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Space resolved spectra with both high spectral resolution (~0.2 A) and spatial resolution (~2 pm) of the second harmonic
emission scattered at 90° to the laser axis were observed when both narrow band and broad band laser beams were used in an Al
planar target experiment. Analysing many experimental phenomena, we have proved that the second harmonic emission observed
at 90° 1o the laser axis is initiated by laser-plasma-filament interaction and not by planar-wave-plasma interaction. The experi-

ments are, on the whole, in agreement with our theory.

1. Introduction

Two generation mechanics, namely linear conver-
sion and parametric decay, for the second harmonic
emission from laser plasma have been studied both
experimentally and theoretically [1-13]. In terms of
the resonance absorption theory based on the as-
sumption that an obliquely incident planar wave with
P polarization travels into a plasma with a linear gra-
dient [1,2,14], it has been shown that the second
harmonic emission resulting from the linear conver-
sion is mainly emitted in the mirror-reflected direc-
tion of the incident laser. In the normally incident
case, the linear conversion of the 2w, harmonic
emission is very weak because the resonance ab-
sorption almost disappears. But, it has been found in
ref. [15] that, when a laser beam is normally inci-
dent, two-dimensional microphotographs of the sec-
ond harmonic emission scattered at 90° to the laser
axis display many filamentary structures with a length
of 125 pm, the transverse scale of which is about 5-15
pum. Unfortunately, no satisfactory physical expla-
nation for this phenomena has been put forward. On
the other hand, the time resolved spectra, as well as
time and space resolved structures, of the second
harmonic emission have been observed at 90° to the
laser axis in our experiment [12,13]. The filamen-
tary structures extend to 180 um along the incident
direction, close to the length of filaments [16]. All

these phenomena can not be explained by the planar
wave interaction theory. Therefore, we have consid-
ered [14] a new mechanism for the second har-
monic emission from plasma filaments, which shows
that when a laser beam interacts with plasma fila-
ments, the 2w, harmonic emission caused by the lin-
ear conversion is mainly emitted in a direction
perpendicular to the laser axis.

In this paper, we present a simple description of
the mechanism for the second harmonic emission
from plasma filaments [ 14]. Then, both broad band
and narrow band laser beams are used in the pre-
pulse and non-prepulse irradiance, irradiating on an
Al planar target normally. The second harmonic space
resolved spectra scattered at 90° to the laser axis were
thus observed. From these spectra, it has been found
that the second harmonic emission with a lumines-
cent length of 180 um extends outward from the crit-
ical surface. In this luminescent region, there exist
no spectral shifts. Only in the prepulse case, do some
red and blue shifted peaks emerge near the critical
surface. By comparing the experimental results in the
broad band and narrow band irradiance, the new
mechanism for the second harmonic emission from
a plasma filament [14] may be proved. The exper-
iments are in general, consistent with the theory.

0030-4018/88/$03.50 © Elsevier Science Publishers B.V.
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2. The mechanism for the 2w, harmonic emission
in filaments

In ref. [14], the influence of laser plasma fila-
ments on the linear conversion of the 2w, harmonic
emission were studied in detail. Considering a fila-
ment with both a linear density gradient along the z-
direction and a radial density distribution, and as-
suming that a laser beam travels along the z-direc-
tion, one can find that there exists an intense local
field of the fundamental wave near the radial reso-
nance point ry (when r=r, the dielectric coefficient
is equal to zero), which is called the radial tunnel
effect [14]. Thus the characteristics of the second
harmonic emission generated by this effect are the
following.

(1) If the fundamental wave is symmetric about
the z-axis, the intensity of the second harmonic
emission is zero in the z-direction, but intense in the
direction perpendicular to the incident laser.

(i1) If the fundamental wave is asymmetric about
the z-axis, the second harmonic generation is emit-
ted both in the z-direction and in the direction per-
pendicular to the incident laser. Generally, the
intensity in the former case is smaller than that in
the latter case and depends on the symmetry of the
fundamental wave about the z-axis. The better the
symmetry, the smaller the intensity in the z-direction.

(ii1) The second emission displays a large lumi-
nescent region, extending outward from the critical
surface along the z-axis. The luminescent length is of
the same order as that of a plasma filament.

(iv) Since the second harmonic emission is caused
by the linear conversion, its spectrum shows no red
shifts.

