RRERR « 2 TERS

PEARSON

Addison
Wesley

The Pragmatic Programmer

From Journeyman to Master

Fer gk zin

(5 EAR)

[%] Andrew Hunt David Thomas #

HAORAIBHSEREF RANAIIEE »
a K il Kent Beck. Martin Fowler X h##H =
) RUEFEAMEBEARLEZH o

\ndrew Hunt
David Thomas

E}#@@f 44,
www.infopower.com.cn

MARR - KFTER

The Pragmatic Programmer

From Journeyman to Master

FeFf gk il
(AR

[£] Andrew Hunt David Thomas #*

tRDAEAL M L

The Pragmatic Programmer(ISBN 0-201-61622-X)

Andrew Hunt,David Thomas

Copyright © 2000 Pearson Education, Inc.

Original English Language Edition Published by Pearson Education, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

AT ER i Pearson Education BAXH H KA AP EEA (B, WIENTREME
BHIX RSN ME MR, KT
AREHREBMFA, AHLUMER T REHRDEE BRI .

AT WEF Pearson Education B 415, TS % a4,
IERTRABEESRRLS: BF: 01-2003-2444

BBAENRKRE (CIP) ¥iE

BIFRBHZIE / (R) T8, (X)) RONE. oA, —bst: dEEHHRE, 2003
(JRRREZ « R TERF)D

ISBN 7-5083-0798-4

I #. T.O%. @K. NEFRT—FE—®X V.TP3IL11
HARE: PHEEAERME AERTERX =B 6 S, HE4 100044)

MG R

AP L FRRAR - KETRERY

A BEFRBBZE (BOR

=] F: (%) Andrew Hunt&David Thomas

H R #: PEBHEEG
Midt: AR =REB6T BRI 100044
Hif: (010) 88515918 fEH: (010) 88518169

: L HEEIRI)T

D AR SRR RATR

: 787X1092 1/16 B #k:22

: ISBN 7-5083-0798-4

1 20038 b E R

: 2003FE8 A —IKELR

: 39.00 7T

SN d Y %E

What others in the trenches say about
The Pragmatic Programmer. . .

“The cool thing about this book is that it’s great for keeping the
programming process fresh. [The book] helps you to continue to grow
and clearly comes from people who have been there.”

» Kent Beck, author of Extreme Programming Explained:
Embrace Change

“1 found this book to be a great mix of solid advice and wonderful
analogies!”

» Martin Fowler, author of Refactoring and UML Distilled

“I would buy a copy, read it twice, then tell all my colleagues to run
out and grab a copy. This is a book [would never loan because I would
worry about it being lost.”

» Kevin Ruland, Management Science, MSG-Logistics

“The wisdom and practical experience of the authors is obvious. The
topics presented are relevant and useful. . . . By far its greatest
strength for me has been the outstanding analogies—tracer bullets,
broken windows, and the fabulous helicopter-based explanation of the
need for orthogonality, especially in a crisis situation. I have little
doubt that this book will eventually become an excellent source of

useful information for journeymen programmers and expert mentors
alike.”

» John Lakos, author of Large-Scale C++ Software Design

“This is the sort of book I will buy a dozen copies of when it comes out
so I can give it to my clients.”

» Eric Vought, Software Engineer

“Most modern books on software development fail to cover the basics
of what makes a great software developer, instead spending their time
on syntax or technology where in reality the greatest leverage possible
for any software team is in having talented developers who really know
their craft well. An excellent book.”

» Pete McBreen, Independent Consultant

“Since reading this book, [have implemented many of the practical
suggestions and tips it contains. Across the board, they have saved my
company time and money while helping me get my job done quicker!

This should be a desktop reference for everyone who works with code
for a living.”

» Jared Richardson, Senior Software Developer,
iRenaissance, Inc.

“I would like to see this issued to every new employee at my
company. ..."

» Chris Cleeland, Senior Software Engineer,
Object Computing, Inc.

From Journeyman to Master

Andréw Hunt
David Thomas

Foreword

As a reviewer I got an early opportunity to read the book you are hold-
ing. It was great, even in draft form. Dave Thomas and Andy Hunt have
something to say, and they know how to say it. | saw what they were
doing and 1 knew it would work. I asked to write this foreword so that I
could explain why.

Simply put, this book tells you how to program in a way that you can
follow. You wouldn’t think that that would be a hard thing to do, but it
is. Why? For one thing, not all programming books are written by pro-
grammers. Many are compiled by language designers, or the journalists
who work with them to promote their creations. Those books tell you
how to talk in a programming language—which is certainly important,
but that is only a small part of what a programmer does.

