A

SEIBR#IEMNS - REIE

[BIBAsz1TivFe

ELYR - S - X33k [Watts S. Humphrey] 2%

== opiupnTENS - KEK

\
BIBAsxirisE
the Team Software Process

B3 - S - 3X#3k [Watts S. Humphrey] #

HHEXFHBRM

() FEF 158 5
nAE N
AHBABTANKAELRE (TSP) EREEIR, EHTHREFRTELZE. 8
FRAM—BREEZFEATRRENSE, BaEIESFERTEHRYE TEE
BERBEEMEH.

EISBN: 0-201-47719-X

Introduction to the Team Software Process, le

Watts S. Humphrey

Copyright © 2000 by Addison-Wesley

Original English language edition published by Addison-Wesley.
All right reserved.

KB HENRE Pearson Education IEHUSHE X FHRHEREIER, 8. #®(]
FHATHEXMEBHXMRS, MERBE. £17.
KEHEEBEITT, FAEUEMAREHSEZEE TS .

AP LA Pearson Education BB IR E, TFEERESHE.
IERHRENESZENARZICS: BF 01-2002-5727

EHERKE (CI1P) KR

FBAB 1272 Introduction to the Team Software Process / (%) WHh%EZE %
EIAR —dbRl: WA IR, 2002

(SEL 5 THEMAID

ISBN 7-302-06141-6

LLEL. 9., NL%#$ETHE IV.TP311.5

thE A E B CIP B HE (2002) 097400 &

H R F: BERELRE LR E R R FEH R B4 100084)
http://www. tup. com. cn
http://www. tup. tsinghua. edu. cn
EEHE: LBE
Rl &: HER¥EOR
T &: FESELELRETH
: 787X960 1/16 EP3Kk: 31.5 $EDT:2 PH: 508 FF
: 2002 12 A 1/ 20024 12 B4 1 lEPRY
: ISBN 7-302-06141-6/TP « 3672
: 0001 ~3000
: 49,00 5T

B3 HF HN
= -

tH AR % PR

1984 5, E[HEP#H M BERAE « BEKFR LR G TERR
Fi(Software Engineering Institute, &#% SEI). SEI T 1986 FEH IR 5
WAL FRAE S R BEREEY (Capability Maturity Model, CMM), 1991
FFEREHT CMM 1.0 iR, 1993 FE#HH CMM 1.1 ik. /5, SEI
BIERT B8 i ER BRI S R (Capability Maturity Model Integration,
fAIFR CMMD . HEl, CMM 2.0 [REZHEH,

CMM B EREZRE, £ EREAEFMHEBI T 2
N, RAEBREATNRGITREEKPHNEESEEE, HEN
B REOE R ELAR . CMM H BTMARE R R R —Fh R,
—MRERA LRI RRE. EARAITRRBRET AR
HIRESR, EmAdEMRORENFEATA.

SEI T A ENRR, #HRGEH SEI 255 TR

BHREHEFEAEEN SEI 4 TFEMAH (SEI Series In Software
Engineering) .

ARGRRERA SRS S, RAEEPRENKT, SFEEX
FHBALM =BT TEERFERY, 253 TREAS, St
ENFIEE AR, XEABRIABGUHAR, RsoE, ARHm, 8
T B AR RN L%)RR LR SRR R,

HHERZE AR

2002 4 8 A3

“SEI R T12FN” RER

A Aas
Al E £ OBAN

7 DA (St 2T HERY)
Bl OBEE ¥ O
RS R

WATERH SR
B BEWL

2 F

SRR

EEFHE - EKFRE LEWFR BT (CMU/SED A2 3 F BB
R B STA s, mEEEBBEE. AN, I T RIERY
FRITAERIRTD, HRETFRAN R 4RI N BFER AR P AR5
Bt BA 2 B R 0 BB TR SN UURTE RS, DAORAE RE A iy P38
fHIERRRIRA: . Frig« ERE R IBTEThRE . MEREFI A JLAN T T ARRE
WA P ER B FTE “ B MERERBREXN AR
TTMRAARBIREE T A O, SRS S AR A 8 A
FEBRFE

CMU/SEL A TiAZIXANHAY, $8H T M. NN R,
KB “fIE” RIS 54 TR &, LRGN EEEK
HIRBREE, MASRTHEM. XEMN “NA” ZE—2&F K ARt
T, CINH. SO e i sk o fse B, SRR BB R
bro. XEE “H” BEESEMNMA—E, RSN FREZT%
UEFNERINRD . BT BSOS B At RSB B R, T SR AT
—HHRRAEE. WkER, £8x57.

