/4

TR RGN
B (L 5% 5 &

(9&32#& %3)%&)

John L. Hennessy

==

H B B X ¥
(%) David A. Patterson &
C MM AFBEHNSE

MW T 4 A A £
China Machine Press M L‘

—

/

’ ‘_.ﬂ =
B g
m m m m
M
K

i

John L. Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach,
Third Edition.

ISBN: 1-55860-596-7.

Copyrigh © 2003 by Elsevier Science Pte Ltd. All n'gh'ts reserved.

Printed in China by Elsevier Science Pte Ltd. under special arrangement with China
Machine Press. This edition is authorized for sale in China only, excluding Hong Kong SAR and
Taiwan. Unauthorized export of this edition is a violation of the Copyright Act. Violation of this

Law is subject to Civil and Criminal Penalties.

ABFIEENEH Elsevier Science Pte Ltd. AU Tk H AR 7 o B AR Y 1 57
&7 FMREFEEN (FUBFEENTHEREES) HEEGNGE, £2%H
ZH0, BAERERNY, BEREZHR,

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of the publisher.

FHEMBLIZXFRER, MAFEAADZBERAEERLAF LD, H2
ERBHED

ARENEILE: BF: 01-2002-3582

BHEMSRE (CIP) &iE

WRVAREH: BUBIRY % B3R (£) =R (Hennessy, J. L.), () ks
(Patterson, D. A.) . -dL5: HU Tk iiAfAL, 2002.9

(BHFRRHE)

BEF - Computer Architecture: A Quantitative Approach

ISBN 7-111-10921-X

Loit T.OQ% @b 0 HEHEREH- %5 V. TP303
T E R A B B CIPERBCFE (2002) 450688895

PR Tk AL (TR E A AENE R 100037)
RiEHE: 4

ILEE ZINEIEE BT EDRI T EIR « BB IE IR BT R AT
20024F9 A 1 AR - 2003 56 1 HE 2 AR

787mm X 10920m1 /16 - 71 B3k

Hi%: 3 001-5 000 M

EH#: 99.00 5T

AEAS, mMAMRT. BRE. 80, madR2aniEg

HhREBNS

XEE NV, RER KRR IE ST BN, &0 EREBARENE
NS T 2N LERXHMNES, HERRGFERAREBHNATEEEERE
L mENEE, ERRERY, EEFELASHERSRBREFERHES, iTEVERS
T2 LA Flad AR MMFEORIIL, BT EN2RBEEE, KB TR
HHRE, ERETERNEE, BEEERNE, XAFEE M, EMEHASEEA K
A TR

B, E2RERAKHNEDT, REATENSLERBE, M5 AFMERAS
B ZXTEHHERMERAFERIE, BRE; ME LRI EHETRELE
BRERE, EREGEBARRBHERE. MLAREIDHIRT, ZESKERRELT
BYBE R R L E BRI S AEME FEEEMREZ 4, FHi, SIE—#EMLET
BB R EHENEEFTF LML BEFROEDER, B St R . B EFEt
R—MARKEH VN ZH.

PR Tl At R B EXE S A RA TR EERE “HEENBERE . H1998EH, %
BEAFBE LTEEARTET #k . BiREIMEFEM L. 2IUEMRIES S, #{15Prentice
Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZttRE L HARA TR T RIFHI S
*ER, WENBAE BB A FEH Bk B Tanenbaum, Stroustrup, Kernighan, Jim GrayZ X Jfi%;
FH—MABMIES, L TEOREAE RERRLR, SHEE%Y . BIRRER. KEBEL
BIMUEH, WIEER T XEABE SR,

THEUBEAR MHR TSR T BASMEENSNBE, BANERMUBLT b
ARERLIE S, BB EWIMET BB MR IE; MEBHES A EERELRERR
HIEtE, AMELTRAHBHFEIEERF, &4, TENNENE" BRBETET G,
BUBFEEREFRLTRIFHOR, FEFLERRANERBA S L HE, vi—5H
IS RBITT T RELHIER,

