FRRRAE « XHLTERT

PEARSON
—

Addison
Wesley

Test—Driven Development
By Example

i g0k sl T A

(5 EIAR)

FEFEE

Software Development

Productivity 22

[%] KentBeck %

IT)‘**"'I i R AT A BRI R T 4 R % -
EVELOPMENT

U IR T & P RAH BORKMERE o
MIRETZ OIS A Kent Beck X—H1E ®

U e

m
. 4 AW A Y
WWW. |nfopower com

1' I.'lrl'. B Ivackapemme

Hﬂ*ﬂ*ﬁh}[ﬂ:

| IR

| | | | | N | | N N II
|| | | H B EEER II
| | | H = | |
Pk
me B

MR - G TRRRT

Test—Driven Development
By Example

3 90 2l I %

(B EAR)

[€] KentBeck %

TR RS G Mk L

Test-Driven Development: By Example (ISBN 0-321-14653-0)

Kent Beck

Copyright © 2003 Addison Wesley , Inc.

Original English Language Edition Published by Addison Wesley longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A BREER B Pearson Education #BUP E B R ZETEER (B, B HFIWTBEKA
SRR EHE. BIT.
KEHREBEEFT, FEUMEMFRAEHEPZERBWTE TS

A A3# WG # Pearson Education GEAE#E HRER) AR HIRE, LHEEFBHE.
For sale and distribution in the People’s Republic of China exclusively(except Taiwan, Hong Kong
SAR and Macao SAR)

ﬁ(l‘ﬁ?#ﬂﬂé)\%&%ﬂ@iﬁm AEBETEER. BIFNITEXANTEGEX) #HERT
RN EEESTRRIES: BT : 01-2003-3825

BEERSE (CIP) iR

WREEHF LR/ () NRE. —BHA —dLiR: PEEHKME, 2003
(FERRRE « K TERFD

ISBN 7-5083-1401-8

@ L0 NL#&#EFR-FL N.TP31L52

b ERR A B 508 CIP BB (2003) 3 048302 5

MG S

A B A FRRAR - RETERT

¥ & AREHAR (RO

% ¥ (£) KentBeck

H R & hEEHHE]
ik ERW=EmAK6S MWHEMG: 100044
fiE: (010) 88515918 {4H: (010) 88518169

B ALt eV

ZA: 787X 1092 1/16 B 3: 155

#: ISBN 7-5083-1401-8

’: 20034FE HILHE—R

K 200348 A% —IEIR

#: 32.00 7T

e HE

Preface

Clean code that works, in Ron Jeffries’ pithy phrase, is the goal of Test-Driven
Development (TDD). Clean code that works is a worthwhile goal for a whole
bunch of reasons.

¢ It is a predictable way to develop. You know when you are finished, with-
out having to worry about a long bug trail.

¢ It gives you a chance to learn all of the lessons that the code has to teach
you. If you only slap together the first thing you think of, then you never
have time to think of a second, better thing.

* It improves the lives of the users of your software.
* It lets your teammates count on you, and you on them.
¢ It feels good to write it.

But how do we get to clean code that works? Many forces drive us away
from clean code, and even from code that works. Without taking too much
counsel of our fears, here’s what we do: we drive development with automated

tests, a style of development called Test-Driven Development (TDD). In Test-
Driven Development, we

¢ Write new code only if an automated test has failed
* Eliminate duplication

These are two simple rules, but they generate complex individual and group
behavior with technical implications such as the following.

* We must design organically, with running code providing feedback
between decisions.

* We must write our own tests, because we can’t wait 20 times per day for
someone else to write a test.

PREFACE

® Our development environment must provide rapid response to small
changes.

* Qur designs must consist of many highly cohesive, loosely coupled compo-
nents, just to make testing easy.

The two rules imply an order to the tasks of programming.

1. Red—Write a little test that doesn’t work, and perhaps doesn’t even com-
pile at first.

2. Green—Make the test work quickly, committing whatever sins necessary in
the process.

3. Refactor—Eliminate all of the duplication created in merely getting the test
to work.

Red/green/refactor—the TDD mantra.

Assuming for the moment that such a programming style is possible, it fur-
ther might be possible to dramatically reduce the defect density of code and
make the subject of work crystal clear to all involved. If so, then writing only
that code which is demanded by failing tests also has social implications.