3. Experimental setup and results
3.1. Experimental setup

The experiments were carried out at the Six Laser
Beam Facility in the Shanghai Institute of Optics and
Fine Mechanics. It has been shown in our previous
experiments [17] that the laser illumination on the
target surface in narrow band irradiance is non-uni-
form and filaments are easily produced. Conversely,
in the broad band irradiance the laser illumination
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Fig. |. Experimental setup.

is uniform and it is difficult to initiate the filamen-
tation process. Therefore, the influences of the plasma
filament on the second harmonic emission can be
studied by adopting the broad band and narrow band
lasers. The methods used to generate broad band and
narrow band lasers have been described in refs.
[17,18]. The broad band laser had a bandwidth of
~30 A while the narrow band laser bandwidth was
0.2 A. Both broad band and narrow band lasers had
an output energy of 0.4-10 J, pulse width 250 ps, and
power density (0.3-8) X 10'* W/cm?.

The experimental arrangement is shown 1n fig. I,
where M, C, and L, are sampling mirror, energy cal-
orimeter and focusing lens, respectively, for the mea-
surement of the incident laser energy. Both broad and
narrow band incident lasers then passed through a
quartz optical rotation plate R with 45° left- or 45°
righ-handed rotation, becoming P (horizontally) or
S (vertically) polarized with respect to the target
plane. Two partly reflecting plates M, and M, for the
wavelength of 1.06 um were inserted in the path to
form a prepulse with a magnitude of 0.1% of the main
pulse energy and an arrival time ahead of the main
pulse 0.15 ns. The incident laser was focused by an

f/2 aspherical lens L, on an Al planar target surface

with an incident angle 6=3°, resulting in the second
harmonic emission.

The spectrograph S, with a dispersive power of 16
A/mm for the wavelength of 0.53 pm, was oriented
at 90° to the incident laser, and its slit, the length
and width of which are 6 mm X 100 pm, was placed
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Fig. 2. 2w, harmonic space resolved spectrum of irradiation no.
17 with narrow band laser irradiance on an Al planar target and
incident angle of 3°, energy 3.0 J, 45° polarization.

in the horizontal direction. By using micro-objective
L; (/=100 um) and mirror My for the wavelength
0f 0.53 pm, a sampling window at the target normal,
5 pm X 280 pm, was formed. Thus, we can obtain the
second harmonic space resolved spectra produced by
plasma filaments with both high spatial resolution
(~2 um) and spectral resolution (~0.2 A). Some
interference filters with central wavelength 0.53 pm
and totally reflecting plates for 1.06 pm were set in
front of the spectrograph slit, so that one could ad-
just the signal intensity and cut out the scattered
lights.

3.2. Experimental results

The second harmonic space resolved spectra ob-
versed at 90° to the incident laser under the con-
dition of non-prepulse and prepulse irradiance are
shown in figs. 2, 3 and 4, respectively, calibrated by
spectral lines of Ne atoms. The wavelength of the first
Ne spectral line near the 2w, harmonic spectra is
5330.78 A. Analyzing these spectra in detail, one
could notice the following features.

3.2.1. Non-prepulse case

(i) The 2w, harmonic luminescent length along
the incident laser varies with the incident energy.
When the incident energy is smaller (about 3 J), the
2w, harmonic emission extends outward from a po-
sition, 60 pm from the critical surface (see fig. 2,
where point ¢ denotes the position of the critical sur-
face). The luminescent length in the detecting range
of the spectrograph is about 30-40 um. If the energy
increases further, for example, the incident energy is
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Fig. 3. 2w, harmonic space resolved spectrum of irradiation no.
21 with narrow band laser irradiance on an Al planar target and
incident angle of 3°, energy 6.5 J, vertical polarization.

7 1, the 2w, harmonic luminescent length then be-
comes 180 um, extending to the critical surface.

(ii) The central position of the 2w, harmonic space
resolved spectrum shows no red shifts within the
whole luminescent region. The spectral width is about
5.6 A near the critical surface and 7.2 A far away from
the critical surface.

(ii1) In the case of narrow band irradiance, the
second harmonic emission was generated not only in
the backscattering direction but also in the direction
perpendicular to the incident laser even if the inci-
dent energy is smaller. However, when a broad band
laser irradiates an Al planar target, the second har-
monic intensity in the direction perpendicular to the
incident laser is too small to be recorded by the
spectrograph.