AT HEST R R R AP L ERER . — P RIE SR TRY
HESLER, AR MBRNBERAE RSN, BERRIMEE
HEERRE. EE. R FREAPIASRERNRE . 51N E%
BB TR AR ST, 54 TRMAER 28T TSR 5%
BYEREe S, K RFBERD. WEMNGERE RSN, BEH#ITHR 4D
B, fEHEFPAEIRRIRE. CMU/SEl @it HRKR G TREMAE, &
SANPBIR AR EEREZR, RETXHNMBLK M EASE.

SEI ¥ T2 M 45 1 CMU/SEL #1 Addison-Wesley /3 &) 3 {20 21
W, 3k 4 A& HENMME RS (BHRT 2 &85, T
B (CHART 8 AZF/E), MEZUAfITAEEE (CHRT 1 X&),
BB\ A RE (BHART 3 A1), MEERF®E

v e il &

TEBEARLE, FRERTRG TREEHELE. X 4 M8k
T 24 AFEAE, LU TSR SO A4 77 (i 5R B 3 O kA T
PRI B X B ERR T At AR TR A LA A TR B MR T L7
BEMQEET), HE3 T ABNERSRMTURED, RE/SERNZ
X

HEKFBRALETERABAREIRIL R AL SEI M4 TEEN
WES. BEATTRIE LR 6]E/E, BIFHR 15 2EE. BHEM
%1, £ Addison-Wesley 2 A SEI 4 TEATEH, ARGBHSE
WA CEBIFHR T CMERAERE) A CHBNVREIEREY, BRI
HAR (MESRAEREY A RETEMR):; a7 T HERECERIF
HAR T (FERGLEMEAREERE). (BBHRMERE CMM 1.1 #F
). CEESTRAAERLRISE AL CMMI) F1 (BT E BEH); JERAETM
RREHBACEBIFHRT (Gt EEs). X8RIt e
2 AFEME, BITEHR 7 AFE. X8, URBREES FTERLTE
BN 8 AEAE, BRI 22 AFE. BN HRMENEZ LN EE5),
RBATENE T FIEE . B, BIFTHIYLE. BRIV IZEE8 AN
EE, WEEJESINEHER, URXKIESRBERE TEGELME
BRIKF

HXENASY, FAES RN, £38 TR b8
22 AL Humphrey SE TSI CREREEH). (FAANREHE).
CRAMG TR (MR (BB TEY M GRS
B %6 AFE, B TAEENLSTIFHR, Hb (R IREHE).
(BEARANRERE)., (A TEME). MERAETRE) M GRS
1BY %5 AZERCLRE TASEERNREHR,

CRUFE RS D) B IR KT eI EE, RAKEARTZ
HMRGMELHEREHN ., AXABRHENEERES®ATR, T
FRObER I ERE R AR NG, RFET T e T
Rkt . X H CMU/SEI # RIX A BRI R EE T & T RE) BB BERERY,
FEE bR BB B4R 2 BB R EHATTRZ R, R R e
HHRE. EEEREARARERBASVEIIZSMAR, EEEEGE
WRREF R RaIE,

VER— AN RILH, FESU AR EE 20, HRL A meE XS

/é /L; s e

A R R BB S R . Rtk BSUHASIRIMERE, HAR
Hut B o EER . RNEENHFREFRE—E 55, &
BERHERRENER TEREARA G, Bk, FR0RGEHEEE
ROEBRFEARA RS,

(RN REHD XA ZEFR L ABFXHOMRSH. &RE
MR TAZREAES, RRERATRE S OMBRRS . HE
KA AT A TR T BRI SRR, 1 B RH RN
MR BRI . LR AIRSF R AR FNS R, A BB AN AT
BEM TENSRE, EAZRSFRETEEENRE, XPRHET
REKSCHTER, TRRARKEHE TRAR . SEMALRMLELE.

