RRERAR < R\ C++ &7

PEARSON
Addison
Wesley

RERAE |

- ~ - i \\-

Eiectie SlL o

-
] 5

AR AR ol

www.infopower.com.cn

WA « RN C++ 27

Effective STL ?ﬁ:ﬁ%ﬁﬁi?fufﬂimm Standard Tempiate Library

Effective STL =)

[%] Scott Meyers %

TR LG 4 4

Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
(ISBN 0-201-74962-9)

Scott Meyers

Copyright © 2001 Addison Wesley

Original English Language Edition Published by Addison Wesley

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

FHHEIR B Pearson Education S E A 7 HARATE P EBEA (F¥. A TEHTHE R
BEHMXKERSN MEHUR. KIT.
REHBEBEFT, AELUUEM T REREDREBREAES.

A EHHESH Pearson Education B h#r%, AT & S,

SRR EFSFFICS: BF: 01-2003-2442

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

NRTHEARKMERA (FEEPEFE. UTHITBEEATEGEIK) #HERIT.

BBER®RE (CIP) XiE

Effective STL / (%) WHBTE. —BEA. —Jbp: FEE B, 2003
(R < WA C++EF))

ISBN 7-5083-1497-2

[.E. TI.3&. [IL.C#F—#EFRIt—XX IV.TP312

o AR A 1518 CIP T (2003) 35023078 5

MmN KTl
A B B BRERRE - BANC+HFFY
+ 44 Effective STL (BB
W: (3£ Scott Meyers
R & PEBEHHRH
Huhit: JERTZBRKCS MBI, 100044
Bi: (010) 88515918 {4 HE: (010) 88423191
: JLR G ENR)T
: BRI BIEERRITH
: 787X 1092 1/16 B k175
: ISBN 7-5083-1497-2
: 20035 LR B — IR
: 200345 B B —IKELRY
: 29.00 7T

N

HEFHEHABE
SR -

For Woofieland.

Preface

It came without ribbons! It came without tags!
It came without packages, boxes or bags!

— Dr. Seuss, How the Grinch Stole
Christras!, Random House, 1957

I first wrote about the Standard Template Library in 1995, when I
concluded the final Item of More Effective C++ with a brief STL over-
view. I should have known better. Shortly thereafter, I began receiving
mail asking when I'd write Effective STL.

I resisted the idea for several years. At first, [wasn’t familiar enough
with the STL to offer advice on it, but as time went on and my experi-
ence with it grew, this concern gave way to other reservations. There
was never any question that the library represented a breakthrough in
efficient and extensible design, but when it came to using the STL,
there were practical problems I couldn’t overlook. Porting all but the
simplest STL programs was a challenge, not only because library im-
plementations varied, but also because template support in the un-
derlying compilers ranged from good to awful. STL tutorials were hard
to come by, so learning “the STL way of programming” was difficult,
and once that hurdle was overcome, finding comprehensible and ac-
curate reference documentation was a challenge. Perhaps most
daunting, even the smallest STL usage error often led to a blizzard of
compiler diagnostics, each thousands of characters long, most refer-
ring to classes, functions, or templates not mentioned in the offending
source code, almost all incomprehensible. Though 1 had great admira-
tion for the STL and for the people behind it, I felt uncomfortable rec-
ommending it to practicing programmers. I wasn't sure it was possible
to use the STL effectively.

Then [began to notice something that tock me by surprise. Despite
the portability problems, despite the dismal documentation, despite
the compiler diagnostics resembling transmission line noise, many of

xii Preface Effective STL

my consulting clients were using the STL anyway. Furthermore, they
weren't just playing with it, they were using it in production code!
That was a revelation. I knew that the STL featured an elegant design,
but any library for which programmers are willing to endure portabil-
ity headaches, poor documentation, and incomprehensible error mes-
sages has a lot more going for it than just good design. For an
increasingly large number of professional programmers, 1 realized,
even a bad implementation of the STL was preferable to no implemen-
tation at all.

Furthermore, I knew that the situation regarding the STL would only
get better. Libraries and compilers would grow more conformant with
the Standard (they have), better documentation would become avail-
able (it has — consult the bibliography beginning on page 225), and
compiler diagnostics would improve (for the most part, we're still wait-
ing, but Item 49 offers suggestions for how to cope while we wait). I
therefore decided to chip in and do my part for the STL movement.
This book is the result: 50 specific ways to improve your use of C++'s
Standard Template Library.

