[RRERLEE - RN\ C++ 77

I,gi‘E Eii

INSIDE TP +
W UBECT MODEL:

B STANLEY B. LIPPMAN

[#]Stanley B. Lippman 2

e

/ | .
48R 53 B4 14
www.infopower.com.cn

MAERAR ¢ iE)\ C++ 25

Inside the G++ Ohject Model

EEHERCHT
HMRER

(% EDAR)

[5] Stanley B. Lippman &

TRRA G W 14

Inside The C++ Object Model. (ISBN 0-201-83454-5)

Stanley B. Lippman

Copyright © 1996 by Addison Wesley Longman , Inc.

Original English Language Edition Published by Addison Wesley Longman , Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A 5B ENRR i Pearson Education B E b S WAL e P B (Fitk. MRIRERIATBUX A
SEMXERSN) MAHR. RIT.
AL BWRE FEFA, A8 UMERTXEREYERS BHETSS .

A T ERGH Pearson Education i thir%, ThrEE A BH4E.

LERTBRREFEEREILS: BT 01-2003-4142

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

BBTFEARSFRER CFRATEEE, BIENTRRRNTEEBET) HERTT.

BEEMEE (CIP) BB

FEHRR C+RBMA / (F) THE8FE, —F0A. —Jbx. PEE N R, 2003
(JRIRRE < C++RFD

ISBN 7-5083-1405-0

1. L%, NL.CES —BEF®|it—%3X V.TP312

oh ER A BT CIP BT (2003) 38 048301 &

RIERE: RAM

A F & FRRE - C++RF)|

B BERRCHMHEET (B

% ¥F: (¥) Stanley B. Lippman

HERAT: PEBHLEM

ik ERTH=EFECS IBBURG: 100044
BiE: (010) 88515918 f£HE: (010) 88518169
eI BRI

DO BIEIER RATH

: 787 X1092 1/16 =] 3. 19

: ISBN 7-5083-1405-0

D 20038 HIL B —M

: 20038 H 5 —IKENA

: 42.00 7C

=

R TR
S SY dn otk B

for Beth

who suffered with forbearance
the widowhood of an author’s wife

and nonetheless provided wildly unreasonable support

for Danny & Anna

who suffered with far less forbearance

but no less love

Preface

For nearly a decade within Bell Laboratories, 1 labored at implementing
C++. First it was on cfront, Bjarne Stroustrup’s original C++ implementation
(from Release 1.1 back in 1986 through Release 3.0, made available in
September 1991). Then it was on to what became known internally as the
Simplifier, the C++ Object Model component of the Foundation project. It
was during the Simplifier’s design period that I conceived of and began
working on this book.

What was the Foundation project? Under Bjarne’s leadership, a small
group of us within Bell Laboratories was exploring solutions to the prob-
lems of large-scale programming using C++. The Foundation was an effort
to define a new development model for the construction of large systems
(again, using C++ only; we weren’t providing a muitilingual solution). It
was an exciting project, both for the work we were doing and for the people
doing the work: Bjarne, Andy Koenig, Rob Murray, Martin Carroll, Judy
Ward, Steve Buroff, Peter Juhl, and myself. Barbara Moo was supervising
the gang of us other than Bjarne and Andy. Barbara used to say that manag-
ing a software group was like herding a pride of cats.

We thought of the Foundation as a kernel upon which others would
layer an actual development environment for users, tailoring it to a UNIX
or Smalltalk model as desired. Internally, we called it Grail, as in the quest
for, etc. (It seems a Bell Laboratories tradition to mock one’s most serious
intentions.)