Humphrey 5SeARUARZ AR E S FERE THEORGLHE.
BRER—MADKE, #HHABETHMRST, T BE BN
S R T MRS AR, BRS T2 ERIRERER. H
HEARBARNER, DNEFBRENREFIHHER TR, RAEE
RXT5 TR SR FF R F

(BTG RARBEARESH. TR MR T ME sk
TR (PSP) HUEEARE, PR T AWM R4 A S T,
WA SEBEGTESHEH. ERATRER, XEBEEREHRKMET
Ehetd N ERARE. BATEHRERN, HRT LTk Te
BARA R EEERZE X PSP (I, LU Eth¥4ME PSP S, 7
RMEHTIER, EMITRENAEERA, THBRERENSS,

CRM-HIMEZ 18 XA ZERHR T AN R S A B, R
i B R T PR AR AR R AT S PSP F TSP (9 R B L& B B e sk iy
M. B4, B CMM FIREGER T ORAS, BELMEETTRE
WA WA CMM FAMMEENR BN, XA B TS A . NiZ
B, R —NAH IR CMM SO, U PSP I TSP £ f1 CMM
TEMERN. MR -MALERAEER CMM ZidfE, W% PSP
ATSP 89Uk, wILICARRE CMM SR 28 5 IR ST SRR

R LESCREETH BAHEHR T 10 £F4F, Hd GHREW
BHHERE). CRUEWRRETER) T R —— 7 A R BT
) &3 BEEMELE T AR SERAE . S TFRE
T PRE AL, XTI R BRI AR K, Fitin ke

ey e Vil &

— AR RO B4 A TR E A A E LA ZF R
R X RE KA RO R S SERA EENSEME. o A&
BrR%1, W HHLE MR 22 i ENHE B RER AT RERRRLK,
(CERT Z2i—AGHHMBREXR) RGN REAX—
ST A SE B BR MEBEE AT, (R EHE—RURETT R Y
B0 (AR EBE—FF RGN COTS /=) (T HBEH R,
CRRAF = i ——SCBRARER) M (RZE TR EFE BT
FSFHEME MHMKREE. KUK MEEH, KE=REUL
FERARZR U ITTEF AT HERT KB, KRR AREKITR R,
RARKBEEAA -V EESE, BAESRERE LT HEE.

HRTBATAT AR AR AR LR, R A KA B & R)
B REEAME B MR, T8 E R LR R TR & A=
Tl HIAREARERYRBET, BB DA LUS B,
Wl . FRANE RO B AR AR E 5 . RN RS, B
T2 R B A6 SENUNE Y R G602 A RIS AE - TH LRI R T ML
HREK R, BATERIRMAT, ARG SR HE B, M
R R AL S BB 2 5%

BAN % B, 76 B SR R E A S R B R e B EE A AR
HREZER. B, RIISGEIRMEMREMBIED, EfAGZER. RIIN
ZHENLE, BEEARRE iR, R LR ARNRKG TR ER
ANTTHE, FEREFS SEL 4 TRMABFESKEBN %, BRLEE,
WHER, #AARMMAREEERFHANBENEEHTOHR R
B, KIHEFRENRRFRBHRELEAR, FHABFREEKX
B, BB RGEMEE ST . BB HTUBLE 4K 2 AR A S AN E R
RUZXENA, FEFE R R R34 — N B E A A B2 koK B B 775 o
R4 IR BIHER B AL, JHE LB R X R R, WHXEMS
PR 13N Sm HESE 7 T AR ER L AT

L(Eles
FAE R
2002 % 8 A 18 H

IN MEMORY OF MY FATHER, WATTS S. HUMPHREY (1896-1968)

He provided critical support at a difficult time in my life.

