BRERE - X\ C++ 77

\A.
PEARSON
—_—

Addison
Wesley

e 29 : - { : __l . ;
EITGLU '| 5 lJ'f'f Second Edition

iU ‘:JJ'J‘.JJJJ JJ_JJJ (1) .IJJJ_,JIJJJ JJ_AIJ’J.JJ.L.UJ .J....L_I _J_J_aJJJ >

jective U++

fr'f —t] -
N« B)

IJ
I.I
L
(TS ;f/ JTR

mvumzm

www.infopower.com.cn

Effective C++
Second Edition

WERMR ¢ RN C++ R

Eﬂeﬂ““e 0++ Second Edition

30 Specific Ways to Improve Your Programs and Designs

Effective G++
(A - B

[%]Scott Meyers &

’f@"@ﬁﬁi%ﬁ

Effective C++ : 50 specific ways to improve your programs and designs,2nd ed.
(ISBN 0-201-92488-9)

Meyers, Scott

Copyright © 1998 Addison Wesley.

Original English Language Edition Published by Addison Wesley.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA

ELECTRIC POWER PRESS, Copyright © 2003.

FH VR i Pearson Education #AXH B ML iHARALZE S EE Ay (Fs. MU BITBIR A
EEMXERS) BMFRHR. RIT.
ABHBE BT, FEUMEATREHRDER BRI .

A BT WGF Pearson Education B 5%, TS EBEH.

IERTRREEESFRSES: EFE: 01-2003-1013

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

NRFHPEARKAMEEN (FEEFEEE. B IHITHREATEGBHE) #HERIT.

BHERSE (CIP) ¥R

Effective C++ / () EHSHTE. —REAL, —dbsl: FESBHHRY, 2003
(RRAZE « AN C++RFD

ISBN 7-5083-1498-0

FLE. II.g. N.CEZS-EFRIT—XEX V.TP3I12

T ERR A B B1E CIP BB % F (2003) 5 023077 5

W RE
A B & REAE - EACH+FRF
H 44 Effective C++ (METRR)
H: () Scott Meyers
#: hE®EDHARY
Mk ERWTZERRS #RBIHAZ: 100044
Hi%: (010) 88515918 f£H: (010D 88423191
2 AESHLELRY ST
FEBESIE LR ITA
787 X1092 1/16 /g k. 175
ISBN 7-5083-1498-0
20036 HAb B —K
200316 H & X ENR
40.00 7T

N

BRSO
THEFARNE

For Nancy,
without whom nothing
would be much worth doing.

Wisdom and beauty form a very rare combination.

— Petronius Arbiter
Satyricon, XCIvV

51 9

el FEA 2001) (BTG &8 B AN — R BECE R
(Effective C++) XA BH. AAZRE, TEERLATEHNFEF, WAEEFEHK
JENE BB CH+2 2 F 2 —. BLFERMICHE, EESALERNE
FHRAE B BORE O PSS, XA TS KRR S IRE) C++Ih 177,

HM RS CH++UaHNE, W B REFEMEY] TIHLEBAE ZK
C++#FE, X [COH) C++RES AN B, B&H JLHE 0 SRS 50T,
LMERRSERR A RE% . i Scott Meyers FIX A B iR 4£ 5 — & =B R AR EUE
PR, MR MR TR, IR E AR L B TR
o, e R S iR E V E LA AL LR ATIB SO 2 R b R
HIE ARG AT . ERRABRER, RIRERZRREE K8, BESRIEE KA
MiE, XAmEMALE BT,

MARRTEE 2, NS THFE . ZEAEE, AMUEABRPIRED
£ b, HEb (More Effective C++) PLAEH A A A C++ B O 24
LY. RIS RERLZER, RIVRSH MHERENEE. BRETNA
BRIFROSMK, ERMAHGHCE, UREBEEEEAROKS R, ERE
FHREEIE, 1R BT

FAE Scott Meyers TFIX A (Effective C++) FEIFTRIMHE KRB EKEY, Lhr
EREEEBANFRS N Fihh, L6 EEXASH, Scott Meyers 811
T MBI, —MARIFENEREFE A AR TEEH,
WA RS S PR B, TR BT HIRAIRE, AR REGOE, S
ITBIREE AR E , XM RAESNRER ERAERN, URAEEFERSE L
HRAOFAR AR, HENOHTRXALELRK. X, NEB Meyers £E
MR HE A BN RERFTIMEL . EXABRNE, REEAE, RITESE
iz 3 B A H AT AR B UIRAE IR i — e BT e ?