¢ If the defect density can be reduced enough, then quality assurance (QA)
can shift from reactive work to proactive work.

* If the number of nasty surprises can be reduced enough, then project man-
agers can estimate accurately encugh to involve real customers in daily
development.

* If the topics of technical conversations can be made clear enough, then
software engineers can work in minute-by-minute collaboration instead of
daily or weekly collaboration.

s Again, if the defect density can be reduced enough, then we can have ship-
pable software with new functionality every day, leading to new business
relationships with customers.

So the concept is simple, but what’s my motivation? Why would a software
engineer take on the additional work of writing automated tests? Why would a
software engineer work in tiny little steps when his or her mind is capable of
great soaring swoops of design? Courage.

PREFACE

Courage

Test-driven development is a way of managing fear during programming. I
don’t mean fear in a bad way—pow widdle prwogwammew needs a pacifiew—
but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-
the-beginning sense. If pain is nature’s way of saying “Stop!” then fear is
nature’s way of saying “Be careful.” Being careful is good, but fear has a host of
other effects.

Fear makes you tentative.

Fear makes you want to communicate less.
¢ Fear makes you shy away from feedback.

* Fear makes you grumpy.

None of these effects are helpful when programming, especially when pro-

gramming something hard. So the question becomes how we face a difficult sit-
uation and,

¢ Instead of being tentative, begin learning concretely as quickly as possible.
¢ Instead of clamming up, communicate more clearly.
e Instead of avoiding feedback, search out helpful, concrete feedback.

e {You’ll have to work on grumpiness on your own.)

Imagine programming as turning a crank to pull a bucket of water from a
well. When the bucket is small, a free-spinning crank is fine. When the bucket is
big and full of water, you’re going to get tired before the bucket is all the way
up. You need a ratchet mechanism to enable you to rest between bouts of
cranking. The heavier the bucket, the closer the teeth need to be on the ratchet.

The tests in test-driven development are the teeth of the ratchet. Once we get
one test working, we know it is working, now and forever. We are one step
closer to having everything working than we were when the test was broken.
Now we get the next one working, and the next, and the next. By analogy, the
tougher the programming problem, the less ground that each test should cover.

Readers of my book Extreme Programming Explained will notice a difference
in tone between Extreme Programming (XP) and TDD. TDD isn’t an absolute the

PREFACE

way that XP is. XP says, “Here are things you must be able to do to be prepared
to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap
between decision and feedback during programming, and techniques to control
that gap. “What if I do a paper design for a week, then test-drive the code? Is that
TDD?” Sure, it’s TDD. You were aware of the gap between decision and feed-
back, and you controlled the gap deliberately.

That said, most people who learn TDD find that their programming practice
changed for good. Test Infected is the phrase Erich Gamma coined to describe
this shift. You might find yourself writing more tests earlier, and working in
smaller steps than you ever dreamed would be sensible. On the other hand,
some software engineers learn TDD and then revert to their earlier practices,
reserving TDD for special occasions when ordinary programming isn’t making
progress.

There certainly are programming tasks that can’t be driven solely by tests (or
at least, not yet). Security software and concurrency, for example, are two top-
ics where TDD is insufficient to mechanically demonstrate that the goals of the
software have been met. Although it’s true that security relies on essentially
defect-free code, it also relies on human judgment about the methods used to
secure the software. Subtle concurrency problems can’t be reliably duplicated
by running the code.

Once you are finished reading this book, you should be ready to

* Start simply
o Write automated tests

¢ Refactor to add design decisions one at a time
This book is organized in three parts.

¢ Part I, The Money Example—An example of typical model code written
using TDD. The example is one I got from Ward Cunningham years ago
and have used many times since: multi-currency arithmetic. This example
will enable you to learn to write tests before code and grow a design
organically.

e Part I, The xUnit Example—An example of testing more complicated
logic, including reflection and exceptions, by developing a framework for
automated testing. This example also will introduce you to the xUnit
architecture that is at the heart of many programmer-oriented testing
tools. In the second example, you will learn to work in even smaller steps

PREFACE

than in the first example, including the kind of self-referential hoo-ha
beloved of computer scientists.