3.2.2. Prepulse case

Some interesting results obtained in the prepulse
irradiance are displayed in fig. 4. When a narrow
band laser with a prepulse irradiates an Al planar
target, the intense second harmonic emission with a
luminescent length of 120 um along the incident laser
is still observed in the direction perpendicular to the
incident laser. Besides, the central position of the
spectrum with a width of 4.8 A shows no red shifts.
Conversely, in the broad band case, only when the
incident energy is larger than 10 J (corresponding to
a power density of 8 10'* W/cm?), can the second
harmonic emission be detected in the direction per-
pendicular to the incident laser. Comparing figs. 2
and 3 with fig. 4, one can find the following differ-
ences near the critical surface.

(1) The 2w, harmonic emission is more intense
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Fig. 4. 2w, harmonic space resolved spectra with narrow band
laser irradiance on an Al planar target and incident angle of 3°.
(a) Irradiation no. 89, 2.9 J, 45° polarization. (b) Irradiation
no. 90, 2.5 J, 45° polarization.

near the critical surface than that in the other region.
(i1) There are some fine space fringes with inter-
vals of 8 um along the incident laser (see fig. 4a).
(iii) From fig. 4, as well as its densitometric traces
in fig. 5, it is shown that there are some symmetric
red and blue shifted peaks. The interval between
peaks is about 3.8 A.

4, Discussion

The second harmonic space resolved spectra ob-
served above in the lateral direction show a lumi-

Fig. 5. 2w, harmonic space resolved spectrum densitometric traces
corresponding to fig. 4.
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Fig. 6. Shooting diagram.

nescent length of 180 um along the incident laser,
which is consistent with the length (~ 180 um) ob-
served in the 2w, harmonic time and space resolved
structures in the same direction [13]. It is difficult
to explain why the 2@, harmonic emission displays
such a large scale out of the critical surface according
to the linear conversion theory based on the planar
wave-plasma interaction [1,2,14]. First, the 2w,
harmonic emission could only be generated in the
mirror-reflected direction of the incident laser [14],
and its intensity is very weak in the normal incident
case because the resonance absorption almost dis-
appears [17]. In fact the incident angle is about 3°
and the convergence angle of lens L, with respect to
the target surface is 14° (see fig. 6) in our experi-
ments. Therefore, the ray passing by the point A is
reflected by the target surface, then forms an angle
of 70° with respect to the direction perpendicular
the incident laser. Thus, the intensity of the 2w, har-
monic emission in the lateral direction should be
zero. Second, the 2w, harmonic emission can only
be generated near the critical surface and could not
appear in a range of 180 um out of the critical sur-
face according to the planar wave-plasma interac-
tion theory [1,2]. Finally, if the 2w, harmonic
emission resulted from the parametric decay [4] its
spectrum should show a large red shift out of the crit-
ical surface, for example, the red shift of Al targets
is in a range of 10-20 A. But, the 2w, harmonic space
resolved spectra display, in our experiments, no red
shifts within the whole luminescent region.

On the basis of the above discussion, it may be
conceivable that the second harmonic emission ob-
served in the lateral direction arises from the inter-
action of the laser beam with plasma filaments rather
than the interaction of the planar wave with a plasma.
In accordance with theory summarized in sect. 2, all
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the above features can be explained. Because the
narrow band laser irradiance on the target surface is
non-uniform and it is easy to obtain plasma fila-
ments, in which the fundamental wave has an asym-
metric distribution about the filamentary axis; while
the uniform illumination in the broad band irradi-
ances makes the filamentation process difficult to
generate, the 2w, harmonic emission in the lateral
direction is intense in the narrow band case and too
weak to be observed in the broad band case.

It has been known that the laser irradiated plasma
filaments extend outward from the critical surface
[16], and there exists an intense radial field (the ra-
dial tunnel effect) at each point along the filamen-
tary axis, which leads to the 2w, harmonic generation.
Therefore, the 2w, harmonic luminescent region ex-
tends outward from the critical surface, the length of
which is about equal to that of a plasma filament. On
the other hand, it is the linear conversion of the 2w,
harmonic generation that we discuss in this paper.
Furthermore, the spectrograph slit placed in the hor-
izontal direction coincides with the filamentary axis
so that a filament can be imaged on the slit. There-
fore, the 2w, harmonic space resolved spectrum could
demonstrate a spectral line with a certain width and
length (equal to the length of filaments ), showing no
spectral shifts.

