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Preface

For nearly a decade within Bell Laboratories, 1 labored at implementing
C++. First it was on cfront, Bjarne Stroustrup’s original C++ implementation
(from Release 1.1 back in 1986 through Release 3.0, made available in
September 1991). Then it was on to what became known internally as the
Simplifier, the C++ Object Model component of the Foundation project. It
was during the Simplifier’s design period that I conceived of and began
working on this book.

What was the Foundation project? Under Bjarne’s leadership, a small
group of us within Bell Laboratories was exploring solutions to the prob-
lems of large-scale programming using C++. The Foundation was an effort
to define a new development model for the construction of large systems
(again, using C++ only; we weren’t providing a muitilingual solution). It
was an exciting project, both for the work we were doing and for the people
doing the work: Bjarne, Andy Koenig, Rob Murray, Martin Carroll, Judy
Ward, Steve Buroff, Peter Juhl, and myself. Barbara Moo was supervising
the gang of us other than Bjarne and Andy. Barbara used to say that manag-
ing a software group was like herding a pride of cats.

We thought of the Foundation as a kernel upon which others would
layer an actual development environment for users, tailoring it to a UNIX
or Smalltalk model as desired. Internally, we called it Grail, as in the quest
for, etc. (It seems a Bell Laboratories tradition to mock one’s most serious
intentions.)

Grail provided for a persistent, semantic-based representation of the pro-
gram using an object-oriented hierarchy Rob Murray developed and named
ALFE Within Grail, the traditional compiler was factored into separate exe-
cutables. The parser built up the ALF representation. Each of the other com-
ponents (type checking, simplification, and code generation) and any tools,
such as a browser, operated on (and possibly augmented) a centrally stored
ALF representation of the program. The Simplifier is the part of the compiler
between type checking and code generation. (Bjarne came up with the name
Simplifier; it is a phase of the original cfront implementation.)

vii
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What does a Simplifier do between type checking and code generation?
It transforms the internal program representation. There are three general
flavors of transformations required by any object model component:

1. Implementation-dependent transformations. These are implementa-
tion-specific aspects and vary across compilers. Under ALF, they
involved the transformations of what we called “tentative” nodes.
For example, when the parser sees the expression

fet () ;

it doesn’t know if this is (a) an invocation of a function repre-
sented or pointed to by fct or (b) the application of an over-
loaded call operator on a class object £ct. By default, the
expression is represented as a function call. The Simplifier
rewrites and replaces the call subtree when case (b) applies.

2. Language semantics transformations. These include constructor/de-
structor synthesis and augmentation, memberwise initialization
and memberwise copy support, and the insertion within program
code of conversion operators, temporaries, and constructor/de-
structor calls.

3. Code and object model transformations. These include support for vir-
tual functions, virtual base classes and inheritance in general, op-
erators new and delete, arrays of class objects, local static class
instances, and the static initialization of global objects with non-
constant expressions. An implementation goal I aimed for in the
Simplifier was to provide an Object Model hierarchy in which the
object implementation was a virtual interface supporting multiple
object models.

These last two categories of transformations form the basis of this book.
Does this mean this book is written for compiler writers? No, absolutely
not. It is written by a (former) compiler writer (that’s me) for intermediate
to advanced C++ programmers (ideally, that’s you). The assumption behind
this book is that the programmer, by understanding the underlying C++

Object Model, can write programs that are both less error prone and more
efficient.
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What Is the C++ Object Model?

There are two aspects to the C++ Object Model:

1. The direct support for object-oriented programming provided
within the language

2. The underlying mechanisms by which this support is implemented

The language level support is pretty well covered in my C++ Primer and in
other books on C++. The second aspect is barely touched on in any current
text, with the exception of brief discussions within [ELLIS90] and
[STROUP94]. It is this second aspect of the C++ Object Model that is the pri-
mary focus of this book. (In that sense, I consider this text to form a book-
end to my C++ Primer, much as my MFA and MS degrees provide a “fearful
symmetry” to my education.) The language covered within the text is the
draft Standard C++ as of the winter 1995 meeting of the committee. (Except
for some minor details, this should reflect the final form of the language.)

The first aspect of the C++ Object Model is invariant. For example, un-
der C++ the complete set of virtual functions available to a class is fixed at
compile time; the programmer cannot add to or replace a member of that
set dynamically at runtime. This allows for extremely fast dispatch of a vir-
tual invocation, although at the cost of runtime flexibility.

