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Preface

It came without ribbons! It came without tags!
It came without packages, boxes or bags!

— Dr. Seuss, How the Grinch Stole
Christras!, Random House, 1957

I first wrote about the Standard Template Library in 1995, when I
concluded the final Item of More Effective C++ with a brief STL over-
view. I should have known better. Shortly thereafter, I began receiving
mail asking when I'd write Effective STL.

I resisted the idea for several years. At first, [ wasn’t familiar enough
with the STL to offer advice on it, but as time went on and my experi-
ence with it grew, this concern gave way to other reservations. There
was never any question that the library represented a breakthrough in
efficient and extensible design, but when it came to using the STL,
there were practical problems I couldn’t overlook. Porting all but the
simplest STL programs was a challenge, not only because library im-
plementations varied, but also because template support in the un-
derlying compilers ranged from good to awful. STL tutorials were hard
to come by, so learning “the STL way of programming” was difficult,
and once that hurdle was overcome, finding comprehensible and ac-
curate reference documentation was a challenge. Perhaps most
daunting, even the smallest STL usage error often led to a blizzard of
compiler diagnostics, each thousands of characters long, most refer-
ring to classes, functions, or templates not mentioned in the offending
source code, almost all incomprehensible. Though 1 had great admira-
tion for the STL and for the people behind it, I felt uncomfortable rec-
ommending it to practicing programmers. I wasn't sure it was possible
to use the STL effectively.

Then [ began to notice something that tock me by surprise. Despite
the portability problems, despite the dismal documentation, despite
the compiler diagnostics resembling transmission line noise, many of
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my consulting clients were using the STL anyway. Furthermore, they
weren't just playing with it, they were using it in production code!
That was a revelation. I knew that the STL featured an elegant design,
but any library for which programmers are willing to endure portabil-
ity headaches, poor documentation, and incomprehensible error mes-
sages has a lot more going for it than just good design. For an
increasingly large number of professional programmers, 1 realized,
even a bad implementation of the STL was preferable to no implemen-
tation at all.

Furthermore, I knew that the situation regarding the STL would only
get better. Libraries and compilers would grow more conformant with
the Standard (they have), better documentation would become avail-
able (it has — consult the bibliography beginning on page 225), and
compiler diagnostics would improve (for the most part, we're still wait-
ing, but Item 49 offers suggestions for how to cope while we wait). I
therefore decided to chip in and do my part for the STL movement.
This book is the result: 50 specific ways to improve your use of C++'s
Standard Template Library.

My original plan was to write the book in the second half of 1999, and
with that thought in mind, I put together an outline. But then I
changed course. I suspended work on the book and developed an in-
troductory training course on the STL, which I then taught several
times to groups of programmers. About a year later, I returned to the
book, significantly revising the outline based on my experiences with
the training course. In the same way that my Effective C++ has been
successful by being grounded in the problems faced by real program-
mers, it's my hope that Effective STL similarly addresses the practical
aspects of STL programming — the aspects most important to profes-
sional developers.

I am always on the lookout for ways to improve my understanding of
C++. If you have suggestions for new guidelines for STL programming
or if you have comments on the guidelines in this book, please let me
know. In addition, it is my continuing goal to make this book as accu-
rate as possible, so for each error in this book that is reported to me —
be it technical, grammatical, typographical, or otherwise — 1 will, in
future printings, gladly add to the acknowledgments the name of the
first person to bring that error to my attention. Send your suggested
guidelines, your comments, and your criticisms to estl@aristeia.com.

1 maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. The list is avail-
able at the Effective STL Errata web site, http://www.aristeia.com/
BookErrata/estl1e-errata.html.
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If you'd like to be notified when I make changes to this book, I encour-
age you to join my mailing list. I use the list to make announcements
likely to be of interest to people who follow my work on C++. For de-
tails, consult http://www.aristeia.com/MailingList/.

ScotT DOUGLAS MEYERS STAFFORD, OREGON
http://www.aristeia.com/ APRIL 2001
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Introduction

You're already familiar with the STL. You know how to create contain-
ers, iterate over their contents, add and remove elements, and apply
common algorithms, such as find and sort. But you're not satisfied.
You can’t shake the sensation that the STL offers more than you're
taking advantage of. Tasks that should be simple aren't. Operations
that should be straightforward leak resources or behave erratically.
Procedures that should be efficient demand more time or memory
than you're willing to give them. Yes, you know how to use the STL,
but you're not sure you're using it effectively.

I wrote this book for you.

In Effective STL, 1 explain how to combine STL components to take full
advantage of the library’s design. Such information allows you to de-
velop simple, straightforward solutions to simple, straightforward
problems, and it also helps you design elegant approaches to more
complicated problems. I describe common STL usage errors, and I
show you how to avoid them. That helps you dodge resource leaks,
code that won't port, and behavior that is undefined. I discuss ways to
optimize your code, so you can make the STL perform like the fast,
sleek machine it is intended to be.

The information in this book will make you a better STL programmer.
It will make you a more productive programmer. And it will make you
a happier programmer. Using the STL is fun, but using it effectively is
outrageous fun, the kind of fun where they have to drag you away
from the keyboard, because you just can't believe the good time you're
having. Even a cursory glance at the STL reveals that it is a won-
drously cool library, but the coolness runs broader and deeper than
you probably imagine. One of my primary goals in this book is to con-
vey to you just how amazing the library is, because in the nearly 30
years ['ve been programming, I've never seen anything like the STL.
You probably haven't either.
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Defining, Using, and Extending the STL

There is no official definition of “the STL,” and different people mean
different things when they use the term. In this book, “the STL”
means the parts of C++'s Standard Library that work with iterators.
That includes the standard containers (including string), parts of the
iostream library, function objects, and algorithms. It excludes the
standard container adapters (stack, queue, and priority_queue) as well
as the containers bitset and valarray, because they lack iterator sup-
port. It doesn't include arrays, either. True, arrays support iterators in
the form of pointers, but arrays are part of the C++ language, not the
library.

Technically, my definition of the STL excludes extensions of the stan-
dard C++ library, notably hashed containers, singly linked lists, ropes,
and a variety of nonstandard function objects. Even so, an effective
STL programmer needs to be aware of such extensions, so I mention
them where it’s appropriate. Indeed, Item 25 is devoted to an overview
of nonstandard hashed containers. They're not in the STL now, but
something similar to them is almost certain to make it into the next
version of the standard C++ library, and there’s value in glimpsing the
future.

One of the reasons for the existence of STL extensions is that the STL
is a library designed to be extended. In this book, however, I focus on
using the STL, not on adding new components to it. You'll find, for ex-
ample, that I have little to say about writing your own algorithms, and
I offer no guidance at all on writing new containers and iterators. I be-
lieve that it's important to master what the STL already provides be-
fore you embark on increasing its capabilities, so that's what I focus
on in Effective STL. When you decide to create your own STLesque
components, you'll find advice on how to do it in books like Josuttis’
The C++ Standard Library [3] and Austern’'s Generic Programming and
the STL [4]. One aspect of STL extension I do discuss in this book is
writing your own function objects. You can't use the STL effectively
without knowing how to do that, so I've devoted an entire chapter to
the topic (Chapter 6).

Citations

The references to the books by Josuttis and Austern in the preceding
paragraph demonstrate how I handle bibliographic citations. In gen-
eral, I try to mention enough of a cited work to identify it for people
who are already familiar with it. If you already know about these au-
thors’ books. for example, you don't have to turn to the Bibliography
to find out that [3] and [4] refer to books you already know. If you're