Grail provided for a persistent, semantic-based representation of the pro-
gram using an object-oriented hierarchy Rob Murray developed and named
ALFE Within Grail, the traditional compiler was factored into separate exe-
cutables. The parser built up the ALF representation. Each of the other com-
ponents (type checking, simplification, and code generation) and any tools,
such as a browser, operated on (and possibly augmented) a centrally stored
ALF representation of the program. The Simplifier is the part of the compiler
between type checking and code generation. (Bjarne came up with the name
Simplifier; it is a phase of the original cfront implementation.)

vii

viii Preface

What does a Simplifier do between type checking and code generation?
It transforms the internal program representation. There are three general
flavors of transformations required by any object model component:

1. Implementation-dependent transformations. These are implementa-
tion-specific aspects and vary across compilers. Under ALF, they
involved the transformations of what we called “tentative” nodes.
For example, when the parser sees the expression

fet () ;

it doesn’t know if this is (a) an invocation of a function repre-
sented or pointed to by fct or (b) the application of an over-
loaded call operator on a class object £ct. By default, the
expression is represented as a function call. The Simplifier
rewrites and replaces the call subtree when case (b) applies.

2. Language semantics transformations. These include constructor/de-
structor synthesis and augmentation, memberwise initialization
and memberwise copy support, and the insertion within program
code of conversion operators, temporaries, and constructor/de-
structor calls.

3. Code and object model transformations. These include support for vir-
tual functions, virtual base classes and inheritance in general, op-
erators new and delete, arrays of class objects, local static class
instances, and the static initialization of global objects with non-
constant expressions. An implementation goal I aimed for in the
Simplifier was to provide an Object Model hierarchy in which the
object implementation was a virtual interface supporting multiple
object models.

These last two categories of transformations form the basis of this book.
Does this mean this book is written for compiler writers? No, absolutely
not. It is written by a (former) compiler writer (that’s me) for intermediate
to advanced C++ programmers (ideally, that’s you). The assumption behind
this book is that the programmer, by understanding the underlying C++

Object Model, can write programs that are both less error prone and more
efficient.

Preface

What Is the C++ Object Model?

There are two aspects to the C++ Object Model:

1. The direct support for object-oriented programming provided
within the language

2. The underlying mechanisms by which this support is implemented

The language level support is pretty well covered in my C++ Primer and in
other books on C++. The second aspect is barely touched on in any current
text, with the exception of brief discussions within [ELLIS90] and
[STROUP94]. It is this second aspect of the C++ Object Model that is the pri-
mary focus of this book. (In that sense, I consider this text to form a book-
end to my C++ Primer, much as my MFA and MS degrees provide a “fearful
symmetry” to my education.) The language covered within the text is the
draft Standard C++ as of the winter 1995 meeting of the committee. (Except
for some minor details, this should reflect the final form of the language.)

The first aspect of the C++ Object Model is invariant. For example, un-
der C++ the complete set of virtual functions available to a class is fixed at
compile time; the programmer cannot add to or replace a member of that
set dynamically at runtime. This allows for extremely fast dispatch of a vir-
tual invocation, although at the cost of runtime flexibility.

The underlying mechanisms by which to implement the Object Model
are not prescribed by the language, although the semantics of the Object
Model itself make some implementations more natural than others. Virtual
function calls, for example, are generally resolved through an indexing into
a table holding the address of the virtual functions. Must such a virtual
table be used? No. An implementation is free to introduce an alternative
mechanism. Moreover, if a virtual table is used, its layout, method of access,
time of creation, and the other hundred details that must be decided, are all
decisions left to each implementation. Having said that, however, [must
also say that the general pattern of virtual function implementation across
all current compilation systems is to use a class-specific virtual table of a
fixed size that is constructed prior to program execution.

If the underlying mechanisms by which the C++ Object Model is imple-
mented are not standardized, then one might ask, why bother to discuss
them at all? The primary reason is because my experience has shown that
if a programmer understands the underlying implementation mode], the

ix

Preface

programmer can code more efficiently and with greater confidence.
Determining when to provide a copy constructor, and when not, is not
something one should guess at or have adjudicated by some language guru.
It should come from an understanding of the Object Model.

A second reason for writing this book is to dispel the various misunder-
standings surrounding C++ and its support of object-oriented program-
ming. For example, here is an excerpt from a letter I received from someone
wishing to introduce C++ into his programming environment:

I work with a couple of individuals who have not written and /or are
completely unfamiliar with C++ and OO. One of the engineers who
has been writing C code since 1985 feels very strongly that C++ is
good only for user-type applications, but not server applications.
What he is saying is to have a fast and efficient database level engine
that it must be written in C compared to C++. He has identified that
C++ is bulky and slow.