Now, we begin to make further analyses of the in-
teresting phenomena in the prepulse irradiance. Since
a prepulse generates a large scale plasma correspond-
ing to a lower density, a large part of the incident laser
can arrive at the critical surface, causing the reso-
nance absorption initiated by self-focusing filamen-
tation described in ref. [17]. On the other hand, a
radial tunnel effect also emerges, resulting in an in-
tense local field at the radial resonance point [14].
These two effects all generate the linear conversion
of the 2w, harmonic emission so as to form an in-
tense 2w, harmonic region near the critical surface.
However, the former effect will disappear out of the
critical surface so that the 2w, harmonic intensity
becomes weak.,

The emergence of the red and blue shifted peaks
near the critical surface (fig. 4) arises from the wave
vector limitation of the Langmuir wave in a mod-
ulated plasma [12]. Referring to ref. [12], one can
express the wavelength difference between shifted
peaks as
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ALy = (445w )K(ZT, /m,)"2. (1)

For the prepulse case, some nonlinear processes, such
as two plasma decay and Raman scattering are pro-
duced in a larger scale filament. Thus the electron
temperature rises, owing to the generation of a lot of
superhot electrons in the nonlinear processes. When
T.=4keV [19], then Ai,=3.6 A, close to the value
of 3.8 A measured in the experiments. Another im-
portant result caused by the plasma modulation is
that the second harmonic space fringes can emerge
near the critical surface [13]. If a prepulse generates
an expanding plasma with a velocity of 0.42 cm/ns
[20], the plasma characteristic length 2z, is
0.42%1.5=6.3 cm. Therefore, the fringe interval be-
comes 8.1 pum, calculated by the following formula

Ax=1.5[20(Ao/2m)?]'73, (2)

in agreement with that in the experiments. However,
the fringe interval was calculated as Ax=4.4 pm in
the non-prepulse case [ 13]. These fringes bent either
in or out with the time evolution [13]. As the space
resolved spectra are integrated with respect to the
time, one can not observe the clear space fringes in
figs. 2 and 3.
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Reported in this paper are the 2w, harmonic space and time resolved structures, observed at the back-scattering direction in
laser irradiated microtube target experiments. The process of laser-microtube interaction has been analysed. According to the
plasma filament interaction theory. primarily the special phenomena are explained of the back-scattering 2w, harmonic emission

within the microtube.

1. Introduction

Recently, a high population inversion between the
1s3p level and 1s4p level of He-like Mg*'® has been
obtained, using a high power laser to irradiate mo-
crotube targets in the soft X-ray wavelength band
[1].

Since the interaction of a laser with the microtube
targets is rather sophisticated, it is necessary to use
different diagnostic methods in our experiments.
Presented here are the time and space resolved struc-
tures of the second harmonic emission observed in
the back-scattering direction. By using the streak
camera techniques, some interesting phenomena have
been achieved. Analyzing these results, we can get a
better understanding of the mechanism of the high
population inversion.

2. Experiment arrangement

The experiments were carried out at the Six Beam
Laser Facility in the Shanghai Institute of Optics and
Fine Mechanics, Academia Sinica. The FWHM of
the laser pulse with a spectral width of 0.2 A was in
the range of 100-250 ps. The output energy was 1-10
J, and the power density 5x 10'3-3x10'* W/cm?.
The laser beam was focused by an aspherical lens L1
with a focusing spot of 60-80 um (see fig. 1) on the
microtube target surface.

TIAP1

Microtube

Fig. 1. The experimental setup.

Along and perpendicular to the microtube axis, two
TLAP crystal spectrographes Cl, C2, the main pa-
rameters of which were presented in ref. (2], were
set. Thus, we can get resonant emission of the Mg
ions inside and outside the microtube. Besides, there
was a pinhole camera above the microtube.

The second harmonic emission of the plasma pass-
ing through an imaging system formed by ions L1
and a mirror M2 with wavelength of 0.53 pm was
focused on the streak camera slit, which was ad-
justed to coincide with the diameter of the microtube.

In order to determine the mechanisms for the sec-
ond harmonic emission, it is necessary to obtain the
incident laser pulse profile. For this purpose, the laser
pulse signal from the amplifier of the laser system
was conducted to one end of the streak camera’s slit,
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