HEFHZRYNS ZERNHH R ENEHTL, B8R EIMTENEH TR AN
MEA—TFHHER. Hit, RELFRIMAS I HBH W IE, £ “EEHT HEHANZT
WA APV BB : SR 0RE, FHSMEEATR B2 nss” &
Sl XEREIES, MBMARY “2REREE" ; SAAERASBENELSEM &
MRS RRRIEER R, S HRFER, B TIHRIEX =M BRI, Rt
N T BN ER MRS, LEARBEET PEMERE ., b5k, Hei% E
BECRE, BER¥, REERY . BRAE., WIAZ, PEMHASE, BRET .
BEIGERE . FEARKY® ., LEMEMELSE, LRRE A%, PIhk2% . BRERT A
$\ﬁMi$\ﬁ%I%%*E@%%Eﬁ%ﬂﬁﬁﬁ*b%@Wiﬁiiﬂﬂﬁmmﬁﬁ
BONBE NN ELFEER SRS BRL", BRI L R R

“GIFRRBE" RN S E R R R ERE RS E, R AR

v

BESHTHE R,) ZHIIERFMBAEH “¥FKEFEREY” WERE, RIBLERE TiX30%5
MREBANAEE. HREREA RS, HPHRKERIrEL#MILT., Stanford, U.C. Berkley,
CMUSMRZEAERA . ABAMURE TRFEOT. JAEEH . BIERL. HEVUKRSEM.
B, mFRE, KGR, BERY. BE5ME. BEEESENICETEN TR AR
HECIRE, MASRFE—ANEABTRITEZT . ANFA=TENANE. AR
FHJLEFTERCRM, TEXSFPEENZXERIESIZT, RSB HE IR0 S R+
BB EETT AR

BUBHAEE . SROEH . —RFE . ROER, BENERE, XSEEERITNE
WHTREBHRIE, BRIMGAFRRAERE, TRROELERRITABX —KREFNE
BHB . BHHHRRRRNTNEEMR S B A, HEAFIRGEE IR E R TR S
BUSATHRE, RITWKAFENT .

B, FHlBf+: hzedu@hzbook.com
BERBEIE: (010) 68995265

BREMI: AEHHRKE T RS
HRELZRES: 100037

ERBEERS

(Hek RAEBNUY)
H A ¥ AR ¥ 2
7 EF %% * B R

FEE S FRE O FRY S
K 7R #4F k&K R LA
Auk &g Ewm4 SN
48 ER EHER &L

% 2 e AR WA=

John L. Hennessy is the president of Stanford University, where he has been a member of the
faculty since 1977 in the departments of electrical engineering and computer science. Hen-
nessy is a Fellow of the IEEE and ACM, a member of the National Academy of Engineering,and
a Fellow of the American Academy of Arts and Sciences. He received the 2001 Eckert-Mauchly
Award for his contributions to RISC technology, the 2001 Seymour Cray Computer Engineering
Award, and shared the John von Neumann Award in 2000 with David Patterson. Hennessy's
original research group at Stanford developed several of the techniques now in commercial use
for optimizing compilers.In 1981, he started the MIPS project at Stanford with a handfu! of grad-
uate students.

After completing the project in 1984, he took a one-year leave from the university to cofound
MiPS Computer Systems, which developed one of the first commercial RISC microprocessors.
After being acquired by Silicon Graphics in 1991, MIPS Technclogies became an independent
company in 1998, focusing on microprocessors for the embedded marketplace. As of 2001,
over 200 million MIPS microprocessors have been shipped in devices ranging from video
games and palmtop computers to laser printers and network switches.

Hennessy’s more recent research at Stanford focuses on the area of designing and explciting
multiprocessors. He helped lead the design of the DASH multiprocessor architecture, the first
distributed shared-memory muitiprocessors supporting cache coherency and the basis for sev-
eral commercial multiprocessor designs, including the Silicon Graphics Origin multiprocessors.