C++, of course, is not inherently bulky and slow, although I've found this to
be a common assumption among many C programmers. However, just say-
ing that is not very convincing, particularly if the person saying it is per-
ceived as a C++ partisan. This book is partially an attempt to lay out as
precisely as I can the kinds of overhead that are and are not inherent in the
various Object facilities such as inheritance, virtual functions, and pointers
to class members.

Rather than answering the individual myself, I forwarded his letter
to Steve Vinoski of Hewlett-Packard, with whom I had previously cor-

responded regarding the efficiency of C++. Here is an excerpt from his
response:

[have heard a number of people over the years voice opinions simi-
lar to those of your colleagues. In every case, those opinions could be
attributed to a lack of factual knowledge about the C++ language.
Just last week I was chatting with an acquaintance who happens to
work for an IC testing manufacturer, and he said they don’t use C++
because “it does things behind your back.” When I pressed him, he
said that he understood that C++ calls malloc () and free () with-
out the programmer knowing it. This is of course not true. It is this

sort of “myth and legend” that leads to opinions such as those held
by your colleagues....

Finding the right balance [between abstraction and pragmatism] re-
quires knowledge, experience, and above all, thought. Using C++
well requires effort, but in my experience the returns on the invested
effort can be quite high.

Preface

I like to think of this book, then, as my answer to this individual, and, I
hope, a repository of knowledge to help put to rest many of the myths and
legends surrounding C++.

If the underlying mechanisms supporting the C++ Object Model vary
both across implementations and over time, how can I possibly provide a
general discussion of interest to any particular individual? Static initializa-
tion provides an interesting case in point.

Given a class X with a constructor, such as the following;:

class X
{
friend istream&
operator>>(istream&, X&);
public:
X(int sz = 1024) { ptr = new char[sz }; }

private:
char *ptr;

}i
and the declaration of a global object of class X, such as the following;:

X buf;

int main()
{

// buf must be constructed at this point
cin >> setw(1024) >> buf;

the C++ Object Model guarantees that the X constructor is applied to buf
prior to the first user statement of main (). It does not, however, prescribe
how that is to get done. The solution is called static initialization; the ac-
tual implementation depends on the degree of support provided by the
environment.

The original cfront implementation not only presumed no environment
support. It also presumed no explicit platform target. The only presumption
was that of being under some variant of UNIX. Our solution, therefore,
was specific only to UNIX: the presence of the nm command. The CC com-
mand (a UNIX shell script for portability) generated an executable, ran the
nm command on the executable—thereby generating a new .c file—com-
piled the .c file, and then relinked the executable. (This was called the munch

xi

xii

Preface

solution.) This did the job by trading compile-time efficiency for portability.
Eventually, however, users chaffed under the compile-time overhead.

The next step was to provide a platform-specific solution: a COFF-based
program (referred to as the patch solution) that directly examined and
threaded the program executable, thus doing away with the need to run
nm, compile, and relink. (COFF was the Common Object File Format for
System V pre-Release 4 UNIX systems.) Both of these solutions are pro-
gram-based, that is, within each .c file requiring static initialization cfront
generated an sti function to perform the required initializations. Both
munch and patch solutions searched for functions bearing an sti prefix
and arranged for them to be executed in some undefined order by a
_main() library function inserted as the first statement of main ().

In parallel with these releases of cfront, a System V COFF-specific C++
compiler was under development. Targeted for a specific platform and op-
erating system, this compiler was able to effect a change in the System V
link editor: a new initialize section that provided for the collection of objects
needing static initialization. This extension of the link editor provides what
I call an environment-based solution that is certainly superior to a program-
based solution.

