam is simply supported at A and B and has a free end at C.

Loads on a beam may be concentrated forces, such as P, and P, in Fig. 1. 2(a) and (¢),
or distributed loads, such as the load ¢ in Fig. 1. 2(b). Distributed loads are characterized by
their intensity, which is expressed in units of force per unit distance along the axis of the
beam. For a uniformly distributed load, illustrated in Fig. 1. 2(b), the intensity is constant;
a varying load, on the other hand, is one in which the intensity varies as-a function of
distance along the axis of the beam.

The beams shown in Fig. 1. 2 are statically determinate because all their reactions can be
determined from equations of static equilibrium. For instance, in the case of the simple beam
supporting the load P,[Fig. 1. 2(a)], both reactions are vertical, and their magnitudes can
be found by summing moments about the ends; thus, we find

_P(L—a) _Pia
=7 Re=-7

The reactions for the beam with an overhang [Fig. 1. 2(c)] can be found in the same
manner,

Ra

For the cantilever beam [Fig. 1. 2(b)], the action of the applied load q is equilibrated by
a vertical force Ra and a couple M, acting at the fixed support, as shown in the figure. From
a summation of forces in the vertical direction, we conclude that
Rpo=qb

and, from a summation of moments about point A, we find

Ma=qb a-l-%

The reactive moment M, acts counterclockwise as shown in the figure.

The preceding examples illustrate how the reactions (forces and moments) of statically
determinate beams may be calculated by statics. The determination of the reactions for
statically indeterminate beams requires a consideration of the bending of the beams, and
hence this subject will be postponed.

The idealized support conditions shown in Fig. 1. 2 are encountered only occasionally in
practice. As an example, long-span beams in bridges sometimes are constructed with pin and
roller supports at the ends. However, in beams of shorter span, there is usually some
restraint against horizontal movement of the supports. Under most conditions this restraint
has little effect on the action of the beam and can be neglected. However, if the beam is very

flexible, and if the horizontal restraints at the ends are very rigid, it may be necessary to



consider their effects.
Example *

Find the reactions at the supports for a simple beam loaded as shown in Fig. 1. 3(a).

Neglect the weight of the beam.

Solution

The loading of the beam is already given in diagrammatic form. The nature of the
supports is examined next and the unknown components of these reactions are boldly
indicated on the diagram. The beam, with the unknown reaction components and all the
applied forces, is redrawn in Fig. 1. 3(b) to deliberately emphasize this important step in
constructing a free-body diagram. At A, two unknown reaction components may exist, since
the end is pinned. The reaction at B can only act in a vertical direction since the end is on a
roller. The points of application of all forces are carefully noted. After a free-body diagram

of the beam is made, the equations of statics are applied to obtain the solution.

100Ib  |1601b
1001 |1601b .
2000 in-Ib 20(;2 b I l
[ I/‘V < —] Ras Al { ]B
> B 727 N e
) 5 5 5 S = |
(a) )

Fig. 1.3 A simple beam

S F.=0,Ra.=0

2 My=0+,2000+100(10)+160(15)—Rs(20)=0,Rz=+2700 lb 4

2 Mp=0+,R4,(20)+2000—100(10) —160(5)=0,Ra,=—10lb

Check: > F,=04 +,—10—100—160+4270=0

Note that 2 F,= 0 uses up one of the three independent equations of statics, thus only
two additional reaction components may be determined from statics. If more unknown
reaction components or moments exist at the support, the problem becomes statically
indeterminate.

Note that the concentrated moment applied at C enters only into the expressions for the
summation of moments. The positive sign of Rj indicates that the direction of Ry has been
correctly assumed in Fig. 1. 3(b). The inverse is the case of Ra,, and the vertical reaction at

A is downward. Note that a check on the arithmetical work is available if the calculations are

made as shown.

(Selected from Stephen P. Timoshenko and James M. Gere,Mechanics of Materials,
Van Nostrand Reinhold Company Ltd. ,1978.

* Selected from Egor P. Popov, Introduction to Mechanics of Solids,Prentice-Hall Inc. ,1968.)
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Words and Expressions

transverse ['treenzvass] a. HHEAK, BUH, EEK
symmetry [‘'simitri] »z. JFREE, SHHR, BHY
pin support 4% 3% B

roller support 78 X &

translate [treens'leit] v. ¥#, B3

lateral ['leetoral] a. #EiMM, KEH

sustain [sos'tein] wr. X, RZHE, &
cantilever [‘kaemntiliive] ». B8 (B), X#HXK
overhang ['euve'hey] =. WY, sMi, &S

. intensity [in'tensiti] =. 3BE, BE

. reaction [ri'ekfon] n»n. RYEH (J1), BAH

. magnitude ['magnitjud] ». K/, B, BE

. equilibrate [i:kwi'laibreit] ». (ff) ¥4, () MK

. inverse ['in'vais] a. (M) RKJ, BH; n. B

. counterclockwise ['kauta'klokwaiz] a.; ad. #BtEF b (6))
. deliberately [diliberitli] ad. BHE, HEHN



Unit 2 Stress and Strain

1. Introduction to Mechanics of Materials

Mechanics of materials is a branch of applied mechanics that deals with the behaviour of solid
bodies subjected to various types of loading. It is a field of study that is known by a variety
of names, including “strength of materials” and “mechanics of deformable bodies. ” The solid
bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as
well as structures that are assemblies of these components. Usually the objective of our
analysis will be the determination of the stresses, strains, and deformations produced by the
loads; if these quantities can be found for all values of load up to the failure load, then we
will have obtained a complete picture of the mechanical behaviour of the body.