David A. Patterson has been teaching computer architecture at the University of California,
Berkeley, since joining the faculty in 1977,and he holds the Pardee Chair of Computer Science.
His teaching has been honored hy the ACM and the University of California. In 2000 he won the
James H. Mulligan, Jr. Education Medal from IEEE "for inspirational teaching through the devel-
opment of creative curricula and teaching methodotogy, for important textbooks, and for effec-
tive integration of education and research missions.” Patterson has also received the 1995 IEEE
Technical Achievernent Award for contributions to RISC and shared the 1999 IEEE Reynold B.
Johnson information Storage Award for contributions to RAID. In 2000 he shared the IEEE John
von Neumann Medal with John Hennessy “for creating a revolution in computer architecture
through their exploration, popularization, and commercialization of architectural innovations.”
Patterson is a member of the National Academy of Engineering and is a Fellow of both the ACM
and the IEEE.In the past,he has been chair of the CS division in the EECS department at Berkeley,
the ACM SIG in computer architecture, and the Computing Research Association.

At Berkeley, Patterson led the design and implementation of RISC 1, likely the first VLS| reduced
instruction set computer. This research became the foundation of the SPARC architecture, cur-
rently used by Sun Microsystems, Fujitsu, and others. He was a leader of the redundant arrays of
inexpensive disks (RAID) project, which led to high-performance storage systems from many
companies. He was also involved in the network of workstations (NOW) project, which led to
cluster technology used by Intemet companies. These projects earned three dissertation
awards from the ACM. His current research project is called recovery oriented computing (ROC),

which is developing techniques for building dependable, maintainable, and scalable Internet
services,

Foreword

by Bill Joy, Chief Scientist and Corporate Executive Officer
Sun Microsystems, Inc.

I am very lucky to have studied computer architecture under Prof. David Patter-
son at U.C. Berkeley more than 20 years ago. I enjoyed the courses I took from
him, in the early days of RISC architecture. Since leaving Berkeley to help found
Sun Microsystems, I have used the ideas from his courses and many more that are
described in this important book.

The good news today is that this book covers incredibly important and con-
temporary material. The further good news is that much exciting and challenging
work remains to be done, and that working from Computer Architecture: A Quan-
titative Approach is a great way to start,

The most successful architectural projects that | have been involved in have
always started from simple ideas, with advantages explainable using simple
numerical models derived from hunches and rules of thumb. The continuing rapid
advances in computing technology and new applications ensure that we will need
new similarly simple models to understand what is possible in the future, and that
new classes of applications will stress systems in different and interesting ways.
The quantitative approach introduced in Chapter 1 is essential to understanding
these issues. In particular, we expect to see, in the near future, much more empha-
sis on minimizing power to meet the demands of a given application, across all
sizes of systems; much remains to be learned in this area.

I have worked with many different instruction sets in my career. I first pro-
grammed a PDP-8, whose instruction set was so simple that a friend easily
learned to disassemble programs just by glancing at the hole punches in paper
tape! I wrote a lot of code in PDP-11 assembler, including an interpreter for the
Pascal programming language and for the VAX (which was used as an example in
the first edition of this book); the success of the VAX led to the widespread use of
UNIX on the early Intemet.

The PDP-11 and VAX were very conventional complex instruction set (CISC)
computer architectures, with relatively compact instruction sets that proved
nearly impossible to pipeline. For a number of years in public talks I used the per-
formance of the VAX 11/780 as the baseline; its speed was extremely well known
because faster implementations of the architecture were so long delayed. VAX
performance stalled out just as the x86 and 680x0 CISC architectures were

vii

viii

a Foreword

appearing in microprocessors; the strong economic advantages of microproces-
sors led to their overwhelming dominance. Then the simpler reduced instruction
set (RISC) computer architectures—pioneered by John Cocke at IBM; promoted
and named by Patterson and Hennessy; and commercialized in POWER PC,
MIPS, and SPARC—were implemented as microprocessors and permitted high-
performance pipeline implementations through the use of their simple register-
oriented instruction sets. A downside of RISC was the larger code size of pro-
grams and resulting greater instruction fetch bandwidth, a cost that could be seen
to be acceptable using the techniques of Chapter | and by believing in the future
CMOS technology trends promoted in the now-classic views of Carver Mead.
The kind of clear-thinking approach to the present problems and to the shape of
future computing advances that led to RISC architecture is the focus of this book.