What does a programmer do besides talk in programming language?
Well, that is a deeper issue. Most programmers would have trouble
explaining what they do. Programming is a job filled with details, and
keeping track of those details requires focus. Hours drift by and the
code appears. You look up and there are all of those statements. If you
don't think carefully, you might think that programming is just typing
statements in a programming language. You would be wrong, of course,
but you wouldn't be able to tell by looking around the programming
section of the bookstore.

In The Pragmatic Programmer Dave and Andy tell us how to program in
a way that we can follow. How did they get so smart? Aren't they just
as focused on details as other programmers? The answer is that they
paid attention to what they were doing while they were doing it—and
then they tried to do it better.

Imagine that you are sitting in a meeting. Maybe you are thinking
that the meeting could go on forever and that you would rather be
programming. Dave and Andy would be thinking about why they were

<« xiii >

xiv P FOREWORD

having the meeting, and wondering if there is something else they could
do that would take the place of the meeting, and deciding if that some-
thing could be automated so that the work of the meeting just happens
in the future. Then they would do it.

That is just the way Dave and Andy think. That meeting wasn’'t some-
thing keeping them from programming. It was programming. And it
was programming that could be improved. | know they think this way
because it is tip number two: Think About Your Work.

So imagine that these guys are thinking this way for a few years.
Pretty soon they would have a collection of solutions. Now imagine
them using their solutions in their work for a few more years, and
discarding the ones that are too hard or don't always produce results.
Well, that approach just about defines pragmatic. Now imagine them
taking a year or two more to write their solutions down. You might
think, That information would be a gold mine. And you would be right.

The authors tell us how they program. And they tell us in a way that we
can follow. But there is more to this second statement than you might
think. Let me explain.

The authors have been careful to avoid proposing a theory of software
development. This is fortunate, because if they had they would be
obliged to warp each chapter to defend their theory. Such warping is
the tradition in, say, the physical sciences, where theories eventually
become laws or are quietly discarded. Programming on the other hand
has few (if any) laws. So programming advice shaped around wanna-be
laws may sound good in writing, but it fails to satisfy in practice. This
is what goes wrong with so many methodology books.

I've studied this problem for a dozen years and found the most promise
in a device called a pattern language. In short, a pattern is a solution,
and a pattern language is a system of solutions that reinforce each
other. A whole community has formed around the search for these
systems.

This book is more than a collection of tips. It is a pattern language
in sheep’s clothing. | say that because each tip is drawn from experi-
ence, told as concrete advice, and related to others to form a system.
These are the characteristics that allow us to learn and follow a pattern
language. They work the same way here.

FOREWORD d xv

You can follow the advice in this book because it is concrete. You won't
find vague abstractions. Dave and Andy write directly for you, as if each
tip was a vital strategy for energizing your programming career. They
make it simple, they tell a story, they use a light touch, and then they
follow that up with answers to questions that will come up when you
try.

And there is more. After you read ten or fifteen tips you will begin to see
an extra dimension to the work. We sometimes call it QWAN, short for
the quality without a name. The book has a philosophy that will ooze
into your consciousness and mix with your own. It doesn’t preach. It
just tells what works. But in the telling more comes through. That's the
beauty of the book: It embodies its philosophy, and it does so unpre-
tentiously.

So here it is: an easy to read—and use-—book about the whole practice
of programming. I've gone on and on about why it works. You probably
only care that it does work. It does. You will see.

—Ward Cunningham

Preface

This book will help you become a better programmer.

It doesn’'t matter whether you are a lone developer, a member of a large
project team, or a consultant working with many clients at once. This
book will help you, as an individual, to do better work. This book isn’t
theoretical—we concentrate on practical topics, on using your experi-
ence to make more informed decisions. The word pragmatic comes from
the Latin pragmaticus—"“skilled in business”—which itself is derived
from the Greek mparreiv, meaning “to do.” This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting a
computer to do what you want it to do (or what your user wants it to do).
As a programmer, you are part listener, part advisor, part interpreter,
and part dictator. You try to capture elusive requirements and find a
way of expressing them so that a mere machine can do them justice.
You try to document your work so that others can understand it, and
you try to engineer your work so that others can build on it. What's
more, you try to do all this against the relentless ticking of the project
clock. You work small miracles every day.

It's a difficult job.

There are many people offering you help. Tool vendors tout the mir-
acles their products perform. Methodology gurus promise that their
techniques guarantee results. Everyone claims that their programming

language is the best, and every operating system is the answer to all
conceivable ills.

Of course, none of this is true. There are no easy answers. There is no
such thing as a best solution, be it a tool, a language, or an operat-
ing system. There can only be systems that are more appropriate in a
particular set of circumstances.

<4 xvii P

xviii » PREFACE

This is where pragmatism comes in. You shouldn't be wedded to any
particular technology, but have a broad enough background and expe-
rience base to allow you to choose good solutions in particular situ-
ations. Your background stems from an understanding of the basic
principles of computer science, and your experience comes from a wide

range of practical projects. Theory and practice combine to make you
strong.