My original plan was to write the book in the second half of 1999, and
with that thought in mind, I put together an outline. But then I
changed course. I suspended work on the book and developed an in-
troductory training course on the STL, which I then taught several
times to groups of programmers. About a year later, I returned to the
book, significantly revising the outline based on my experiences with
the training course. In the same way that my Effective C++ has been
successful by being grounded in the problems faced by real program-
mers, it's my hope that Effective STL similarly addresses the practical
aspects of STL programming — the aspects most important to profes-
sional developers.

I am always on the lookout for ways to improve my understanding of
C++. If you have suggestions for new guidelines for STL programming
or if you have comments on the guidelines in this book, please let me
know. In addition, it is my continuing goal to make this book as accu-
rate as possible, so for each error in this book that is reported to me —
be it technical, grammatical, typographical, or otherwise — 1 will, in
future printings, gladly add to the acknowledgments the name of the
first person to bring that error to my attention. Send your suggested
guidelines, your comments, and your criticisms to estl@aristeia.com.

1 maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. The list is avail-
able at the Effective STL Errata web site, http://www.aristeia.com/
BookErrata/estl1e-errata.html.

Effective STL Preface xiii

If you'd like to be notified when I make changes to this book, I encour-
age you to join my mailing list. I use the list to make announcements
likely to be of interest to people who follow my work on C++. For de-
tails, consult http://www.aristeia.com/MailingList/.

ScotT DOUGLAS MEYERS STAFFORD, OREGON
http://www.aristeia.com/ APRIL 2001

Acknowledgments

I had an enormous amount of help during the roughly two years it
took me to make some sense of the STL, create a training course on it,
and write this book. Of all my sources of assistance, two were particu-
larly important. The first is Mark Rodgers. Mark generously volun-
teered to review my training materials as [created them, and I learned
more about the STL from him than from anybody else. He also acted
as a technical reviewer for this book, again providing observations and
insights that improved virtually every Item.

The other outstanding source of information was several C++-related
Usenet newsgroups, especially comp.dang.c++.moderated (“clem™),
comp.std.c++, and microsoft.public.vc.stl. For well over a decade, I've de-
pended on the participants in newsgroups like these to answer my
questions and challenge my thinking, and it's difficult to imagine what
I'd do without them. I am deeply grateful to the Usenet community for
their help with both this book and my prior publications on C++.

My understanding of the STL was shaped by a variety of publications,
the most important of which are listed in the Bibliography. I leaned
especially heavily on Josuttis’ The C++ Standard Library [3).

This book is fundamentally a summary of insights and observations
made by others, though a few of the ideas are my own. I've tried to
keep track of where I learned what, but the task is hopeless, because
a typical Item contains information garnered from many sources over
a long period of time. What follows is incomplete, but it's the best I
can do. Please note that my goal here is to summarize where I first
learned of an idea or technique, not where the idea or technique was
originally developed or who came up with it.

In Item 1, my observation that node-based containers offer better sup-
port for transactional semantics is based on section 5.11.2 of Josuttis’
The C++ Standard Library [3]. Iitem 2 includes an example from Mark
Rodgers on how typedefs help when allocator types are changed.

xvi Acknowledgments Effective STL

Item 5 was motivated by Reeves'’ C++ Report column, “STL
Gotchas” [17]. Item 8 sprang from Item 37 in Sutter's Exceptional
C++ [8], and Kevlin Henney provided important details on how con-
tainers of auto_ptrs fail in practice. In Usenet postings, Matt Austern
provided examples of when allocators are useful, and I include his ex-
amples in Item 11. Item 12 is based on the discussion of thread safety
at the SGI STL web site [21]. The material in Item 13 on the perfor-
mance implications of reference counting in a multithreaded environ-
ment is drawn from Sutter's writings on this topic [20]. The idea for
Item 15 came from Reeves’ C++ Report column, “Using Standard string
in the Real World, Part 2.” [18]. In Item 16, Mark Rodgers came up
with the technique I show for having a C API write data directly into a
vector. Item 17 includes information from Usenet postings by Siemel
Naran and Carl Barron. I stole Item 18 from Sutter’s C++ Report col-
umn, “When Is a Container Not a Container?” [12]. In Item 20, Mark
Rodgers contributed the idea of transforming a pointer into an object
via a dereferencing functor, and Scott Lewandowski came up with the
version of Dereferenceless I present. Item 21 originated in a Doug Har-
rison posting to microsoft.public.vc.stl, but the decision to restrict the
focus of that Item to equality was mine. I based Item 22 on Sutter’s
C++ Report column, “Standard Library News: sets and maps” [13];
Matt Austern helped me understand the status of the Standardization
Committee's Library Issue #103. Item 23 was inspired by Austern’s
C++ Report article, “Why You Shouldn’t Use set — and What to Use
Instead” [15]; David Smallberg provided a neat refinement for my im-
plementation of DataCompare. My description of Dinkumware’s hashed
containers is based on Plauger's C/C++ Users Journal column, “Hash
Tables” [16]. Mark Rodgers doesn't agree with the overall advice of
Item 26, but an early motivation for that Item was his observation
that some container member functions accept only arguments of type
iterator. My treatment of Item 29 was motivated and informed by
Usenet discussions involving Matt Austern and James Kanze; 1 was
also influenced by Kreft and Langer's C++ Report article, “A Sophisti-
cated Implementation of User-Defined Inserters and Extractors” [25].
Item 30 is due to a discussion in section 5.4.2 of Josuttis’ The C++
Standard Library [3]. In Item 31, Marco Dalla Gasperina contributed
the example use of nth_element to calculate medians, and use of that
algorithm for finding percentiles comes straight out of section 18.7.1
of Stroustrup’s The C++ Programming Language [7]. Item 32 was influ-
enced by the material in section 5.6.1 of Josuttis’ The C++ Standard
Library [3]. Item 35 originated in Austern’s C++ Report column “How
to Do Case-Insensitive String Comparison” {11], and James Kanze's
and John Potter's clcm postings helped me refine my understanding of
the issues involved. Stroustrup's implementation for copy_if, which 1