Chapter 2 (and various appendices) presents interesting examples of contem-
porary and important historical instruction set architecture. RISC architecture—
the focus of so much work in the last twenty years—is by no means the final
word here. I worked on the design of the SPARC architecture and several imple-
mentations for a decade, but more recently have worked on two different styles
of processor: picoJava, which implemented most of the Java Virtual Machine
instructions—a compact, high-level, bytecoded instruction set—and MAJC, a
very simple and multithreaded VLIW for Java and media-intensive applications.
These two architectures addressed different and new market needs: for low-
power chips to run embedded devices where space and power are at a premium,
and for high performance for a given amount of power and cost where parallei
applications are possible. While neither has achieved widespread commercial
success, I expect that the future will see many opportunities for different ISAs,
and an in-depth knowledge of history here often gives great guidance—the rela-
tionships between key factors, such as the program size, execution speed, and
power consumption, returning to previous balances that led to great designs in
the past.

Chapters 3 and 4 describe instruction-level parallelism (ILP): the ability to exe-
cute more than one instruction at a time. This has been aided greatly, in the last 20
years, by techniques such as RISC and VLIW (very long instruction word) com-
puting. But as later chapters here point out, both RISC and especially VLIW as
practiced in the Intel itanium architecture are very power intensive. In our attempts
fo extract more instruction-level parallelism, we are running up against the fact
that the complexity of a design that attempts to execute N instructions simulta-
neously grows like N'%: the number of transistors and number of watts to produce.
each result increases dramatically as we attempt to execute many instructions of
arbitrary programs simultaneously. There is thus a clear countertrend emerging:
using simpler pipelines with more realistic levels of ILP while exploiting other
kinds of parallelism by running both multiple threads of execution per processor
and, often, multiple processors on a single chip. The challenge for designers of
high-performance systems of the future is to understand when simultaneous exe-
cution is possible, but then to use these techniques Judiciously in combination with
other, less granular techniques that are less power intensive and complex.

Foreword = iX

In graduate school I would often joke that cache memories were the only great
idea in computer science. But truly, where you put things affects profoundly the
design of computer systems. Chapter 5 describes the classical design of cache
and main memory hierarchies and virtual memory. And now, new, higher-level
programming languages like Java support much more reliable software because
they insist on the use of garbage collection and array bounds checking, so that
security breaches from “buffer overflow” and insidious bugs from false sharing of
memory do not creep into large programs. It is only languages, such as Java, that
insist on the use of automatic storage management that can implement true soft-
ware components. But garbage collectors are notoriously hard on memory hierar-
chies, and the design of systems and language implementations to work well for
such areas is an active area of research, where much good work has been done but
much exciting work remains.

Java also strongly supports thread-level parallelism—a key to simple, power-
efficient, and high-performance system implementations that avoids the N2 prob-
lem discussed earlier but brings challenges of its own. A good foundational
understanding of these issues can be had in Chapter 6. Traditionally, each proces-
sor was a separate chip, and keeping the various processors synchronized was
expensive, both because of its impact on the memory hierarchy and because the
synchronization operations themselves were very expensive. The Java language is
also trying to address these issues: we tried, in the Java Language Specification,
which I coauthored, to write a description of the memory model implied by the
language. While this description turned out to have (fixable) technical problems,
it is increasingly clear that we need to think about the memory hierarchy in the
design of languages that are intended to work well on the newer system plat-
forms. We view the Java specification as a first step in much good work to be
done in the future,

As Chapter 7 describes, storage has evolved from being connected to individ-
ual computers to being a separate network resource. This is reminiscent of com-
puter graphics, where graphics processing that was previously done in a host
processor often became a separate function as the importance of graphics
increased. All this is likely to change radically in the coming years—massively
parallel host processors are likely to be able to do graphics better than dedicated
outboard graphics units, and new breakthroughs in storage technologies, such as
memories made from molecular electronics and other atomic-level nanotechnolo-
gies, should greatly reduce both the cost of storage and the access time. The
resulting dramatic decreases in storage cost and access time will strongly encour-
age the use of multiple copies of data stored on individual computing nodes,
rather than shared over a network. The “wheel of reincarnation,” familiar from
graphics, will appear in storage.