TSPi Glossary

Term Definition or Formula Reference

AFR Appraisal to failure ratio. 102
A/FR = (appraisal time)/(failure time)

Appraisal time Time spent appraising the product, either in 102
personal reviews or inspections.

Assemblies When a program has several parts, it is called an assembly. | 70

Balanced plans Team plans in which every engineer plans to 66
complete his or her personal tasks at the same time.
With a balanced pian, the schedule is minimized.

Baseline The collection of documents and other materials that 326
officially represent the product at any point in time.

Black-box testing Testing that is done without knowledge of the program’s 131
internal structure.

Build The build process assembies the system’s parts for 180
integration and system testing. One such assembly is
called a build.

Capture-recapture A method for estimating the size of a population. In TSPi, 345
this method is used to estimate the number of defects
remaining in a product after an inspection.

CCB See configuration control board. 324

Checklist A list of items to check in a review. In PSP and TSPi, 339
checkiists identify the most likely defects to iook for.

Configuration change | The official means for transmitting to the CCB a requested | 324

request (CCR) change to the product baseline.

Configuration An engineering committee that reviews and approves the 324

control board (CCB) product baseline and proposed changes to it.

Configuration item The approved list of items to be included in the product or 331

list system baseline. It typically includes the product name,
when baselined, the owner, and where stored.

Configuration The total set of activities used to manage the content of the | 321

management product (the baseline) from the beginning to the end of the
development process.

Configuration This plan includes, at a minimum, the configuration 323

management plan identification plan (configuration item list), the configuration
control procedures, and the CCB membership.

Configuration The CSR summarizes the status of the configuration 328
status report (CSR) management system at any point in
time.

Cyclic development A development process that builds products in steps, each | 6
of which produces a working subset of the final product.

Defect A requirements, design, or implementation element that, if | 100
not changed, could cause improper design, implementation,
test, use, or maintenance.

Defect prevention The process, method, tool, or other actions needed 146

to prevent specific defect types from recurring.

TSPi Glossary

Term Definition or Formula Reference

Defect profile A graph of the defect-removal history of a program by 100
phase. It is typically given in defects/KLOC.

Defect-prone modules | Those modules in a system that, based on their defect- 171
removal history, are judged likely to have defects remaining.

Defect ratio The ratio of the numbers of defects found in a review phase | 101
and a compile or test phase. Low ratios typically indicate
low-quality reviews.

Defects/KLOC The number of defects in a program, normalized by the 100
number of KLOC in the program.

Defects/KLOC = 1000*(defects found)/(LOC)

Development cycle That development activity that builds one product increment | 6, 9
in a cyclic development process.

Earned value (EV) The percent the estimated task hours are of the total project | 67
hours. EV is earned only when the task is fully completed.

Estimated defects Using the capture-recapture method, the estimated 345

remaining remaining defects are T = A*B/C, where A is the number of
major defects found by one engineer, B the number found
by another engineer, and C the number found by both.

Facilitator A person who helps teams hold efficient and effective team | 204, 212
meetings. The principal responsibilities are to keep the
meeting focused on the agenda and ensure that everyone
participates.

Failure time The time spent finding and fixing defects. In PSP and TSP, | 102
it is the total time an engineer spends compiling and unit-
testing a program.

Inspection A process in which several engineers review a product 335
produced by another engineer to help find defects.

Integration test The test that verifies that the system is properly built, that 181
all the parts are present, and that they function together.

Issue A known problem or concern that must be addressed. 53

KLOC Thousands of lines of code, or LOC. 85

LOC Lines of code, as defined in the team’s lines-of-code 144
standard.

Major defects These are the problems that, when fixed, would change the | 100
executable program.

Minor defects All defects that are not major. 100

Module Modules are typically composed of muitiple objects or 70
functions, and they are the smallest testable program
element.