¢ Part III, Patterns for Test-Driven Development—Included are patterns for
deciding what tests to write, how to write tests using xUnit, and a greatest-
hits selection of the design patterns and refactorings used in the examples.

I wrote the examples imagining a pair programming session. If you like look-
ing at the map before wandering around, then you may want to go straight to
the patterns in Part Il and use the examples as illustrations. If you prefer just
wandering around and then looking at the map to see where you’ve been, then
try reading through the examples, referring to the patterns when you want
more detail about a technique, and using the patterns as a reference. Several
reviewers of this book commented they got the most out of the examples when
they started up a programming environment, entered the code, and ran the tests
as they read.

A note about the examples. Both of the examples, multi-currency calculation
and a testing framework, appear simple. There are (and I have seen) compli-
cated, ugly, messy ways of solving the same problems. I could have chosen one
of those complicated, ugly, messy solutions, to give the book an air of “reality.”
However, my goal, and I hope your goal, is to write clean code that works.
Before teeing off on the examples as being too simple, spend 15 seconds imagin-
ing a programming world in which all code was this clear and direct, where
there were no complicated solutions, only apparently complicated problems

begging for careful thought. TDD can help you to lead yourself to exactly that
carefu} thought.

Acknowledgments

Thanks to all of my many brutal and opinionated reviewers. 1 take full respon-
sibility for the contents, but this book would have been much less readable and
much less useful without their help. In the order in which I typed them, they
were: Steve Freeman, Frank Westphal, Ron Jeffries, Dierk Konig, Edward Hie-
att, Tammo Freese, Jim Newkirk, Johannes Link, Manfred L.ange, Steve Hayes,
Alan Francis, Jonathan Rasmusson, Shane Clauson, Simon Crase, Kay Pente-
cost, Murray Bishop, Ryan King, Bill Wake, Edmund Schweppe, Kevin
Lawrence, John Carter, Phlip, Peter Hansen, Ben Schroeder, Alex Chaffee, Peter
van Rooijen, Rick Kawala, Mark van Hamersveld, Doug Swartz, Laurent
Bossavit, Ilja Preuf, Daniel Le Berre, Frank Carver, Justin Sampson, Mike
Clark, Christian Pekeler, Karl Scotland, Carl Manaster, J. B. Rainsberger, Peter
Lindberg, Darach Ennis, Kyle Cordes, Justin Sampson, Patrick Logan, Darren
Hobbs, Aaron Sansone, Syver Enstad, Shinobu Kawai, Erik Meade, Patrick
Logan, Dan Rawsthorne, Bill Rutiser, Fric Herman, Paul Chisholm, Asim Jalis,
Ivan Moore, Levi Purvis, Rick Mugridge, Anthony Adachi, Nigel Thorne, John
Bley, Kari Hoijarvi, Manuel Amago, Kaoru Hosokawa, Pat Eyler, Ross Shaw,
Sam Gentle, Jean Rajotte, Phillipe Antras, and Jaime Nino.

To all of the programmers I've test-driven code with, I certainly appreciate
your patience going along with what was a pretty crazy sounding idea, espe-
cially in the early years. 've learned far more from you all than I could ever
think of myself. Not wishing to offend everyone else, but Massimo Arnoldi,
Ralph Beattie, Ron Jeffries, Martin Fowler, and last but certainly not least Erich
Gamma stand out in my memory as test drivers from whom I’ve learned much.

I would like to thank Martin Fowler for timely FrameMaker help. He must
be the highest-paid typesetting consultant on the planet, but fortunately he has
let me (so far) run a tab.

My life as a real programmer started with patient mentoring from and con-
tinuing collaboration with Ward Cunningham. Sometimes I see Test-Driven

ACKNOWLEDGMENTS

Development (TDD) as an attempt to give any software engineer, working in
any environment, the sense of comfort and intimacy we had with our Smalltalk
environment and our Smalltalk programs. There is no way to sort out the
source of ideas once two people have shared a brain. If you assume that all of
the good ideas here are Ward’s, then you won’t be far wrong.

It is a bit cliché to recognize the sacrifices a family makes once one of its
members catches the peculiar mental affliction that results in a book. That’s
because family sacrifices are as necessary to book writing as paper is. To my
children, who waited breakfast until I could finish a chapter, and most of all to
my wife, who spent two months saying everything three times, my most-pro-
found and least-adequate thanks.