EH EN XA B LIORIG SERATPEREF LR, F5E5 0, XABK
BAEEARE N DA R &R T ARIFE . MR % SR LT, RS
HE, X T CH+RIEIHHERERRANELY. (Fh M FEMEFR, &
HBLEURIRIR, S, BT K C++%#)& .

&
2003 %4 A FF

Preface

This book is a direct outgrowth of my experiences teaching C++ to
professional programmers. I've found that most students, after a week
of intensive instruction, feel comfortable with the basic constructs of
the language, but they tend to be less sanguine about their ability to
put the constructs together in an effective manner. Thus began my at-
tempt to formulate short, specific, easy-to-remember guidelines for ef-
fective software development in C++: a summary of the things
experienced C++ programmers almost always do or almost always
avoid doing.

I was originally interested in rules that could be enforced by some
kind of 1int-like program. To that end, I led research into the devel-
opment of tools to examine C++ source code for violations of user-
specified conditions.’ Unfortunately, the research ended before a com-
plete prototype could be developed. Fortunately, several commercial
C++-checking products are now available.

Though my initial interest was in programming rules that could be
automatically enforced, I soon realized the limitations of that ap-
proach. The majority of guidelines used by good C++ programimers are
too difficult to formalize or have too many important exceptions to be
blindly enforced by a program. I was thus led to the notion of some-
thing less precise than a computer program, but still more focused
and to-the-point than a general C++ textbook. The result you now
hold in your hands: a book containing 50 specific suggestions on how
to improve your C++ programs and designs.

In this book, you'll find advice on what you should do, and why, and
what you should not do, and why not. Fundamentally, of course, the
whys are more important than the whats, but it's a lot more conve-

t You can find an overview of the research at the Effective C++ World Wide Web site: ht -
tp://www.awl.com/cp/ec++.html.

xiv Preface

nient to refer to a list of guidelines than to memorize a textbook or
two.

Unlike most books on C++, my presentation here is not organized
around particular language features. That is, I don’t talk about con-
structors in one place, about virtual functions in another, about in-
heritance in a third, etc. Instead, each discussion in the book is
tailored to the guideline it accompanies, and my coverage of the vari-
ous aspects of a particular language feature may be dispersed
throughout the book.

The advantage of this approach is that it better reflects the complexity
of the software systems for which C++ is often chosen, systems in
which understanding individual language features is not enough. For
example, experienced C++ developers know that understanding inline
functions and understanding virtual destructors does not necessarily
mean you understand inline virtual destructors. Such battle-scarred
developers recognize that comprehending the interactions between the
features in C++ is of the greatest possible importance in using the lan-
guage effectively. The organization of this book reflects that funda-
mental truth.

The disadvantage of this design is that you may have to look in more
than one place to find everything I have to say about a particular C++
construct. To minimize the inconvenience of this approach, I have
sprinkled cross-references liberally throughout the text, and a com-
prehensive index is provided at the end of the book.

In preparing this second edition, my ambition to improve the book has
been tempered by fear. Tens of thousands of programmers embraced
the first edition of Effective C++, and I didn't want to destroy whatever
characteristics attracted them to it. However, in the six years since I
wrote the book, C++ has changed, the C++ library has changed (see
Item 49), my understanding of C++ has changed, and accepted usage
of C++ has changed. That's a lot of change, and it was important to me
that the technical material in Effective C++ be revised to reflect those
changes. I'd done what I could by updating individual pages between
printings, but books and software are frighteningly similar — there
comes a time when localized enhancements fail to suffice, and the
only recourse is a system-wide rewrite. This book is the result of that
rewrite: Effective C++, Version 2.0.