Theoretical analyses and experimental results have equally important roles in the study
of mechanics of materials. On many occasions we will make logical derivations to obtain
formulas and equations for predicting mechanical behaviour, but'at the same time we must
recognize that these formulas cannot be used in a realistic way unless certain properties of the
material are known. These properties are available to us only after suitable experiments have
been made in the laboratory. Also, many problems of importance in engineering cannot be
handled efficiently by theoretical means, and experimental measurements become a practical
necessity. The historical development of mechanics of materials is a fascinating blend of both
theory and experiment, with experiments pointing the way to useful results in some
instances and with theory doing so in others®. Such famous men as Leonardo da Vinci
(1452-1519) and Galileo Galilei (1564-1642) made experiments to determine the strength of
wires, bars, and beams, although they did not develop any adequate theories (by today’s
standards) to explain their test results. By contrast, the famous mathematician Leonhard
Euler (1707-1783) developed the mathematical theory of columns and calculated the critical
load of a column in 1744, long before any experimental evidence existed to show the
significance of his results®. Thus, Euler’s theoretical results remained unused for many
years, although today they form the basis of column theory.

. The importance of combining theoretical derivations with experimentally determined
properties of materials will be evident as we proceed with our study of the subject®. In this
section we will begin by discussing some fundamental concepts, such as stress and strain,

and then we will investigate the behaviour of simple structutal elements subjected to tension,

compression, and shear.

2. Stress

The concepts of stress and strain can be illustrated in an elementary way by considering the



extension of a prismatic bar [see Fig. 1. 4(a)]. A prismatic bar is one that has constant cross
section throughout its length and a straight axis. In this illustration the bar is assumed to be
loaded at its ends by axial forces P that produce a uniform stretching, or tension, of the bar.
By making an artificial cut (section mm) through the bar at right angles to its axis, we can
isolate part of the bar as a free body [Fig. 1. 4(b)]. At the right-hand end the tensile force P
is applied, and at the other end there are forces representing the action of the removed
portion of the bar upon the part that remains. These forces will be continuously distributed
over the cross section, analogous to the continuous distribution of hydrostatic pressure over
a submerged surface. The intensity of force, that is, the per unit area, is called the stress
and is commonly denoted by the Greek letter o. Assuming that the stress has a uniform
distribution over the cross section [see Fig. 1. 4(b)], we can readily see that its resultant is

equal to the intensity o times the cross-sectional area A of the bar. Furthermore, from the

(a)

O‘E }:———P
(b)

Fig.1.4 Prismatic bar in tension

equilibrium of the body shown in Fig. 1. 4(b), we can also see that this resultant must be

equal in magnitude and opposite in direction to the force P. Hence, we obtain

o= " (1. 3)

as the equation for the uniform stress in a prismatic bar. This equation shows that stress has
units of force divided by area——for example, Newtons per square millimeter (N/mm?) or
pounds per square inch (psi). When the bar is being stretched by the forces P, as shown in
the figure, the resulting stress is a tensile‘stres‘s; if the forces are reversed in direction,
causing the bar to be compressed, they are called compressive stresses.

A necessary condition for Eq. (1. 3) to be valid is that the stress ¢ must be uniform over
the cross section of the bar. This condition will be realized if the axial force P acts through
the centroid of the cross section, as can be demonstrated by statics. When the load P does
not act at the centroid, bending of the bar will result, and a more complicated analysis is
necessary. Throughout this book, however, it is assumed that all axial forces are applied at
the centroid of the cross section unless specifically stated to the contrary®. Also, unless

stated otherwise, it is generally assumed that the weight of the object itself is neglected, as

was done when discussing the bar in Fig. 1. 4.
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3. Strain

The total elongation of a bar carrying an axial force will be denoted by the Greek letter &[see

Fig. 1. 4(a)], and the elongation per unit length, or strain, is then determined by the
equation

E:Z ) (1. 4)

where L is the total length of the bar. Note that the strain ¢ is a nondimensional quantity. It
can be obtained accurately from Eq. (1. 4) as long as the strain is uniform throughout the
length of the bar. If the bar is in tension, the strain is a tensile strain, representing an
elongation or a stretching of the material; if the bar is in compression, the strain is a

compressive strain, which means that adjacent cross sections of the bar move closer to one

another.

(Selected from Stephen P. Timoshenko and James M. Gere,Mechanics of Materials,
Van Nostrand Reinhold Company Ltd. ,1978.)

Words and Expressions

stress [stres] n Rif1, ®H (RE, R
strain [strein] n. RA; v. FLE

deformable [difomebl] a. W [H] ZEK

shaft [faft] = (fEsh, HE$H) #; &5
derivation [deri'veifon] =n. #5, S H, H#H
axially-loaded . %% (6] 48 i 4%

blend [blend] ». B& (¥); v. BE, BA
tension ['tenfon] n. hrIfd, ¥ A, B A

shear [fis] =n. B40, B 5; v. U4, BUUE

. prismatic [priz'meetik] . &R EH

. at right angles to &--&H, H5--HHEA

. analogous [a'neleges] a. 28 [H] fLE, HEH
. hydrostatic [ haidrou'stetik] a. 8K (F1) 280, FlkE; H2M
. submerge [sob'ma:d3] v. B, W&, BE

. denote [di'neut] v. FEmx, R

. resultant [ri'zaltent] n. & H; a. SHM, B8
. centroid ['sentroid] n. L, KL, B, B
. elongation [ilomy'geifon] =n. I3k, fH§K, MR
. adjacent [a'dzeisant] a. H4PH, KEIEH

. free-body Bk, RBEHK
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