So any generalization based on the cfront program-based solution
would be misleading. Why? Because as C++ has become a mainstream lan-
guage, it has received more and more support for environment-based solu-
tions. How is this book to maintain a balance, then? The book’s strategy is
as follows: If significantly different implementation models exist across C++
compilers, I present a discussion of at least two models. If subsequent im-
plementation models evolved as an attempt to solve perceived problems
with the original cfront model, as, for example, with support for virtual in-
heritance, I present a discussion of the historical evolution. Whenever I
speak of the traditional implementation model, I mean, of course,
Stroustrup’s original design as reflected in cfront and which has provided a
pattern of implementation that can still be seen today in all commercial im-
plementations, even if only as a “reaction against.”

Organization of This Book

Chapter 1, Object Lessons, provides background on the object-based and ob-
ject-oriented programming paradigms supported by C++. It includes a brief
tour of the Object Model, illustrating the current prevailing industry imple-
mentation without looking too closely at multiple or virtual inheritance.
(This is fleshed out in Chapters 3 and 4.)

Chapter 2, The Semantics of Constructors, discusses in detail how
constructors work. It discusses when constructors are synthesized by

Preface

the compiler and what that means in practical terms for your program'’s
performance.

Chapters 3 through 5 contain the primary material of the book. There,
the details of the C++ Object Model are discussed. Chapter 3, The Semantics
of Data, looks at the handling of data members. Chapter 4, The Semantics of
Function, focuses on the varieties of member functions, with a detailed look
at virtual function support. Chapter 5, Semantics of Construction, Destruction,
and Copy, deals with support of the class model and object lifetime. Program
test data is discussed within each of these chapters, where our performance
expectations are compared against actual performance as the representa-
tions move from an object-based to object-oriented solution.

Chapter 6, Runtime Semantics, looks at some of the Object Model behav-
ior at runtime, including the life and death of temporary objects and the
support of operators new and delete.

Chapter 7, On the Cusp of the Object Model, focuses on exception han-
dling, template support, and runtime type identification.

The Intended Audience

This book is primarily a tutorial, although it is aimed at the intermediate
C++ programmer rather than the novice. I have attempted to provide suffi-
cient context to make it understandable to anyone who has had some prior
exposure to C++—for example, someone who has read my C++ Primer—
and some experience in C++ programming. The ideal reader, however, has
been programming in C++ for a few years and wants to better understand
what is actually going on “under the hood.” Portions of the material should
be of interest even to the advanced C++ programmer, such as the genera-
tion of temporaries and the details of the named return value optimization.
At least, this has proved to be so in the various public presentations of this
material | have given as it has evolved.

A Note on Program Examples and Program Execution

The use of program code in this text serves two primary purposes:

1. To provide concrete illustrations of the various aspects of the C++
Object Model under discussion

2. To provide test cases by which to measure the relative cost of vari-
ous language features

xiii

xiv

Preface

In neither case is the code intended to represent models of production-
quality programming. I am not, for example, suggesting that a real 3D
graphics library represents a 3D point using a virtual inheritance hierarchy
(although one can be found in [POKOR94]).

All the test programs in the text were compiled and executed on an SGI
Indigo2 XL (the R4400 MIPS RISC processor) running version 5.2 of SGI's
UNIX operating system under both its CC and NCC compilers. CC is cfront
Release 3.0.1 (it generates C code, which a C compiler then recompiles into
an executable). NCC is version 2.19 of the Edison Design Group’'s C++
front-end with a code generator supplied by SGI. The times were measured
as the average user time reported by the UNIX timex command and repre-
sent 10 million iterations of the test function or statement block.

While the use of these two compilers on the SGI hardware might strike
the reader as somewhat esoteric, I feel doing so serves the book’s purposes
quite well. Both cfront and now the Edison Design Group’s front-end (re-
portedly characterized by Bjarne as the son of cfront) are not platform spe-
cific. Rather, they are generic implementations licensed to over 34 computer
manufacturers (including Cray, SGI, and Intel) and producers of software
environments (including Centerline and Novell, which is the former UNIX
Software Laboratories). Performance measurements are intended not to
provide a benchmark of current compilation systems but to provide a mea-
sure of the relative costs of the various features of the C++ Object Model.
Benchmark performance numbers can be found in nearly any “compiler
shoot-out” product review in the trade press.