Effective STL Acknowledgments xvii

show in Item 36, is from section 18.6.1 of his The C++ Programming
Language [7]. Itemn 39 was largely motivated by the publications of Jo-
suttis, who has written about “stateful predicates” in his The C++
Standard Library [3], in Standard Library Issue #92, and in his C++
Report article, “Predicates vs. Function Objects” [14]. In my treatment,
I use his example and recommend a solution he has proposed, though
the use of the term “pure function” is my own. Matt Austern con-
firmed my suspicion in Item 41 about the history of the terms
mem_fun and mem_fun_ref. Item 42 can be traced to a lecture I got
from Mark Rodgers when I considered violating that guideline. Mark
Rodgers is also responsible for the insight in Item 44 that non-mem-
ber searches over maps and multimaps examine both components of
each pair, while member searches examine only the first (key) compo-
nent. Item 45 contains information from various clcm contributors, in-
cluding John Potter, Marcin Kasperski, Pete Becker, Dennis Yelle, and
David Abrahams. David Smallberg alerted me to the utility of
equal_range in performing equivalence-based searches and counts
over sorted sequence containers. Andrei Alexandrescu helped me un-
derstand the conditions under which “the reference-to-reference prob-
lem” I describe in Item 50 arises, and [modeled my exampie of the
problem on a similar example provided by Mark Rodgers at the Boost
Web Site [22].

Credit for the material in Appendix A goes to Matt Austern, of course.
I'm grateful that he not only gave me permission to include it in this
book, he also tweaked it to make it even better than the original.

Good technical books require a thorough pre-publication vetting, and
I was fortunate to benefit from the insights of an unusually talented
group of technical reviewers. Brian Kernighan and Cliff Green offered
early comments on a partial draft, and complete versions of the manu-
script were scrutinized by Doug Harrison, Brian Kernighan, Tim
Johnson, Francis Glassborow, Andrei Alexandrescu, David Smallberg,
Aaron Campbell, Jared Manning, Herb Sutter, Stephen Dewhurst,
Matt Austern, Gillmer Derge, Aaron Moore, Thomas Becker, Victor
Von, and, of course, Mark Rodgers. Katrina Avery did the copyediting.

One of the most challenging parts of preparing a book is finding good
technical reviewers. 1 thank John Potter for introducing me to Jared
Manning and Aaron Campbell.

Herb Sutter kindly agreed to act as my surrogate in compiling, run-
ning, and reporting on the behavior of some STL test programs under
a beta version of Microsoft's Visual Studio .NET, while Leor Zolman
undertook the herculean task of testing all the code in this book. Any
errors that remain are my fault, of course, not Herb's or Leor's.

xviii Acknowledgments Effective STL

Angelika Langer opened my eyes to the indeterminate status of some
aspects of STL function objects. This book has less to say about func-
tion objects than it otherwise might, but what it does say is more
likely to remain true. At least I hope it is.

