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without whom nothing
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Preface

This book is a direct outgrowth of my experiences teaching C++ to
professional programmers. I've found that most students, after a week
of intensive instruction, feel comfortable with the basic constructs of
the language, but they tend to be less sanguine about their ability to
put the constructs together in an effective manner. Thus began my at-
tempt to formulate short, specific, easy-to-remember guidelines for ef-
fective software development in C++: a summary of the things
experienced C++ programmers almost always do or almost always
avoid doing.

I was originally interested in rules that could be enforced by some
kind of 1int-like program. To that end, I led research into the devel-
opment of tools to examine C++ source code for violations of user-
specified conditions.’ Unfortunately, the research ended before a com-
plete prototype could be developed. Fortunately, several commercial
C++-checking products are now available.

Though my initial interest was in programming rules that could be
automatically enforced, I soon realized the limitations of that ap-
proach. The majority of guidelines used by good C++ programimers are
too difficult to formalize or have too many important exceptions to be
blindly enforced by a program. I was thus led to the notion of some-
thing less precise than a computer program, but still more focused
and to-the-point than a general C++ textbook. The result you now
hold in your hands: a book containing 50 specific suggestions on how
to improve your C++ programs and designs.

In this book, you'll find advice on what you should do, and why, and
what you should not do, and why not. Fundamentally, of course, the
whys are more important than the whats, but it's a lot more conve-

t You can find an overview of the research at the Effective C++ World Wide Web site: ht -
tp://www.awl.com/cp/ec++.html.
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nient to refer to a list of guidelines than to memorize a textbook or
two.

Unlike most books on C++, my presentation here is not organized
around particular language features. That is, I don’t talk about con-
structors in one place, about virtual functions in another, about in-
heritance in a third, etc. Instead, each discussion in the book is
tailored to the guideline it accompanies, and my coverage of the vari-
ous aspects of a particular language feature may be dispersed
throughout the book.

The advantage of this approach is that it better reflects the complexity
of the software systems for which C++ is often chosen, systems in
which understanding individual language features is not enough. For
example, experienced C++ developers know that understanding inline
functions and understanding virtual destructors does not necessarily
mean you understand inline virtual destructors. Such battle-scarred
developers recognize that comprehending the interactions between the
features in C++ is of the greatest possible importance in using the lan-
guage effectively. The organization of this book reflects that funda-
mental truth.

The disadvantage of this design is that you may have to look in more
than one place to find everything I have to say about a particular C++
construct. To minimize the inconvenience of this approach, I have
sprinkled cross-references liberally throughout the text, and a com-
prehensive index is provided at the end of the book.

In preparing this second edition, my ambition to improve the book has
been tempered by fear. Tens of thousands of programmers embraced
the first edition of Effective C++, and I didn't want to destroy whatever
characteristics attracted them to it. However, in the six years since I
wrote the book, C++ has changed, the C++ library has changed (see
Item 49), my understanding of C++ has changed, and accepted usage
of C++ has changed. That's a lot of change, and it was important to me
that the technical material in Effective C++ be revised to reflect those
changes. I'd done what I could by updating individual pages between
printings, but books and software are frighteningly similar — there
comes a time when localized enhancements fail to suffice, and the
only recourse is a system-wide rewrite. This book is the result of that
rewrite: Effective C++, Version 2.0.

Those familiar with the first edition may be interested to know that ev-
ery Item in the book has been reworked. I believe the overall structure
of the book remains sound, however, so little there has changed. Of
the 50 original Items, I retained 48, though I tinkered with the word-
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ing of a few Item titles (in addition to revising the accompanying dis-
cussions). The retired Items (i.e., those replaced with completely new
material) are numbers 32 and 49, though much of the information
that used to be in Item 32 somehow found its way into the revamped
Item 1. I swapped the order of Items 41 and 42, because that made it
easier to present the revised material they contain. Finally, I reversed
the direction of my inheritance arrows. They now follow the almost-
universal convention of pointing from derived classes to base classes.
This is the same convention I followed in my 1996 book, More Effective
C++, an overview of which you can find on pages 237-238 of this vol-
ume.

The set of guidelines in this book is far from exhaustive, but coming
up with good rules — ones that are applicable to almost all applica-
tions almost all the time — is harder than it looks. Perhaps you know
of additional guidelines, of more ways in which to program effectively
in C++. If so, I would be delighted to hear about them.

On the other hand, you may feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading. I encourage
you to let me know about these things, too.

Donald Knuth has a long history of offering a small reward to people
who notify him of errors in his books. The quest for a perfect book is
laudable in any case, but in view of the number of bug-ridden C++
books that have been rushed to market, I feel especially strongly com-
pelled to follow Knuth’s example. Therefore, for each error in this book
that is reported to me — be it technical, grammatical, typographical,
or otherwise — I will, in future printings, gladly add to the acknowl-
edgments the name of the first person to bring that error to my atten-
tion.

Send your suggested guidelines, your comments, your criticisms, and
— sigh — your bug reports to:

Scott Meyers

c/o Publisher, Ccrporate and Professional Publishing
Addison Wesley Longman, Inc.

1 Jacob Way

Reading, MA 01867

U. S. A

Alternatively, you may send electronic mail to ec++@awl .com
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I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. This list is avail-
able at the Effective C++ World Wide Web site, http: //www.awl .com/
cp/ec++.html. If you would like a copy of this list, but you lack ac-
cess to the World Wide Web, please send a request to one of the ad-
dresses above, and I will see that the list is sent to you.

If you’d like to be notified when I make changes to this book, consider
joining my mailing list. For details, consult http://www.aristela.com/
MailingList/index.html.

Scotr DouGLAS MEYERS STAFFORD, OREGON
JULY 1997
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Praise for the first edition of Effective (++:
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