You adjust your approach to suit the current circumstances and envi-
ronment. You judge the relative importance of all the factors affecting a
project and use your experience to produce appropriate sclutions. And
you do this continuously as the work progresses. Pragmatic Program-
mers get the job done, and do it well.

Who Should Read This Book?

This book is aimed at people who want to become more effective and
more productive programmers. Perhaps you feel frustrated that you
don’t seem to be achieving your potential. Perhaps you look at col-
leagues who seem to be using tools to make themselves more produc-
tive than you. Maybe your current job uses older technologies, and you
want to know how newer ideas can be applied to what you do.

We don't pretend to have all (or even most) of the answers, nor are
all of our ideas applicable in all situations. All we can say is that if
you follow our approach, you'll gain experience rapidly, your produc-
tivity will increase, and you'll have a better understanding of the entire
development process. And you'll write better software.

What Makes a Pragmatic Programmer?

Each developer is unique, with individual strengths and weaknesses,
preferences and dislikes. Over time, each will craft his or her own
personal environment. That environment will reflect the programmer’s
individuality just as forcefully as his or her hobbies, clothing, or hair-
cut. However, if you're a Pragmatic Programmer, you'll share many of
the following characteristics:

o Early adopter/fast adapter. You have an instinct for technologies
and techniques, and you love trying things out. When given some-

PrREFACE « xix

thing new, you can grasp it quickly and integrate it with the rest of
your knowledge. Your confidence is born of experience.

¢ Inquisitive. You tend to ask questions. That’s neat—how did you
do that? Did you have problems with that library? What's this BeOS
I've heard about? How are symbolic links implemented? You are a
pack rat for little facts, each of which may affect some decision
years from now.

o Critical thinker. You rarely take things as given without first get-
ting the facts. When colleagues say “because that’s the way it's
done,” or a vendor promises the solution to all your problems, you
smell a challenge.

¢ Realistic. You try to understand the underlying nature of each
problem you face. This realism gives you a good feel for how diffi-
cult things are, and how long things will take. Understanding for
yourself that a process should be difficult or will take a while to
complete gives you the stamina to keep at it.

¢ Jack of all trades. You try hard to be familiar with a broad range
of technologies and environments, and you work to keep abreast of
new developments. Although your current job may require you to
be a specialist, you will always be able to move on to new areas and
new challenges.

We've left the most basic characteristics until last. All Pragmatic Pro-
grammers share them. They're basic enough to state as tips:

L Care About Your Craft =]

We feel that there is no point in developing software unless you care
about doing it well.

~ P2 ___ —
L Think! About Your Work J

In order to be a Pragmatic Programmer, we're challenging you to think
about what you're doing while you're doing it. This isn't a one-time
audit of current practices—it's an ongoing critical appraisal of every

xx P> PREFACE

decision you make, every day, and on every development. Never run on
auto-pilot. Constantly be thinking, critiquing your work in real time.
The old IBM corporate motto, THINK!, is the Pragmatic Programmer's
mantra.

If this sounds like hard work to you, then you're exhibiting the realistic
characteristic. This is going to take up some of your valuable time—time
that is probably already under tremendous pressure. The reward is a
more active involvement with a job you love, a feeling of mastery over
an increasing range of subjects, and pleasure in a feeling of continuous
improvement. Over the long term, your time investment will be repaid
as you and your team become more efficient, write code that’s easier to
maintain, and spend less time in meetings.

Individual Pragmatists, Large Teams

Some people feel that there is no room for individuality on large teams
or complex projects. “Software construction is an engineering disci-
pline,” they say, “that breaks down if individual team members make
decisions for themselves.”

We disagree.

The construction of software should be an engineering discipline. How-
ever, this doesn’t preclude individual craftsmanship. Think about the
large cathedrals built in Europe during the Middle Ages. Each took
thousands of person-years of effort, spread over many decades. Lessons
learned were passed down to the next set of builders, who advanced
the state of structural engineering with their accomplishments. But the
carpenters, stonecutters, carvers, and glass workers were all craftspeo-
ple, interpreting the engineering requirements to produce a whole that
transcended the purely mechanical side of the construction. It was their
belief in their individual contributions that sustained the projects:

We who cut mere stones must always be envisioning cathedrals.
— Quarry worker’s creed

Within the overall structure of a project there is always room for in-
dividuality and craftsmanship. This is particularly true given the cur-
rent state of software engineering. One hundred years from now, our
engineering may seem as archaic as the techniques used by medieval

PREFACE W xxi

cathedral builders seem to today’s civil engireers, while our craftsman-
ship will still be honored.