This printing of the book is better than earlier printings, because 1
was able to address problems identified by the following sharp-eyed
readers: Jon Webb, Michael Hawkins, Derek Price, Jim Scheller, Carl
Manaster, Herb Sutter, Albert Franklin, George King, Dave Miller,
Harold Howe, John Fuller, Tim McCarthy, John Hershberger, Igor
Mikolic-Torreira, Stephan Bergmann, Robert Allan Schwartz, John
Potter, David Grigsby, Sanjay Pattni, Jesper Andersen, Jing Tao
Wang, André Blavier, Dan Schmidt, Bradley White, Adam Petersen,
Wayne Goertel, and Gabriel Netterdag. I'm grateful for their help in
improving Effective STL.

My collaborators at Addison-Wesley included John Wait (my editor
and now a senior VP), Alicia Carey and Susannah Buzard (his assis-
tants n and n+1), John Fuller (the production coordinator), Karin
Hansen (the cover designer), Jason Jones (all-around technical guru,
especially with respect to the demonic software spewed forth by
Adobe), Marty Rabinowitz {their boss, but he works, too), and Curt
Johnson, Chanda Leary-Coutu, and Robin Bruce (all marketing peo-
ple, but still very nice}.

Abbi Staley made Sunday lunches a routinely pleasurable experience.

As she has for the six books and one CD that came before it, my wife,
Nancy, tolerated the demands of my research and writing with her
usual forbearance and offered me encouragement and support when I
needed it most. She never fails to remind me that there's more to life
than C++ and software.

And then there’s our dog, Persephone. As I write this, it is her sixth
birthday. Tonight, she and Nancy and 1 will visit Baskin-Robbins for
ice cream. Persephone will have vanilla. One scoop. In a cup. To go.

Effective STL

Preface

Contents

Acknowledgments

Introduction

Chapter

Item 1:
Item 2:
Item 3:

Item 4:
Item 5:

Item 6:
Item 7:

Item 8:
Item 9:
Item 10:
Item 11:
Item 12:

Chapter

Item 13:
Item 14:
Item 15:

1: Containers

Choose your containers with care.
Beware the illusion of container-independent code.

Make copying cheap and correct for objects
in containers.

Call empty instead of checking size{) against zero.

Prefer range member functions to their single-element
counterparts.

Be alert for C++'s most vexing parse.

When using containers of newed pointers, remember to
delete the pointers before the container is destroyed.

Never create containers of auto_ptrs.

Choose carefully among erasing options.

Be aware of allocator conventions and restrictions.
Understand the legitimate uses of custom allocators.

Have realistic expectations about the thread safety
of STL containers.

2: vector and string

Prefer vector and string to dynamically allocated arrays.
Use reserve to avoid unnecessary reallocations.
Be aware of variations in string implementations.

B

11

11
15

20
23

24
33

36
40
43
48
54

58

63

63
66
68

wviii Contents

Item 16:
Item 17:
Item 18:

Chapter
Item 19:

Item 20:
Item 21:

Item 22:
Item 23:

Item 24:

Item 25:

Chapter
Item 26:

Item 27:
Item 28:

Item 29:

Chapter

Item 30:
Item 31:
Item 32:

Item 33:

Item 34:
Item 35:

Item 36:

Know how to pass vector and string data to legacy APIs.

Use “the swap trick” to trim excess capacity.
Avoid using vector<bool>.
3: Associative Containers

Understand the difference between equality and
equivalence.

Specify comparison types for associative containers

of pointers.

Always have comparison functions return false for
equal values.

Avoid in-place key modification in set and multiset.

Consider replacing associative containers with
sorted vectors.

Choose carefully between map:operator[] and
map:insert when efficiency is important.

Familiarize yourself with the nonstandard hashed
containers.

4: Iterators

Prefer iterator to const_iterator, reverse_iterator, and
const_reverse_iterator.

Use distance and advance to convert a container’s
const_iterators to iterators.

Understand how to use a reverse_iterator’s base iterator.
Consider istreambuf_iterators for character-by-character

input.

5: Algorithms

Make sure destination ranges are big enough.
Know your sorting options.

Follow remove-like algorithms by erase if you really
want to remove something.

Be wary of remove-like algorithms on containers of
pointers.

Note which algorithms expect sorted ranges.
Implement simple case-insensitive string

comparisons via mismatch or lexicographical_compare.

Understand the proper implementation of copy_if.

Effective STL

74
77
79

83

83

88

92
95

100

106

111

116

116

120
123

126

128

129
133

139

143
146

150
154

Effective STL Contents

Item 37:

Chapter

Item 38:
Item 39:
Item 40:
Item 41:

Item 42:

Chapter

Item 43:
Item 44:

Item 45;
Item 46:

Item 47:
Item 48:
Item 49:
Item 50:

Use accumulate or for_each to summarize ranges.

6: Functors, Functor Classes,
Functions, etc.