Acknowledgments

One reason people write books is to set down and share their expertise with
others. A second, more selfish reason is to enlarge on and fine tune that ex-
pertise. A third is to provide for the public acknowledgment of those who
provide the foundation for one’s work.

[owe a deep debt of gratitude to many former colleagues at Bell
Laboratories without whose encouragement and insight little or nothing of
this work could have been accomplished. In particular, Barbara Moo, Andy
Koenig, and Bjarne Stroustrup have challenged and supported me through-
out the years. Warm appreciation also goes to the Grail gang—Steve Buroff,
Martin Carroll, Rob Murray, and Judy Ward—which has been a foundation
for many years.

Michael Ball, now at SunPro, generously shared his expertise both
through e-mail exchanges and an in-depth review of the text. Doug
Schmidt, Cay Horstmann, Greg Comeau, and Steve Clamage also provided

Preface

tough, thoughtful reviews of the manuscript that were invaluable in help-
ing me push the manuscript’s development forward. Jonathan Shopiro
taught me a great deal while we worked together at Bell Laboratories;
nuggets of his insight are scattered throughout the text. Joseé Lajoie fielded
all too many questions about Standard C++ both with astounding patience
and fearful insight.

In addition, I'd like to acknowledge my current foundation here at Walt
Disney Feature Animation: Michael Blum, Nhi Casey, Shyh-Chyuan Huang,
Scott Dolim, Elena Driskill, Ed Leonard, David Remba, Cary Sandvig, and
Dave Tonnesen. Chyuan, Scott, and Elena provided thoughtful readings on
various versions of the text. Appreciation also goes to M. J. Turner, Kiran
Joshi, Scott Johnston, Marcus Hobbs, and, finally, to the Technology Division
management of Dean Schiller and Paul Yanover. They have all helped to
make my first year here at Disney sparkle a bit more brightly. A good deal of
thanks goes to Dr. Clouis Tondo for detailing errors in the first printing.
Thanks also goes to John Potter, Keulin Henny, and Francis Glassborow.

This material has been given at a great many public presentations dur-
ing the more than two years [have worked on it. These include ACM-spon-
sored lectures in both Silicon Valley and Los Angeles; two presentations in
Tel Aviv sponsored by Sela (with particular thanks to Anna); talks at SIGS
Conferences: Object Expo London, Object Expo New York, and C++ World;
a tutorial at the 1994 ACM Sigplan Conference on Compiler Construction;
at the 1994 IBM-sponsored Cascon Conference; and as part of my C++ Short
Course sponsored by UCLA Extension. The resultant feedback has proved
of immense help in crafting and revising the material.

Deep thanks also goes to my editor, Debbie Lafferty, who provided both
sound counsel and unflagging support and always showed the good sense
to laugh at my jokes.

Finally, I’d like to extend my appreciation to Rick Friedman, founder
and President of Sigs Publications, publisher of the C++ Report, for his sup-
port and vision while I was editor of that magazine from mid-1992 through
1995. The C++ Report was and remains the best timely source of high-qual-
ity technical information on C++. Portions of this text were originally pub-
lished as columns in the magazine while I was editor.

References

Nortk: Many of the C++ Report articles have been collected on C++ Gems, edited by
Stanley Lippmian, SIGS Books, New York, NY (1996).

[BALL92] Ball, Michael, “Inside Templates,” C++ Report (September 1992).
[BALL93a] Ball, Michael, “What Are These Things Called Templates,”
C++ Report (February 1993).

Xv

XVi

Preface

[BALL93b] Ball, Michael, “Implementing Class Templates,” C++ Report
(September 1993).

[BOOCHY93] Booch, Grady and Michael Vilot, “Simplifying the Booch
Components,” C++ Report (June 1993).

[BORLY1] Borland Languages Open Architecture Handbook, Borland
International Inc., Scotts Valley, CA.

[BOX95] Box, Don, “Building C++ Components Using OLE2,” C++
Report (March/ April 1995).