Notebook See project notebook. 213

Part Any part of a system. It could be an object, module, 70
component, product, or subsystem. Parts may also be
assemblies of lower level parts.

PDF See percent defect-free. 98

(continued inside back cover)

TSPi Glossary

Term Definition or Formula Reference
Peer review See inspection. 335
Percent defect-free The percent of a system’s parts that have no defects in a
(PDF) specified defect-removal phase. 98
Phase A process typically has several steps or phases, each one | 10
generally described by scripts.
Phase yield The percentage of the defects in a product that are removed | 106
during a specified phase. Compile process yield refers to
the percentage of the defects injected before the end of
compile that are removed during compile. See also yie/d.
PIP The process improvement proposal, a TSPi form. 186
Planned value The percentage of the total job that is represented by a 67
single task.
Prediction interval The limits within which an estimate is likely to fail. Typical 350
prediction intervals include a percentage, say 95%, of the
items being estimated.
Process yield The percentage of the defects injected before a phase that | 106
are removed before that phase. Yield before compile refers
to the percentage of the defects injected before compile that
are removed before compile. See also yield.
Project notebook The official record of all the team’s estimates, work products, | 213, 214
reports, plans, and forms.
Quality plan The planned and actual quality performance of every part 97
and assembly in the system.
Rates, inspection One measure of the quality of a review or an inspection. 102
and review Typically, rates are measured in LOC or pages per hour.
Recorder The person who documents meeting results, principally the | 262
decisions and planned actions.
Regression test When programs are modified, functions that were 182
previously tested may no longer work. Regression testing
checks for such problems.
Reuse The use of unmodified previously developed program 54
elements in a new program. Typically, reused program
elements are taken from a reuse library that is designed
specifically for reuse.
Review In the PSP and TSPi, reviews are done by engineers to find { 131
defects in their personally produced products.
Risk A problem that may or may not occur. 53
Role A defined area of responsibility for a team member. 302
Script A listing of the actions required to accomplish a specific 10
process or portion of a process.
SCM See configuration management. 321
sbs See software design specification. 135

TSPi Glossary

Term Definition or Formula Reference

Size standard This specifies how size is to be measured for each product | 144
type. it typicaily includes the LOC counting method, the
page standard, and design size measures.

Software See configuration management. 321

configuration

management

Software design The program’s or system’s design, typically including the 135

specification (SDS) high-level design, the program architecture, interface
definitions, and other important specifications.

Software requirements | A description in the engineers’ words of the product they 11

specification (SRS) plan to develop, typically reviewed by the customers or
users to ensure agreement on the needs.

SRS See software requirements specification. 112

System test A test that stresses the system to determine whether or 181
not it functions properly in all important respects.

Task An element of work in the development plan. In TSP, the 68
work is typically broken into tasks that can be done in about
10 engineer hours or fewer.

Test plan The test plan defines the tests to be run, the expected test | 169
results, the materials needed for testing, and the plan for
producing these materials.

Unit test This white-box test verifies that the program structure is 381
correct and that operation is proper with all normal and
abnormal variable and parameter values.

White-box testing Testing that is done with knowledge of the program’s 131
internal logic and structure.

Yield The percentage of the defects in a program that are 106

removed from the program. See also phase yield and
process yield.

FACULTY FOREWORD

The increasing complexity of software development and the demand by industry
for better-qualified and better-prepared software engineers means software devel-
opment curricula must provide students with knowledge and experience related to
the practice of software engineering. The Embry-Riddle Aeronautical University
Industrial Advisory Board! has identified the following issues as critical for the
preparation of entry-level software engineers:

communication (both oral and written)

ability to work as part of a team

front-end part of software development (requirements and high-level design)

professional attitude toward work

knowledge and skills in using software processes

computing fundamentals

breadth of knowledge (ability to learn new technologies)

In my eight years of teaching an introductory software engineering course, I
have tried to provide to students an overview of the full “life-cycle” development
of software and to have them work as part of a team. I have tried real projects, toy
projects, small-team development, large-team development, extensive tool use, al-

most no tool use, emphasis on product issues, and emphasis on process issues.
Until recently, I have had only limited success. Most of the time, I have tried to do

IThe Advisory Board members come from several organizations, including Boeing, Harris,
Lockheed-Martin, Motorola, and the Software Engineering Institute.

vii

viii Faculty Foreword

too much, with the result that both the students and the teacher ended up frustrated
and disappointed.