Thanks to Mike Henderson for gentle encouragement and to Marcy Barnes
for riding to the rescue,

Finally, to the unknown author of the book which I read as a weird 12-year-
old that suggested you type in the expected output tape from a real input tape,
then code until the actual results matched the expected result, thank you, thank
you, thank you.

Introduction

Early one Friday, the boss came to Ward Cunningham to introduce him to
Peter, a prospective customer for WyCash, the bond portfolio management sys-
tem the company was selling. Peter said, “I'm very impressed with the function-
ality I see. However, I notice you only handle U.S. dollar denominated bonds.
I’'m starting a new bond fund, and my strategy requires that I handle bonds in
different currencies.” The boss turned to Ward, “Well, can we do it?”

Here is the nightmarish scenario for any software designer. You were cruising
along happily and successfully with a set of assumptions. Suddenly, everything
changed. And the nightmare wasn’t just for Ward. The boss, an experienced
hand at directing software development, wasn’t sure what the answer was going
to be.

A small team had developed WyCash over the course of a couple of years.
The system was able to handle most of the varieties of fixed income securities
commonly found on the U.S. market, and a few exotic new instruments, like
Guaranteed Investment Contracts, that the competition couldn’t handle.

WyCash had been developed all along using objects and an object database.
The fundamental abstraction of computation, Dollar, had been outsourced at the
beginning to a clever group of software engineers. The resulting object com-
bined formatting and calculation responsibilities.

For the past six months, Ward and the rest of the team had been slowly
divesting Dollar of its responsibilities. The Smalltalk numerical classes turned
out to be just fine at calculation. All of the tricky code for rounding to three
decimal digits got in the way of producing precise answers. As the answers
became more precise, the complicated mechanisms in the testing framework for
comparison within a certain tolerance were replaced by precise matching of
expected and actual results.

Responsibility for formatting actually belonged in the user interface classes.
As the tests were written at the level of the user interface classes, in particular

Xvii

INTRODUCTION

the report framework,! these tests didn’t have to change to accommodate this
refinement. After six months of careful paring, the resulting Dollar didn’t have
much responsibility left.

One of the most complicated algorithms in the system, weighted average,
likewise had been undergoing a slow transformation. At one time, there had
been many different variations of weighted average code scattered throughout
the system. As the report framework coalesced from the primordial object soup,
it was obvious that there could be one home for the algorithm, in AveragedColumn.

It was to AveragedColumn that Ward now turned. If weighted averages could be
made multi-currency, then the rest of the system should be possible. At the
heart of the algorithm was keeping a count of the money in the column. In fact,
the algorithm had been abstracted enough to calculate the weighted average of
any object that could act arithmetically. One could have weighted averages of
dates, for example.

The weekend passed with the usual weekend activities. Monday morning the
boss was back. “Can we do it?”

“Give me another day, and I'll tell you for sure.”

Dollar acted like a counter in weighted average; therefore, in order to calcu-
late in multiple currencies, they needed an object with a counter per currency,
kind of like a polynomial. Instead of 3x* and 4y®, however, the terms would be
15 USD and 200 CHF.

A quick experiment showed that it was possible to compute with a generic
Currency object instead of a Dollar, and return a PolyCurrency when two unlike cur-
rencies were added together. The trick now was to make space for the new
functionality without breaking anything that already worked. What would hap-
pen if Ward just ran the tests?

After the addition of a few unimplemented operations to Currency, the bulk of
the tests passed. By the end of the day, all of the tests were passing. Ward
checked the code into the build and went to the boss. “We can do it,” he said
confidently.

Let’s think a bit about this story. In two days, the potential market was mul-
tiplied several fold, multiplying the value of WyCash several fold. The ability to
create so much business value so quickly was no accident, however. Several fac-
tors came into play.

® Method—Ward and the WyCash team needed to have constant experience
growing the design of the system, little by little, so the mechanics of the
transformation were well practiced.

1. For more about the report framework, refer to c2.com/doc/oopsla%1.html.

INTRODUCTION

* Motive—Ward and his team needed to understand clearly the business
importance of making WyCash multi-currency, and to have the courage to
start such a seemingly impossible task.