[BUDD91] Budd, Timothy, An Introduction to Object-Oriented
Programming, Addison-Wesley Publishing Company, Reading, MA (1991).

[BUDGE92] Budge, Kent G., James S. Peery, and Allen C. Robinson,
“High Performance Scientific Computing Using C++,” Usenix C++
Conference Proceedings, Portland, OR (1992).

[BUDGE94] Budge, Kent G., James S. Peery, Allen C. Robinson, and
Michael K. Wong, “Management of Class Temporaries in C++ Translation
Systems,” The Journal of C Language Translation (December 1994).

[CARGILLY5] Cargill, Tom, “STL Caveats,” C++ Report (July/August
1993).

[CARROLL93] Carroll, Martin, “Design of the USL Standard
Components,” C++ Report (June 1993).

[CARROLL95] Carroll, Martin and Margaret A. Ellis, Designing and
Coding Reusable C++, Addison-Wesley Publishing Company, Reading, MA
(1995).

[CHASE%4] Chase, David, “Implementation of Exception Handling, Part
1,” The Journal of C Language Translation (June 1994).

[CLAMB93a] Clamage, Stephen D., “Implementing New & Delete,” C++
Report (May 1993).

[CLAM93b] Clamage, Stephen D., “Beginnings & Endings,” C++ Report
(September 1993).

[ELLIS90] Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++
Reference Manual, Addison-Wesley Publishing Company, Reading, MA
(1990).

[GOLD94] Goldstein, Theodore C. and Alan D. Sloane, “The Object
Binary Interface—C++ Objects for Evolvable Shared Class Libraries,”
Usenix C++ Conference Proceedings, Cambridge, MA (1994).

[HAMO95] Hamilton, Jennifer, Robert Klarer, Mark Mendell, and Brian
Thomson, “Using SOM with C++, “ C++ Report (July/ August 1995).

[HORST95] Horstmann, Cay S., “C++ Compiler Shootout,” C++ Report
(July/ August 1995).

[KOENIG90a] Koenig, Andrew and Stanley Lippman, “Optimizing
Virtual Tables in C++ Release 2.0,” C++ Report (March 1990).

Preface

[KOENIG90b] Koenig, Andrew and Bjarne Stroustrup, “Exception
Handling for C++ (Revised),” Usenix C++ Conference Proceedings (April
1990).

[KOENIG93] Koenig, Andrew, “Combining C and C++,” C++ Report
(July/August 1993).

[(ISO-C++95] C++ International Standard, Draft (April 28, 1995).

[LAJOIEY94a] Lajoie, Josee, “Exception Handling: Supporting the
Runtime Mechanism,” C++ Report (March/ April 1994).

[LAJOIE94b] Lajoie, Joseé, “Exception Handling: Behind the Scenes,”
C++ Report (June 1994).

[LENKOV92] Lenkov, Dmitry, Don Cameron, Paul Faust, and Michey
Mehta, “A Portable Implementation of C++ Exception Handling,” Usenix
C++ Conference Proceedings, Portland, OR (1992).

[LEA93] Lea, Doug, “The GNU C++ Library,” C++ Report (June 1993).

[LIPP88] Lippman, Stanley and Bjarne Stroustrup, “Pointers to Class
Members in C++,” Implementor’s Workshop, Usenix C++ Conference
Proceedings (October 1988).

[LIPP91a] Lippman, Stanley, “Touring Cfront,” C++ Journal, Vol. 1, No. 3
(1991).

[LIPP91b] Lippman, Stanley, “Touring Cfront: From Minutiae to
Migraine,” C++ Journal, Vol. 1, No. 4 (1991).

[LIPP91c] Lippman, Stanley, C++ Primer, Addison-Wesley Publishing
Company, Reading, MA (1991).

[LIPP94a] Lippman, Stanley, “Default Constructor Synthesis,” C++
Report (January 1994).

[LIPP94b] Lippman, Stanley, “Applying the Copy Constructor, Part 1:
Synthesis,” C++ Report (February 1994).