Design functor classes for pass-by-value.
Make predicates pure functions.
Make functor classes adaptable.

Understand the reasons for ptr_fun, mem_fun, and
mem_fun_ref.

Make sure less<T> means operator<.

7: Programming with the STL

Prefer algorithm calls to hand-written loops.

Prefer member functions to algorithms with the
same names.

Distinguish among count, find, binary_search,
lower_bound, upper_bound, and equal_range.

Consider function objects instead of functions as
algorithm parameters.

Avoid producing write-only code.

Always #include the proper headers.

Learn to decipher STL-related compiler diagnostics.
Familiarize yourself with STL-related web sites.

Bibliography

Appendix A: Locales and Case-Insensitive

String Comparisons

Appendix B: Remarks on Microsoft’s

Index

STL Platforms

ix

156

162

162
166
169

173
177

181
181

190

192

201
206
209
210
217

225

229

239

245

Introduction

You're already familiar with the STL. You know how to create contain-
ers, iterate over their contents, add and remove elements, and apply
common algorithms, such as find and sort. But you're not satisfied.
You can’t shake the sensation that the STL offers more than you're
taking advantage of. Tasks that should be simple aren't. Operations
that should be straightforward leak resources or behave erratically.
Procedures that should be efficient demand more time or memory
than you're willing to give them. Yes, you know how to use the STL,
but you're not sure you're using it effectively.

I wrote this book for you.

In Effective STL, 1 explain how to combine STL components to take full
advantage of the library’s design. Such information allows you to de-
velop simple, straightforward solutions to simple, straightforward
problems, and it also helps you design elegant approaches to more
complicated problems. I describe common STL usage errors, and I
show you how to avoid them. That helps you dodge resource leaks,
code that won't port, and behavior that is undefined. I discuss ways to
optimize your code, so you can make the STL perform like the fast,
sleek machine it is intended to be.

The information in this book will make you a better STL programmer.
It will make you a more productive programmer. And it will make you
a happier programmer. Using the STL is fun, but using it effectively is
outrageous fun, the kind of fun where they have to drag you away
from the keyboard, because you just can't believe the good time you're
having. Even a cursory glance at the STL reveals that it is a won-
drously cool library, but the coolness runs broader and deeper than
you probably imagine. One of my primary goals in this book is to con-
vey to you just how amazing the library is, because in the nearly 30
years ['ve been programming, I've never seen anything like the STL.
You probably haven't either.

2 Introduction Effective STL

Defining, Using, and Extending the STL

There is no official definition of “the STL,” and different people mean
different things when they use the term. In this book, “the STL”
means the parts of C++'s Standard Library that work with iterators.
That includes the standard containers (including string), parts of the
iostream library, function objects, and algorithms. It excludes the
standard container adapters (stack, queue, and priority_queue) as well
as the containers bitset and valarray, because they lack iterator sup-
port. It doesn't include arrays, either. True, arrays support iterators in
the form of pointers, but arrays are part of the C++ language, not the
library.

Technically, my definition of the STL excludes extensions of the stan-
dard C++ library, notably hashed containers, singly linked lists, ropes,
and a variety of nonstandard function objects. Even so, an effective
STL programmer needs to be aware of such extensions, so I mention
them where it’s appropriate. Indeed, Item 25 is devoted to an overview
of nonstandard hashed containers. They're not in the STL now, but
something similar to them is almost certain to make it into the next
version of the standard C++ library, and there’s value in glimpsing the
future.

One of the reasons for the existence of STL extensions is that the STL
is a library designed to be extended. In this book, however, I focus on
using the STL, not on adding new components to it. You'll find, for ex-
ample, that I have little to say about writing your own algorithms, and
I offer no guidance at all on writing new containers and iterators. I be-
lieve that it's important to master what the STL already provides be-
fore you embark on increasing its capabilities, so that's what I focus
on in Effective STL. When you decide to create your own STLesque
components, you'll find advice on how to do it in books like Josuttis’
The C++ Standard Library [3] and Austern’'s Generic Programming and
the STL [4]. One aspect of STL extension I do discuss in this book is
writing your own function objects. You can't use the STL effectively
without knowing how to do that, so I've devoted an entire chapter to
the topic (Chapter 6).

Citations

The references to the books by Josuttis and Austern in the preceding
paragraph demonstrate how I handle bibliographic citations. In gen-
eral, I try to mention enough of a cited work to identify it for people
who are already familiar with it. If you already know about these au-
thors’ books. for example, you don't have to turn to the Bibliography
to find out that [3] and [4] refer to books you already know. If you're