The underlying mechanisms by which to implement the Object Model
are not prescribed by the language, although the semantics of the Object
Model itself make some implementations more natural than others. Virtual
function calls, for example, are generally resolved through an indexing into
a table holding the address of the virtual functions. Must such a virtual
table be used? No. An implementation is free to introduce an alternative
mechanism. Moreover, if a virtual table is used, its layout, method of access,
time of creation, and the other hundred details that must be decided, are all
decisions left to each implementation. Having said that, however, [ must
also say that the general pattern of virtual function implementation across
all current compilation systems is to use a class-specific virtual table of a
fixed size that is constructed prior to program execution.

If the underlying mechanisms by which the C++ Object Model is imple-
mented are not standardized, then one might ask, why bother to discuss
them at all? The primary reason is because my experience has shown that
if a programmer understands the underlying implementation mode], the

ix
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programmer can code more efficiently and with greater confidence.
Determining when to provide a copy constructor, and when not, is not
something one should guess at or have adjudicated by some language guru.
It should come from an understanding of the Object Model.

A second reason for writing this book is to dispel the various misunder-
standings surrounding C++ and its support of object-oriented program-
ming. For example, here is an excerpt from a letter I received from someone
wishing to introduce C++ into his programming environment:

I work with a couple of individuals who have not written and /or are
completely unfamiliar with C++ and OO. One of the engineers who
has been writing C code since 1985 feels very strongly that C++ is
good only for user-type applications, but not server applications.
What he is saying is to have a fast and efficient database level engine
that it must be written in C compared to C++. He has identified that
C++ is bulky and slow.

C++, of course, is not inherently bulky and slow, although I've found this to
be a common assumption among many C programmers. However, just say-
ing that is not very convincing, particularly if the person saying it is per-
ceived as a C++ partisan. This book is partially an attempt to lay out as
precisely as I can the kinds of overhead that are and are not inherent in the
various Object facilities such as inheritance, virtual functions, and pointers
to class members.

Rather than answering the individual myself, I forwarded his letter
to Steve Vinoski of Hewlett-Packard, with whom I had previously cor-

responded regarding the efficiency of C++. Here is an excerpt from his
response:

[ have heard a number of people over the years voice opinions simi-
lar to those of your colleagues. In every case, those opinions could be
attributed to a lack of factual knowledge about the C++ language.
Just last week I was chatting with an acquaintance who happens to
work for an IC testing manufacturer, and he said they don’t use C++
because “it does things behind your back.” When I pressed him, he
said that he understood that C++ calls malloc () and free () with-
out the programmer knowing it. This is of course not true. It is this

sort of “myth and legend” that leads to opinions such as those held
by your colleagues....

Finding the right balance [between abstraction and pragmatism] re-
quires knowledge, experience, and above all, thought. Using C++
well requires effort, but in my experience the returns on the invested
effort can be quite high.
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I like to think of this book, then, as my answer to this individual, and, I
hope, a repository of knowledge to help put to rest many of the myths and
legends surrounding C++.

If the underlying mechanisms supporting the C++ Object Model vary
both across implementations and over time, how can I possibly provide a
general discussion of interest to any particular individual? Static initializa-
tion provides an interesting case in point.

Given a class X with a constructor, such as the following;:

class X
{
friend istream&
operator>>( istream&, X& );
public:
X( int sz = 1024 ) { ptr = new char[ sz }; }

private:
char *ptr;

}i
and the declaration of a global object of class X, such as the following;:

X buf;

int main()
{

// buf must be constructed at this point
cin >> setw( 1024 ) >> buf;

the C++ Object Model guarantees that the X constructor is applied to buf
prior to the first user statement of main (). It does not, however, prescribe
how that is to get done. The solution is called static initialization; the ac-
tual implementation depends on the degree of support provided by the
environment.

The original cfront implementation not only presumed no environment
support. It also presumed no explicit platform target. The only presumption
was that of being under some variant of UNIX. Our solution, therefore,
was specific only to UNIX: the presence of the nm command. The CC com-
mand (a UNIX shell script for portability) generated an executable, ran the
nm command on the executable—thereby generating a new .c file—com-
piled the .c file, and then relinked the executable. (This was called the munch

xi
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solution.) This did the job by trading compile-time efficiency for portability.
Eventually, however, users chaffed under the compile-time overhead.

The next step was to provide a platform-specific solution: a COFF-based
program (referred to as the patch solution) that directly examined and
threaded the program executable, thus doing away with the need to run
nm, compile, and relink. (COFF was the Common Object File Format for
System V pre-Release 4 UNIX systems.) Both of these solutions are pro-
gram-based, that is, within each .c file requiring static initialization cfront
generated an sti function to perform the required initializations. Both
munch and patch solutions searched for functions bearing an sti prefix
and arranged for them to be executed in some undefined order by a
_main() library function inserted as the first statement of main ().