It is also critical that storage systems, and indeed all systemns, become much
more robust in the face of failures, not only of hardware, but also of software
flaws and human error. This is an enormous challenge in the years ahead.

Chapter 8 provides a great foundational description of computer interconnects
and networks. My model of these comes from Andy Bechtolsheim, another of the

X = Foreword

cofounders of Sun, who famously said, “Ethernet always wins.” More modestly
stated: given the need for a new networking interconnect, and despite its short-
comings, adapted versions of the Ethernet protocols seem to have met with over-
whelming success in the marketplace. Why? Factors such as the simplicity and
familiarity of the protocols are obvious, but quite possibly the most likely reason
is that the people who are adapting Ethernet can get on with the job at hand rather
than arguing about details that, in the end, aren’t dispositive. This lesson can be
generalized to apply to all the areas of computer architecture discussed in this
book.

One of the things I remember Dave Patterson saying many years ago is that for
each new project you only get so many “cleverness beans.” That is, you can be
very clever in a few areas of your design, but if you try to be clever in all of them,
the design will probably fail to achieve its goals—or even fail to work or to be
finished at all. The overriding lesson that I have learned in 20 plus years of work-
ing on these kinds of designs is that you must choose what is important and focus
on that; true wisdom is to know what to leave out. A deep knowledge of what has
gone before is key to this ability.

And you must also choose your assumptions carefully. Many years ago I
attended a conference in Hawaii (yes, it was a boondoggle, but read on) where
Maurice Wilkes, the legendary computer architect, gave a speech. What he said,
paraphrased in my memory, is that good research often consists of assuming
something that seems untrue or unlikely today will become true and investigating
the consequences of that assumption. And if the unlikely assumption indeed then
becomes true in the world, you will have done timely and sometimes, then, even
great research! So, for example, the research group at Xerox PARC assumed that
everyone would have access to a personal computer with a graphics display con-
nected to others by an internetwork and the ability to print inexpensively using
Xerography. How true all this became, and how seminally important their work
was!

In our time, and in the field of computer architecture, I think there are a num-
ber of assumptions that will become true. Some are not controversial, such as
that Moore’s Law is likely to continue for another decade or so and that the com-
plexity of large chip designs is reaching practical limits, often beyond the point
of positive returns for additional complexity. More controversially, perhaps,
molecular electronics is likely to greatly reduce the cost of storage and probably
logic elements as well, optical interconnects will greatly increase the bandwidth
and reduce the error rates of interconnects, software will continue to be unreli-
able because it is so difficult, and security will continue to be important because
its absence is so debilitating,

Taking advantage of the strong positive trends detailed in this book and using
them to mitigate the negative ones will challenge the next generation of computer -
architects, to design a range of systems of many shapes and sizes.

Computer architecture design problems are becoming more varied and inter-
esting. Now is an exciting time to be starting out or reacquainting yourself with
the latest in this field, and this book is the best place to start. See you in the chips!

Preface

Why We Wrote This Book

Through three editions of this book, our goal has been to describe the basic prin-
ciples underlying what will be tomorrow’s technological developments. Our
excitement about the opportunities in computer architecture has not abated, and
we echo what we said about the field in the first edition: “It is not a dreary science
of paper machines that will never work. No! It’s a discipline of keen intellectual
interest, requiring the balance of marketplace forces to cost-performance-power,
leading to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
leamn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples and
measurements on real computers, rather than simply as a collection of definitions
and designs that will never need to be realized. We offer an enthusiastic welcome
to anyone who came along with us in the past, as well as to those who are joining
us now. Either way, we can promise the same quantitative approach to, and analy-
sis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for
those involved in advanced computer architecture and design courses. As much as
its predecessors, this edition aims to demystify computer architecture through an
emphasis on cost-performance-power trade-offs and good engineering design.
We believe that the field has continued to mature and move toward the rigorous
quantitative foundation of long-established scientific and engineering disciplines.
Our greatest satisfaction derives from the fact that the principles described in our
first edition in 1990 and the second edition in 1996 could be applied successfully
to help predict the landscape of computing technology that exists today. We hope
that this third edition will allow readers to apply the fundamentals for similar
results as we look forward to the coming decades.