[LIPP94c] Lippman, Stanley, “Applying the Copy Constructor, Part 2,”
C++ Report (March/ April 1994).

[LIPP94d] Lippman, Stanley, “Objects and Datum,” C++ Report (June 1994).

[METAW94] MetaWare High C/C++ Language Reference Manual,
Metaware Inc., Santa Cruz, CA (1994).

[MICRO92] Jones, David and Martin J. O'Riordan, The Microsoft Object
Mapping, Microsoft Corporation, 1992.

[MOWBRAY95] Mowbray, Thomas J. and Ron Zahavi, The Essential
Corba, John Wiley & Sons, Inc. (1995).

[NACK94] Nackman, Lee R., and John J. Barton Scientific and
Engineering C++, An Introduction with Advanced Techniques and Examples,
Addison-Wesley Publishing Company, Reading, MA (1994).

[PALAY92] Palay, Andrew J., “C++ in a Changing Environment,” Usenix
C++ Conference Proceedings, Portland, OR (1992).

xvii

xviii Preface

[POKOR94] Pokorny, Cornel, Computer Graphics, Franklin, Beedle &
Associates, Inc. (1994).

[PUGH90] Pugh, William and Grant Weddell, “Two-directional Record
Layout for Multiple Inheritance,” ACM SIGPLAN ‘90 Conference, White
Plains, New York (1990).

[SCHMIDT94a] Schmidt, Douglas C., “A Domain Analysis of Network
Daemon Design Dimensions,” C++ Report (March/ April 1994).

[SCHMIDT94b] Schmidt, Douglas C., “A Case Study of C++ Design
Evolution,” C++ Report (July/August 1994).

[SCHWARZ89] Schwarz, Jerry, “Initializing Static Variables in C++
Libraries,” C++ Report (February 1989).

[STROUP82] Stroustrup, Bjarne, “Adding Classes to C: An Exercise in
Language Evolution,” Software: Practices & Experience, Vol. 13 (1983).

[STROUP94] Stroustrup, Bjarne, The Design and Evolution of C++,
Addison-Wesley Publishing Company, Reading, MA (1994).

[SUN94a] The C++ Application Binary Interface, SunPro, Sun
Microsystems, Inc.

[SUN94b] The C++ Application Binary Interface Rationale, SunPro, Sun
Microsystems, Inc.

[VELD95] Veldhuizen, Todd, “Using C++ Template Metaprograms,”
C++ Report (May 1995).

[VINOS93] Vinoski, Steve, “Distributed Object Computing with
CORBA,” C++ Report (July/ August 1993).

[VINOS94] Vinoski, Steve, “Mapping CORBA IDL into C++,” C++
Report (September 1994).

[YOUNG95] Young, Douglas, Object-Oriented Programming with C++ and
OSF/Motif, 2d ed., Prentice-Hall (1995).

Contents

1

3

Object Lessons 1

Layout Costs for Adding Encapsulation 5

1.1 The C++ Object Model 6
A simple object model 6/ A table-driven object model 7/
The C++ object model/ How the object model effects
programs

1.2 A Keyword Distinction 12
Keywords schmeewords 13/ The politically correct
struct 16

1.3 An Object Distinction 18
The type of a pointer 24/ Adding polymorphism 25

The Semantics of Constructors 31

2.1 Default Constructor Construction 32
Member class object with default constructor 34/ Base
class with default constructor 37/ Class with a virtual
function 37/ Class with a virtual base class 38/
Summary 39

2.2 Copy Constructor Construction 40
Default memberwise initialization 41/ Bitwise copy se-
mantics 43/ Bitwise copy semantics—Not! 45/ Resetting
the Virtual Table Pointer 45/ Handling the Virtual Base
Class Subobject 47

2.3 Program Transformation Semantics 50
Explicit initialization 50/ Argument initialization 51/
Return value initialization 53/ Optimization at the user
level 54/ Optimization at the compiler level 55/
The copy constructor: to have or to have not? 59/
Summary 61

2.4 Member Initialization List 62

The Semantics of Data 69
3.1 The Binding of a Data Member 72

xXix