Those familiar with the first edition may be interested to know that ev-
ery Item in the book has been reworked. I believe the overall structure
of the book remains sound, however, so little there has changed. Of
the 50 original Items, I retained 48, though I tinkered with the word-

Preface xv

ing of a few Item titles (in addition to revising the accompanying dis-
cussions). The retired Items (i.e., those replaced with completely new
material) are numbers 32 and 49, though much of the information
that used to be in Item 32 somehow found its way into the revamped
Item 1. I swapped the order of Items 41 and 42, because that made it
easier to present the revised material they contain. Finally, I reversed
the direction of my inheritance arrows. They now follow the almost-
universal convention of pointing from derived classes to base classes.
This is the same convention I followed in my 1996 book, More Effective
C++, an overview of which you can find on pages 237-238 of this vol-
ume.

The set of guidelines in this book is far from exhaustive, but coming
up with good rules — ones that are applicable to almost all applica-
tions almost all the time — is harder than it looks. Perhaps you know
of additional guidelines, of more ways in which to program effectively
in C++. If so, I would be delighted to hear about them.

On the other hand, you may feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading. I encourage
you to let me know about these things, too.

Donald Knuth has a long history of offering a small reward to people
who notify him of errors in his books. The quest for a perfect book is
laudable in any case, but in view of the number of bug-ridden C++
books that have been rushed to market, I feel especially strongly com-
pelled to follow Knuth’s example. Therefore, for each error in this book
that is reported to me — be it technical, grammatical, typographical,
or otherwise — I will, in future printings, gladly add to the acknowl-
edgments the name of the first person to bring that error to my atten-
tion.

Send your suggested guidelines, your comments, your criticisms, and
— sigh — your bug reports to:

Scott Meyers

c/o Publisher, Ccrporate and Professional Publishing
Addison Wesley Longman, Inc.

1 Jacob Way

Reading, MA 01867

U. S. A

Alternatively, you may send electronic mail to ec++@awl .com

xvi Preface

I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. This list is avail-
able at the Effective C++ World Wide Web site, http: //www.awl .com/
cp/ec++.html. If you would like a copy of this list, but you lack ac-
cess to the World Wide Web, please send a request to one of the ad-
dresses above, and I will see that the list is sent to you.

If you’d like to be notified when I make changes to this book, consider
joining my mailing list. For details, consult http://www.aristela.com/
MailingList/index.html.

Scotr DouGLAS MEYERS STAFFORD, OREGON
JULY 1997

Acknowledgments

Some three decades have elapsed since Kathy Reed taught me what a
computer was and how to program one, so I suppose this is really all
her fault. In 1989, Donald French asked me to develop C++ training
materials for the Institute for Advanced Professional Studies, so per-
haps he should shoulder some blame. The students in my class at
Stratus Computer the week of June 3, 1981, were not the first to sug-
gest I write a book summarizing the pearls of alleged wisdom that tum-
ble forth when I teach, but they were the ones who finally convinced
me to do it, so they bear some of the responsibility. 'm grateful to them
all.

Many of the Items and examples in this book have no particular
source, at least not one I can remember. Instead, they grew out of a
combination of my own experiences using and teaching C++, those of
my colleagues, and opinions expressed by contributors to the Usenet
C++ newsgroups. Many examples that are now standard in the C++
teaching community — notably strings — can be traced back to the ini-
tial edition of Bjarne Stroustrup's The C++ Programming Language (Ad-
dison-Wesley, 1986). Several of the Items found here (e.g., Item 17} can
also be found in that seminal work.

Item 8 includes an implementation idea from Steve Clamage’s May
1993 C++ Report article, “Implementing new and delete.” Item 9 was
motivated by commentary in The Annotated C++ Reference Manual (see
Item 50), and Items 10 and 13 were suggested by John Shewchuk. The
implementation of operator new in Item 10 is based on presentations
in the second edition of Stroustrup’s The C++ Programming Language
(Addison-Wesley, 1991) and Jim Coplien’s Advanced C++: Program-
ming Styles and Idioms (Addison-Wesley, 1992). Dietmar Kihl pointed
out the undefined behavior I describe in Item 14. Doug Lea provided
the aliasing examples at the end of Item 17. The idea of using OL for
NULL in Item 25 came from Jack Reeves's March 1996 C++ Report ar-