Preface

This Edition

The third edition of Computer Architecture: A Quantitative Approach should
have been easy to write, After all, our quantitative approach hasn’t changed, and
we sought to continue our focus on the basic principles of computer design
through two editions. The examples had to be updated, of course, just as we did
for the second edition. The dramatic and ongoing advances in the field as well as
the creation of new markets for computers and new approaches for those markets,
however, led us to rewrite almost the entire book.

The pace of innovation in computer architecture continued unabated in the six
years since the second edition. As when we wrote the second edition, we found
that numerous new concepts needed to be introduced, and other material desig-
nated as more basic. Although this is officially the third edition of Computer
Architecture: A Quantitative Approach, it is really our fifth book in a series that
began with the first edition, continued with Computer Organization and Design:
The Hardware/Software Interface (COD:HSI), and then the second edition of
both books. Over time ideas that were once found here have moved to COD:HSI
or to background tutorials in the appendices. This migration, combined with our
goal to present concepts in the context of the most recent computers, meant there
was remarkably little from the second edition that could be preserved intact, and
practically nothing is left from the first edition.

Perhaps the biggest surprise for us was the realization that the computer archi-
tecture field had split into three related but different market segments, each with
their own needs and somewhat different architectures to address them. The cost-
performance theme of our first and second editions is currently best exemplified
by desktop computers. The two new paths are embedded computers and server
computers. This major shift in the field is reflected in this edition by two major
changes. First, throughout the text we broaden the topics considered as well as
the metrics of success. Second, a new section, called “Ancther View,” supple-
ments the more traditional examples in “Putting It All Together” with examples
that include video games, digital cameras, and cell phones.

Embedded computers have much lower cost targets than do desktop comput-
ers. They are ofien employed in environments where they run a single applica-
tion. Also, embedded computers often rely on batteries and cannot use active
cooling mechanisms, and energy/power efficiency is thus critical. To illustrate the
design trade-offs and approaches in embedded processors we made several addi-
tions: the EEMBC benchmarks are used to evaluate performance, media proces-
sor and DSP instruction set principles and measurements are examined, the most
popular embedded instruction set architectures are surveyed in the appendices,
and performance-power trade-offs are explored in several chapters. Power-
sensitive examples include the Transmeta and low-power MIPS processors, and
embedded systems examples include the PlayStation-2 video game, Sanyo digital
camera, and Nokia cell phone.

Server computers place more emphasis on reliability, scalability, and on
throughput rather than latency to measure performance. Thus, these systems typi-

Preface =« XiX

cally include multiple processors and disks. This edition explains the concept of
dependability and includes rarely found statistics on the frequency of component
failures. In addition to the SPEC2000 benchmarks for processors, we examine the
TPC database benchmarks and the SPEC benchmarks for file servers. Examples
of server processors include the Intel 1A-64 and the Sun UltraSPARC 111, and
examples of server systems include the Sun Fire 6800, the Sun Wildfire, EMC
Symmetrix, EMC Celerra, the Google cluster, and an IBM cluster for transaction
processing.

This edition continues the tradition of using real-world examples to demon-
strate the ideas, and the “Putting It All Together” sections are essentially 100%
new. The “Putting It All Together” sections of this book include the MIPS64
instruction set architecture, the Intel Pentium III and 4 pipeline organization, the
Intel IA-64 architecture and microarchitecture, the Alpha 21264 memory hierar-
chy, the Sun Wildfire multiprocessor, the EMC Symmetrix storage array, the
EMC Celerra file server, and the Google search engine. The “Another View” sec-
tions pick real-world examples from the embedded and server communities. This
list has the Trimedia TMS media processor, a PowerPC multithreaded processor,
the memory hierarchy of Emotion Engine in the Sony Playstation-2, Sun Fire
6800/UltraSPARC III memory hierarchy, EmpowerTel MXP embedded multipro-
cessor, Sanyo digital camera, and Nokia cell phone.