This past year, I used a draft of Introduction to the Team Software Process™
(TSPi) and had the best success in my experience. Although the TSPi is no silver
bullet, it has had a dramatic effect in improving our delivery of software engi-
neering education. The TSPi shows both teachers and students what to do, how
to do it, and when to do it. This book includes all the required TSPi materials:
the scripts, forms, and instructions for almost all aspects of student-team soft-
ware development. It does an excellent job of explaining and motivating the TSPi
activities, and it provides a complete description of each team role. It offers common-
sense advice on how to handle team management problems, and it specifies quan-
titative techniques for planning, tracking, and assessing performance and quality.

Although the book includes an initial statement of requirements for two proj-
ects, the TSP is flexible enough to handle a variety of projects of modest size. The
TSPi could be adjusted for a maintenance project, used in a requirements/design
course, or adapted to just about any team software activity. For example, we are now
using the TSPi in our senior design course to develop a product for a real customer.
The TSPi incorporates an incremental development methodology that provides a
sound software development strategy and an excellent pedagogy. In the first incre-
ment (using a simple set of requirements), students learn the TSPi process and get
comfortable working with a team. In the subsequent one or two increments, the
tearns can use their previous experience to improve their performance.

Although there is much to be gained by using the TSPi in a software engineer-
ing project course, students must have prior experience with the Personal Software
Process (PSP)™, either through a previous course or by self-study. At Embry-Riddle,
we introduce our students to the PSP in their freshman programming courses; this
provides sufficient preparation for study and use of the TSPi. The TSPi course re-
quires a great deal of time on the part of both teacher and students. In several attitu-
dinal surveys (one at the end of each increment), students overwhelmingly endorsed
the TSPi. A common complaint concerned the collection and recording of data—
although most admitted they understood its importance.

In summary, if you have struggled with how to deliver a quality software en-
gineering project course, I strongly encourage you to look at the TSPi. It provides
the guidance, direction, and support for teaching students the practice of software
engineering and preparing them for the workplace.

Thomas B. Hilburn,
Embry-Riddle Aeronautical University

STUDENT FOREWORD

To help in preparing this student foreword, Professor Tom Hilburn selected three
students from his first TSPi course at Embry-Riddle. Two of these students had
worked as coops in industry, and all three were team leaders for their teams. Tom
asked these students what they would say to their classmates when asked about
this course; the following paragraphs are excerpts from what they wrote.

Why learn TSPi? Why use it when it takes more time to fill out all the forms
than to do the project itself? These questions have very good answers. When you
learn something new, you do not want to try something so big that you cannot han-
dle it. You need to start small to get the hang of what is going on. That is how you
learn TSPi. You start with a small project that could probably be done without the
process. Once you have mastered the TSPi, you realize that it is a necessity. Al-
though the TSPi is not needed for most school assignments, it will be needed for
larger industrial projects. This is where a process like TSPi will help everyone un-
derstand how to do the project. So remember that you are just learning the process,
and the benefits of this knowledge will not show up until you are faced with a pro-
ject that cannot be cranked out at a terminal.

Most computer science students learn how to develop programs individually.
In their team projects, they would love to have a structured process to help them
in their next team experience. Team interaction is a whole new aspect of the soft-
ware process. Many issues, such as communication, trust, motivation, problem-
solving, commitment, dedication to quality, balancing workloads, allocating roles,
feelings of camaraderie, authority issues, and learning about your teammates and
how they work, are new issues that are factored into this team process. The TSPi
provides advice for handling many of these common issues. Students need to
adapt the process to their particular team situation and to learn how to handle other

issues that are not addressed. ix