xviii Acknowledgments

ticle, “Coping with Exceptions.” Several members of various Usenet
C++ newsgroups helped refine that Item’s class for implementing
NULL-based pointer conversions via member templates. A newsgroup
posting by Steve Clamage tempered my enthusiasm for references to
functions in Item 28. Item 33 incorporates observations from Tom
Cargill's C++ Programming Style (Addison-Wesley, 1992), Martin Car-
roll's and Margaret Ellis’'s Designing and Coding Reusable C++ (Addi-
son-Wesley, 1995), Taligent’s Guide to Designing Programs (Addison-
Wesley, 1994), Rob Murray's C++ Strategies and Tactics (Addison-Wes-
ley, 1993), as well as information from publications and newsgroup
postings by Steve Clamage. The material in Item 34 benefited from my
discussions with John Lakos and from reading his book, Large-Scale
C++ Software Design (Addison-Wesley, 1996). The envelope/letter ter-
minology in that Item comes from Jim Coplien's Advanced C++: Pro-
gramming Styles and Idioms; John Carolan coined the delightful term,
“Cheshire Cat class.” The rectangle/square example of Item 35 is
taken from Robert Martin's March 1996 C++ Report column, “The
Liskov Substitution Principle.” A long-ago comp.lang.c++ posting by
Mark Linton set me straight in my thinking about grasshoppers and
crickets in Item 43. My traits examples in Item 49 are taken from
Nathan Myers's June 1995 C++ Report article, “A New and Useful Tem-
plate Technique: Traits,” and Pete Becker's “C/C++ Q&A™ column in
the November 1996 C/C++ User’s Journal; my summary of C++'s inter-
nationalization support is based on a pre-publication book draft by
Klaus Kreft and Angelika Langer. Of course, “Hello world” comes from
The C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, initially published in 1978).

Many readers of the first edition sent suggestions I was unable to in-
corporate in that version of the book, but that I've adopted in one form
or another for this new edition. Others took advantage of Usenet C++
newsgroups to post insightful remarks about the material in the book.
I'm grateful to each of the following individuals, and I've noted where I
took advantage of their ideas: Mike Kaelbling and Julio Kuplinsky (In-
troduction); a person my notes identify only as “a guy at Claris"!
{(Item 5); Joel Regen and Chris Treichel (Item 7); Tom Cargill, Larry Ga-
jdos, Doug Morgan, and Uwe Steinmuller (Item 10); Roger Scott and
Steve Burkett (Item 12); David Papurt (Item 13); Alexander Gootman
(Item 14); David Bern (Item 16); Tom Cargill, Tom Chappell, Dan Fran-

t Note to this guy: I was at Claris the week of November 15, 1993. Contact me and iden-
tify yourself as the one who pointed out the importance of specifying which form of de-
lete to use with a typedef, and I'll happily give you proper credit in these
acknowledgments. I'll even throw in a little something (very littie — don’t get excited)
to help compensate for my pathetic failure to know who you are.

Acknowledgments xix

klin, and Jerry Liebelson (Item 17); John “Eljay” Love-Jensen
(Item 19); Eric Nagler (Item 22); Roger Eastman, Doug Moore, and
Aaron Naiman (Item 23); Dat Thuc Nguyen (Item 25); Tony Hansen,
Natraj Kini, and Roger Scott (Item 33); John Harrington, Read Flem-
ing, and David Smallberg (Item 34); Johan Bengtsson (Itemn 36); Rene
Rodoni {Itemn 39); Paul Blankenbaker and Mark Somer (Item 40); Tom
Cargill and John Lakos (Item 41); Frieder Knauss and Roger Scott
(Item 42); David Braunegg, Steve Clamage, and Dawn Koffman
(Item 45); Tom Cargill (Item 46); Wesley Munsil (Item 47); Randy
Mangoba (most class definitions); and John “Eljay” Love-Jensen (many
places where I use type double).

Partial and/or complete drafts of the manuscript for the first edition
were reviewed by Tom Cargill, Glenn Carroll, Tony Davis, Brian Ker-
nighan, Jak Kirman, Doug Lea, Moises Lejter, Eugene Santos, Jr.,
John Shewchuk, John Stasko, Bjarne Stroustrup, Barbara Tilly, and
Nancy L. Urbano. In addition, I received suggestions for improvements
that I was able to incorporate in later printings from the following alert
readers, whom I've listed in the order in which I received their reports:
Nancy L. Urbano, Chris Treichel, David Corbin, Paul Gibson, Steve Vi-
noski, Tom Cargill, Neil Rhodes, David Bern, Russ Williams, Robert
Brazile, Doug Morgan, Uwe Steinmiiller, Mark Somer, Doug Moore,
David Smallberg, Seth Meltzer, Oleg Shteynbuk, David Papurt, Tony
Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul Ch-
isholm, Adam Zell, Clovis Tondo. Mike Kaelbling, Natraj Kini, Lars Ny-
man, Greg Lutz, Tim Johnson, John Lakos, Roger Scott, Scott
Frohman, Alan Rooks, Robert Poor, Eric Nagler, Antoine Trux, Cade
Roux, Chandrika Gokul, Randy Mangoba, and Glenn Teitelbaum.
Each of these people was instrumental in improving the book you now
hold.