* Opportunity—The combination of comprehensive, confidence-generating
tests; a well-factored program; and a programming language that made it
possible to isolate design decisions meant that there were few sources of
error, and those errors were easy to identify.

You can’t control whether you ever get the motive to multiply the value of
your project by spinning technical magic. Method and opportunity, on the
other hand, are entirely under your control. Ward and his team created method
and opportunity through a combination of superior talent, experience, and dis-
cipline. Does this mean that if you are not one of the ten best software engineers
on the planet and don’t have a wad of cash in the bank so you can tell your boss
to take a hike, then you’re going to take the time to do this right, that such
moments are forever beyond your reach?

No. You absolutely can place your projects in a position for you to work
magic, even if you are a software engineer with ordinary skills and you some-
times buckle under and take shortcuts when the pressure builds. Test-driven
development is a set of techniques that any software engineer can follow, which
encourages simple designs and test suites that inspire confidence. If you are a
genius, you don’t need these rules. If you are a dolt, the rules won’t help. For
the vast majority of us in between, following these two simple rules can lead us
to work much more closely to our potential.

» Write a failing automated test before you write any code.
* Remove duplication.

How exactly to do this, the subtle gradations in applying these rules, and the
lengths to which you can push these two simple rules are the topic of this book.
We’ll start with the object that Ward created in his moment of inspiration—
multi-currency money.

Contents

Preface . oot e ix
Acknowledgments e e XV
INtroductionot e e e e xvil
PART I: The Money Exampleo inennnn 1
Chapter 1: Multi-Currency Money.o oot 3
Chapter 2: Degenerate Objects. ittt 11
Chapter 3: Equality for All. 15
Chapter 4: Privacy . ..o it i i e it e e 19
Chapter 5: Franc-ly Speaking i 23
Chapter 6: Equality for All, Redux. L. we. 27
Chapter 7: Applesand Oranges it iin i, 33
Chapter 8: Makin’ Objects.ot i 35
Chapter 9: Times We're Livin’ In i ie i 39
Chapter 10: Interesting Times. vttt ettt 45
Chapter 11: The Rootof AILEvil i, 51
Chapter 12: Addition, Finally. it 55
Chapter 13: Make It. o i i i e i 61
Chapter 14: Changeot it i i it it v e e e aeenes 67

CONTENTS

Chapter 15: Mixed Currencies.vivut it 73
Chapter 16: Abstraction, Finally o o o L. 77
Chapter 17: Money Retrospectiveovvvtniin i veenns 81
PART II: The xUnitExampleoviiiiiiininnnnnennn 89
Chapter 18: First Stepsto xUnit.o ittt 91
Chapter 19: Setthe Table. i i e i v eaan 97
Chapter 20: Cleaning Up Afterot iiniinenny 101
Chapter 21: Countingttt ittt 105
Chapter 22: Dealing with Failure. i i, 109
Chapter 23: How Suite It Is.o e 113
Chapter 24: xUnit Retrospective iiiiennnn.. 119
PART III: Patterns for Test-Driven Development 121
Chapter 25: Test-Driven Development Patterns 123
Chapter 26: Red BarPatterns. coieiit e ii it ine e 133
Chapter 27: Testing Patternsot vt ii et e e it ieeine e 143
Chapter 28: Green Bar Patterns. iviinn... 151
Chapter 29: xUnit Patternscouti ittt ineieennn. 157
Chapter 30: Design Patternsovvvvvrenenvieenvneenenennns 165
Chapter 31: Refactoringo ittt 181
Chapter 32: Mastering TDD it i e 193
Appendix I: Influence Diagrams i, 207
Appendix II: Fibonaccio i 211
Afterword ... e 215
Index .. e s 217

PART I

The Money Example

In Part 1, we will develop typical model code driven completely by tests (except
when we slip, purely for educational purposes). My goal is for you to see the
rhythm of Test-Driven Development (TDD), which can be summed up as follows.

1.

B W N

Quickly add a test.

. Run all tests and see the new one fail.
. Make a little change.
. Run all tests and see them all succeed.

. Refactor to remove duplication.

The surprises are likely to include

® How each test can cover a small increment of functionality
* How small and ugly the changes can be to make the new tests run
® How often the tests are run

* How many teensy-weensy steps make up the refactorings