In parallel with these releases of cfront, a System V COFF-specific C++
compiler was under development. Targeted for a specific platform and op-
erating system, this compiler was able to effect a change in the System V
link editor: a new initialize section that provided for the collection of objects
needing static initialization. This extension of the link editor provides what
I call an environment-based solution that is certainly superior to a program-
based solution.

So any generalization based on the cfront program-based solution
would be misleading. Why? Because as C++ has become a mainstream lan-
guage, it has received more and more support for environment-based solu-
tions. How is this book to maintain a balance, then? The book’s strategy is
as follows: If significantly different implementation models exist across C++
compilers, I present a discussion of at least two models. If subsequent im-
plementation models evolved as an attempt to solve perceived problems
with the original cfront model, as, for example, with support for virtual in-
heritance, I present a discussion of the historical evolution. Whenever I
speak of the traditional implementation model, I mean, of course,
Stroustrup’s original design as reflected in cfront and which has provided a
pattern of implementation that can still be seen today in all commercial im-
plementations, even if only as a “reaction against.”

Organization of This Book

Chapter 1, Object Lessons, provides background on the object-based and ob-
ject-oriented programming paradigms supported by C++. It includes a brief
tour of the Object Model, illustrating the current prevailing industry imple-
mentation without looking too closely at multiple or virtual inheritance.
(This is fleshed out in Chapters 3 and 4.)

Chapter 2, The Semantics of Constructors, discusses in detail how
constructors work. It discusses when constructors are synthesized by
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the compiler and what that means in practical terms for your program'’s
performance.

Chapters 3 through 5 contain the primary material of the book. There,
the details of the C++ Object Model are discussed. Chapter 3, The Semantics
of Data, looks at the handling of data members. Chapter 4, The Semantics of
Function, focuses on the varieties of member functions, with a detailed look
at virtual function support. Chapter 5, Semantics of Construction, Destruction,
and Copy, deals with support of the class model and object lifetime. Program
test data is discussed within each of these chapters, where our performance
expectations are compared against actual performance as the representa-
tions move from an object-based to object-oriented solution.

Chapter 6, Runtime Semantics, looks at some of the Object Model behav-
ior at runtime, including the life and death of temporary objects and the
support of operators new and delete.

Chapter 7, On the Cusp of the Object Model, focuses on exception han-
dling, template support, and runtime type identification.

The Intended Audience

This book is primarily a tutorial, although it is aimed at the intermediate
C++ programmer rather than the novice. I have attempted to provide suffi-
cient context to make it understandable to anyone who has had some prior
exposure to C++—for example, someone who has read my C++ Primer—
and some experience in C++ programming. The ideal reader, however, has
been programming in C++ for a few years and wants to better understand
what is actually going on “under the hood.” Portions of the material should
be of interest even to the advanced C++ programmer, such as the genera-
tion of temporaries and the details of the named return value optimization.
At least, this has proved to be so in the various public presentations of this
material | have given as it has evolved.

A Note on Program Examples and Program Execution

The use of program code in this text serves two primary purposes:

1. To provide concrete illustrations of the various aspects of the C++
Object Model under discussion

2. To provide test cases by which to measure the relative cost of vari-
ous language features

xiii
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In neither case is the code intended to represent models of production-
quality programming. I am not, for example, suggesting that a real 3D
graphics library represents a 3D point using a virtual inheritance hierarchy
(although one can be found in [POKOR94]).

All the test programs in the text were compiled and executed on an SGI
Indigo2 XL (the R4400 MIPS RISC processor) running version 5.2 of SGI's
UNIX operating system under both its CC and NCC compilers. CC is cfront
Release 3.0.1 (it generates C code, which a C compiler then recompiles into
an executable). NCC is version 2.19 of the Edison Design Group’'s C++
front-end with a code generator supplied by SGI. The times were measured
as the average user time reported by the UNIX timex command and repre-
sent 10 million iterations of the test function or statement block.

While the use of these two compilers on the SGI hardware might strike
the reader as somewhat esoteric, I feel doing so serves the book’s purposes
quite well. Both cfront and now the Edison Design Group’s front-end (re-
portedly characterized by Bjarne as the son of cfront) are not platform spe-
cific. Rather, they are generic implementations licensed to over 34 computer
manufacturers (including Cray, SGI, and Intel) and producers of software
environments (including Centerline and Novell, which is the former UNIX
Software Laboratories). Performance measurements are intended not to
provide a benchmark of current compilation systems but to provide a mea-
sure of the relative costs of the various features of the C++ Object Model.
Benchmark performance numbers can be found in nearly any “compiler
shoot-out” product review in the trade press.
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