Drafts of the second edition were reviewed by Derek Bosch, Tim
Johnson, Brian Kernighan, Junichi Kimura, Scott Lewandowski,
Laura Michaels, David Smallberg, Clovis Tondo, Chris Van Wyk, and
Oleg Zabluda. I am grateful to all these people, but especially to Tim
Johnson, whose detailed review influenced the final manuscript in
dozens of ways. I am also grateful to Jill Huchital and Steve Reiss for
their assistance in finding good reviewers, a task of crucial importance
and increasing difficulty. Dawn Koffman and David Smallberg sug-
gested improvements to the C++ training materials derived from my
books, and many of their ideas have found their way into this revision.
Finally, I received comments from the following readers of earlier print-
ings of this book, and I've modified this current printing to take their
suggestions into account: Daniel Steinberg, Arunprasad Marathe,
Doug Stapp, Robert Hall, Cheryl Ferguson, Gary Bartlett, Michael

xx Acknowledgments

Tamm, Kendall Beaman, Eric Nagler, Max Hallperin, Joe Gottman, Ri-
chard Weeks, Valentin Bonnard, Jun He, Tim King, Don Maier, Ted
Hill, Mark Harrison, Michael Rubenstein, Mark Rodgers, David Goh,
Brenton Cooper, Andy Thomas-Cramer, Antoine Trux, John Wait,
Brian Sharon, Liam Fitzpatrick, Bernd Mohr, Gary Yee, John O'Han-
ley, Brady Patterson, Christopher Peterson, Feliks Kiuzniak, Isi Duni-
etz, Christopher Creutzi, lan Cooper, Carl Harris, Mark Stickel, Clay
Budin, Panayotis Matsinopoulos, David Smallberg, Herb Sutter, Pajo
Misljencevic, Giulio Agostini, Fredrik Blomqvist, and Jimmy Snyder.

Evi Nemeth (with the cooperation of Addison-Wesley, the USENIX As-
sociation, and The Internet Engineering Task Force) has agreed to see
to it that leftover copies of the first edition are delivered to computer
science laboratories at universities in Eastern Europe; these universi-
ties would otherwise find it difficult to acquire such books. Evi volun-
tarily performs this service for several authors and publishers, and I'm
happy to be able to help in some small way. If you'd like more informa-
tion on this program, contact Evi at evi@cs.colorado.edu.

Sometimes it seems that the players in publishing change nearly as
frequently as the trends in programming, so I'm pleased that my edi-
tor, John Wait, my marketing director, Kim Dawley, and my production
director, Marty Rabinowitz, continue to play the roles they did in those
innocent days of 1991 when I first started this whole authoring thing.
Sarah Weaver was my project manager for this book, Rosemary Simp-
son provided advice on indexing, and Lana Langlois acted as my pri-
mary contact and all-around (ibercoordinator at Addison-Wesley until
she left for greener — or at least different — pastures. I thank them
and their colleagues for helping with the thousand tasks that separate
simple writing from actual publishing.

Kathy Wright had nothing to do with the book, but she'd like to be ac-
knowledged.

For the first edition, 1 am grateful for the enthusiastic and unflagging
encouragement provided by my wife, Nancy L. Urbano, and by my fam-
ily and hers. Although writing a book was the last thing I was sup-
posed to be doing, and doing so reduced my free time from merely little
to effectively none, they made it clear that the effort was worth it if, in
the end, the result was an author in the family.

That author has been in the family six years now, yet Nancy continues
to tolerate my hours, put up with my technochatter, and encourage my
writing. She also has a knack for knowing just the right word when I
can't think of it. The Nancyless life is not worth living.