In response to numerous comments, considerable effort was focused on revis-
ing and enhancing the exercises. In particular, all the exercises were reviewed to
try to reduce ambiguities and eliminate unproductive exercises, and many new
exercises were developed. As many readers requested, Appendix B provides
answers to selected exercises.

We also added some new features that should help readers. We replaced the
synthetic 32-bit DLX architecture with the popular 64-bit MIPS architecture, as it
Just made more sense to use existing software rather than recreate and maintain
compilers ourselves. We also added a large set of appendices that contains
descriptions of a dozen instruction set architectures plus tutorials on basic pipe-
lining, vector processors, and floating-point arithmetic.

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our first dilemma in determining the new topic selections was that topics
requiring only a few pages in the prior editions have since exploded in their
importance. Second, topics that we excluded previously have matured to a point
where they can be discussed based on our quantitative criteria and their success in

XX

?i

Preface

the marketplace. To allow for this new material, we reduced the extent of intro-
ductory material, assuming the knowledge of the concepts in our introductory
text Computer Organization and Design: The Hardware/Software Interface.
Appendix A on pipelining was added as a valuable tutorial for readers not famil-
iar with the basics of pipelining. (Readers interested strictly in a more basic intro-
duction to computer architecture should read Computer Organization and
Design: The Hardware/Software Interface.)

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions can-
not be found in the literature.

An Overview of the Content

Chapter 1 covers the basic quantitative principles of computer design and perfor-
mance measurement. It also addresses the role of technology and the factors
affecting the cost of computer systems. It concludes by examining performance
and price-performance measurements of processors designed for the desktop,
server, and embedded markets, as well as considering the power efficiency of
embedded processors.

Chapter 2 covers instruction set design principles and examples. In addition to
giving quantitative data on instruction set usage based on the SPEC2000 bench-
marks, it describes the MIPS64 architecture used throughout the book. New to
this edition are principles of digital signal processor architectures, including com-
mon features and measurements. It describes the structure of modern compilers
and how that affects the utility of instruction sets for traditional computers, DSPs,
and media extensions. It also gives the Trimedia TM5200 as a contrasting exam-
ple of a media processor, offering instruction mixes for both it and MIPS. Appen-
dices C to G extend this chapter by describing a dozen other popular instruction
sets.

Chapters 3 and 4 cover the exploitation of instruction-level parallelism in
high-performance processors, including superscalar execution, branch prediction,
speculation, dynamic scheduling, and the relevant compiler technology. These
topics have grown so much that, even with the creation of a 100-page appendix
based on Chapter 3 of the second edition, we still needed two chapters to cover
the advanced material. Chapter 3 of this edition focuses on hardware-based
approaches to exploiting instruction-level parallelism, while Chapter 4 focuses on
more static approaches that rely on more sophisticated compiler technology. The
Intel Pentium series is used as the major example in Chapter 3, while Chapter 4
examines the 1A-64 architecture and its first implementation in Itanium.

~ Chapter 5 starts with an introductory review of cache principles. It then reor-
ganizes the optimizations in memory hierarchy design to what are the major chal-
lenges today. In addition to real-world examples from traditional computers such
as the Alpha 21264, AMD Athlon, and Intel Pentium III and 4, it describes the
memory hierarchy of the Emotion Engine in the Sony Playstation-2 video game

Preface xxi

and the Sun Fire 6800 server with its UltraSPARC Il processor. This edition
describes the techniques of the bandwidth-optimized DRAM chips such as
RAMBUS, and comments on their cost-performance. It also includes cache per-
formance of muiltimedia and server applications in addition to the SPEC2000
benchmarks for the desktop.

Chapter 6 discusses multiprocessor systems, focusing on shared-memory
architectures. The chapter begins by examining the properties of different appli-
cation domains with thread-level parallelism. It then explores symmetric and dis-
tributed memory architectures, examining both organizational principles and
performance. Topics in synchronization, memory consistency models, and multi-
threading (including simultaneous multithreading) complete the foundational
chapters. Sun’s Wildfire design, which uses a distributed memory architecture to
extend the reach of a symmetric approach, is discussed and analyzed.