It’s a Continuous Process

A tourist visiting England’s Eton College asked the gardener how he got
the lawns so perfect. “That's easy,” he replied, “You just brush off the
dew every morning, mow them every other day, and roll them once a
weel.”

“Is that all?” asked the tourist.

“Absolutely,” replied the gardener. “Do that for 500 years and you'll
have a nice lawn, too.”

Great lawns need small amounts of daily care, and so do great pro-
grammers. Management consultants like to drop the word kaizen in
conversations. “Kaizen” is a Japanese term that captures the concept
of continuously making many small improvements. It was considered
to be one of the main reasons for the dramatic gains in productivity and
quality in Japanese manufacturing and was widely copied throughout
the world. Kaizen applies to individuals, too. Every day, work to refine
the skills you have and to add new tools to your repertoire. Unlike the
Eton lawns, you'll start seeing results in a matter of days. Over the
years, you'll be amazed at how your experience has blossomed and
your skills have grown.

How the Book Is Organized

This book is written as a collection of short sections. Each section is
self-contained, and addresses a particular topic. You'll find numerous
cross references, which help put each topic in context. Feel free to read

the sections in any order—this isn't a book you need to read front-to-
back.

Occasionally you’ll come across a box labeled Tip nn (such as Tip 1,
“Care About Your Craft” on page xix). As well as emphasizing points in
the text, we feel the tips have a life of their own—we live by them daily.

You'll find a summary of all the tips on a pull-out card inside the back
cover.

xxii P PREFACE

Appendix A contains a set of resources: the book’s bibliography, a list of
URLs to Web resources, and a list of recommended periodicals, books,
and professional organizations. Throughout the book youll find refer-
ences to the bibliography and to the list of URLs—such as [KP99] and
[URL 18], respectively.

We've included exercises and challenges where appropriate. Exercises
normally have relatively straightforward answers, while the challenges
are more open-ended. To give you an idea of our thinking, we've in-
cluded our answers to the exercises in Appendix B, but very few have
a single correct solution. The challenges might form the basis of group
discussions or essay work in advanced programming courses.

What's in a Name?

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means
Just what I choose it to mean—neither more nor less.”
» Lewis Carroll, Through the Looking-Glass

Scattered throughout the book you'll find various bits of jargon—either
perfectly good English words that have been corrupted to mean some-
thing technical, or horrendous made-up words that have been assigned
meanings by computer scientists with a grudge against the language.
The first time we use each of these jargon words, we try to define it,
or at least give a hint to its meaning. However, we're sure that some
have fallen through the cracks, and others, such as object and rela-
tional database, are in common enough usage that adding a definition
would be boring. If you do come across a term you haven't seen be-
fore, please don't just skip over it. Take time to look it up, perhaps on
the Web, or maybe in a computer science textbook. And, if you get a
chance, drop us an e-mail and complain, so we can add a definition to
the next edition.

Having said all this, we decided to get revenge against the computer sci-
entists. Sometimes, there are perfectly good jargon words for concepts,
words that we've decided to ignore. Why? Because the existing jargon
is normally restricted to a particular problem domain, or to a partic-
ular phase of development. However, one of the basic philosophies of
this book is that most of the techniques we're recommending are uni-
versal: modularity applies to code, designs, documentation, and team

PREFACE <xxiii

organization, for instarnice. When we wanted to use the conventional
jargon word in a broader context, it got confusing—we couldn’t seem
to overcome the baggage the original term brought with it. When this
happened, we contributed to the decline of the language by inventing
our own terms.

Source Code and Other Resources

Most of the code shown in this book is extracted from compilable source
files, available for download from our Web site:

www.pragmaticprogrammer.com

There you'll also find links to resources we find useful, along with

updates to the book and news of other Pragmatic Programmer devel-
opments.

Send Us Feedback

We'd appreciate hearing from you. Comments, suggestions, errors in
the text, and problems in the examples are all welcome. E-mail us at

ppbook@pragmaticprogrammer.com

Acknowledgments

When we started writing this book, we had no idea how much of a team
effort it would end up being.

Addison-Wesley has been brilliant, taking a couple of wet-behind-the-
ears hackers and walking us through the whole book-production pro-
cess, from idea to camera-ready copy. Many thanks to John Wait
and Meera Ravindiran for their initial support, Mike Hendrickson, our
enthusiastic editor (and a mean cover designer!), Lorraine Ferrier and
John Fuller for their help with production, and the indefatigable Julie
DeBaggis for keeping us all together.

Then there were the reviewers: Greg Andress, Mark Cheers, Chris Clee-
land, Alistair Cockburn, Ward Cunningham, Martin Fowler, Thanh
T. Giang, Robert L. Glass, Scott Henninger, Michael Hunter, Brian