Our dog, Persephone, never lets me confuse my priorities. Deadline or
no deadline, the time for a walk is always now.

Praise for the first edition of Effective (++:

“Meyers’s book I must really praise. ... The book also contains an excellent nuts and
bolts guide to memory management constructs, and a great explanation of the meaning
of the different types of C++ inheritance.”

~New York Computerist

“This should definitely be read before you start your first real C++ project and reread
again as you gain experience.”
—comp.lang.ct++

“Subtitled ‘50 Specific Ways to Improve Your Programs and Designs.” the author
offers not only explicit rules to follow when writing C ++ code, but provides
justification and examples illustrating their use.”

-Sun Expert

“I heartily recommend Effective C++ to anyone who aspires to mastery of C++ at the
intermediate level or above.”
~The C User’s Journal

“This is one of the best books that I’ve seen for the ‘intermediate-level” programmer.
It’s structured as a series of ‘essays’ on practical problems that a ('++ programmer
encounters. ...It is the rare programming book that is both funny and usetul.”
~comp.lang.c++

“The result is a small book analogous in scope and flavor to another little book, The
Elements of Style by William Strunk and E.B. White. On my shelf, at least, the two
books are not far apart. ... This is a modest little book that sets clear goals and achieves
them.”

-C++ Report

“This book contains practical advice on exploiting C++."
~DEC Professional

“Any C++ programmer should definitely not only own but study and put to use this
book. This text is easy to use and well cross-referenced and indexed.”
~Computer Language

“This is a 193-page masterpiece that I read in one sitting. ... I guarantee that some
combination of these 50 items will grab and enlighten you, and repay your modest
investment. ... This is a well-written, honest book aimed at C++ programmers who
are converging toward fluency and effectiveness.”

-Stan Kelley-Bootle, UNIX Review

Preface

Contents

Acknowledgments

Introduction

Shifting from C to C++

Item 1:
Item 2;
Item 3:
Item 4:

Prefer const and inline to #define.
Prefer <iostream> to <stdio.h>.

Prefer new and delete tomalloc and free.
Prefer C++-style comments.

Memory Management

Item 5:

Item 6:
Item 7:
Item 8:

Item 9:
Item 10:

Use the same form in corresponding uses of new
and delete.

Use delete on pointer members in destructors.
Be prepared for out-of-memory conditions.

Adhere to convention when writing operator new
and operator delete.

Avoid hiding the “normal” form of new.

Write operator delete if you write
operator new.

Constructors, Destructors, and
Assignment Operators

Item 11:

Declare a copy constructor and an assignment
operator for classes with dynamically allocated
memory.

xiti
xvii
1

13

13
17
19
21

22

23
24
25

33
37

39

49

49

Item 12:
Item 13:

Item 14:
Item 15:
Item 16:
Item 17:

Contents

Prefer initialization to assignment in constructors.

List members in an initialization list in the order
in which they are declared.

Make sure base classes have virtual destructors.
Have operator= return a reference to *this,
Assign to all data members in operator=.
Check for assignment to self in operator=.

Classes and Functions: Design and Declaration

Item 18:

Item 19:

Item 20:
Item 21:
Item 22:
Item 23:

Item 24:

Item 25:

Item 26:
Item 27:

Item 28:

Strive for class interfaces that are complete
and minimal.

Differentiate among member functions,
non-member functions, and friend functions.

Avoid data members in the public interface.
Use const whenever possible.
Prefer pass-by-reference to pass-by-value.

Don't try to return a reference when you must
return an object.

Choose carefully between function overloading
and parameter defaulting.

Avoid overloading on a pointer and a
numerical type.

Guard against potential ambiguity.

Explicitly disallow use of implicitly generated
member functions you don't want.

Partition the global namespace.

Classes and Functions: Implementation

Item 29:
Item 30:

Item 31:

Item 32:
Item 33:

Avoid returning “handles” to internal data.

Avoid member functions that return non-const
pointers or references to members less accessible
than themselves.

Never return a reference to a local object or to a
dereferenced pointer initialized by new within
the function.

Postpone variable definitions as long as possible.
Use inlining judiciously.

52

57
59
64
68
71

77

79

84
89
91
98

101

106

109
113

116
117

123
123

129

131
135
137