Chapter 7, “Storage Systems,” saw a surprising amount of revision. There is
an expansion of reliability and availability, a tutorial on RAID, availability
benchmarks, and rarely found failure statistics of real systems. It continues to
provide an introduction to queuing theory and I/O performance benchmarks. It
extends the description of traditional buses with embedded and server buses. The
five design examples in later sections evolve an 1/0 system through increasingly
realistic performance assumptions, plus an evaluation of the mean time to failure.
EMC supplies the examples that put it all together, which is the first time these
systems have been documented publicly. The anatomy of a digital camera offers
an embedded perspective on storage systems, and the historical perspective
includes a ringside view of the development and popularity of RAID.

A goal of Chapter 8 is to provide an introduction to networks from the com-
puter architecture point of view. Since this field is vast and quickly moving, the
emphasis here is on an introduction to the terminology and principles. It starts
with providing a common framework for the design principles in local area net-
works, storage area networks, and wide area networks, concluding with a
description of the technology of the Internet. The second part of Chapter 8 is an
in-depth exploration of clusters and the pros and cons of the use of clusters in
both scientific computing and database applications. There is a detailed evalua-
tion of the cost-performance of clusters, including the cost of machine room
space and network bandwidth. The first description of the cluster used to provide
the popular Google search engine puts this chapter together.

This brings us to Appendices A through I. Appendix A is a tutorial on basic
pipelining concepts. Readers relatively new to pipelining should read this appen-
dix before Chapters 3 and 4. As mentioned earlier, Appendix B contains solutions
to selected exercises. Given the ubiquity of the Web today, the remaining appen-
dices are online, which allows us to add relevant information without increasing
the weight or cost of the book. Appendix C updates the second edition RISC
appendix, describing 64-bit versions of Alpha, MIPS, PowerPC, and SPARC and
their multimedia extensions. Also included in this appendix are popular embed-
ded instruction sets: ARM, Thumb, SuperH, MIPS16, and Mitsubishi M32R.
Appendix D describes the 80x86 architecture. Since we have no page budget for

xxii

Preface .

the online appendices, we include two architectures of more historical interest:
the VAX (Appendix E) and IBM 360/370 (Appendix F). Appendix G includes an
updated description of vector processors. Finally, Appendix H describes com-
puter arithmetic, and Appendix I describes implementing coherence protocols.

In summary, about 70% of the pages are new to this edition. The third edition
is also about 10% longer than the first if we don’t include the online appendices,
and about 30% longer if we do.

Navigating the text

There is no single best order in which to approach these chapters. We wrote the
text so that it can be covered in several ways, the only real restriction being that
some chapters should be read in sequence, namely, Chapters 2, 3, and 4 (pipelin-
ing) and Chapters 7 and 8 (storage systems, interconnection networks, and clus-
ters). Readers should start with Chapter 1 and should read Chapter 5 (memory
hierarchy design) before Chapter 6 (multiprocessors). Appendices C, D, E, F, and
H should be read after Chapter 2. If Appendix A is going to be read, it should be
read before Chapters 3 and 4. Appendix G is an interesting contrast to the ideas in
Chapters 3 and 4.
Despite the many ways to read this book, we expect two primary paths:

1. Inside out: The philosophy of this choice is that processor design is still the
cornerstone of computer architecture, and the nonprocessor topics are cov-
ered as time permits. Start with Chapter 1, then inside the processor (Chapters
2,3, 4), then memory hierarchy (5), followed by multiprocessors (6), storage
(7), and finish with networks and clusters (8).

2. OQutside in: The philosophy of this path is that the most interesting challenges
in computer architecture today are outside the processor, and that processor
internals are covered as time permits. Start again with Chapter 1, then memory
hierarchy (5), followed by multiprocessors (6), storage (7), networks and clus-
ters (8), and conclude with instruction sets and pipelining (Chapters 2, 3, 4).

Chapter Structure and Exercises

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a “Crosscutting Issues” section, a feature that shows
how the ideas covered in one chapter interact with those given in other chapters.
This is followed by a “Putting It All Together” section that ties these ideas
together by showing how they are used in a real machine. This is followed by one
or two sections titled “Another View,” a new feature for the third edition that
gives a real-world example from the embedded or server space.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and

