UML 'y i o] Af 5 BE P55 00 A 13
|

RONTEL T
BB ffe T

TESTING OBIECT-ORIENTED SYSTEMS
MoDELS, PATTERNS, AND TOOLS

' ROBERT V.BINDER & ¥

OBJECT TECHNOLOGY
g e
| RS
A LB UG
0
(111 44 ,‘; * /ﬁ i:t E L JJ.,_[JL-J ' L‘: ﬂ
4 w\ww . sciencep.com - R — s

UML 5 @ KR A

T [3 3R Zr e it

=RE HLE

51

=t

Robert V. Binder 4w

G B S

it =

moE B

PGB B B YR N SR R, AAMRRBAR R DA DM, KBEART
WATHPRSHL, M #M UML FFRATEIRIER. il SN E, sTLALEH SR 0
BB T OO0 VB RBIR 7%, (g WA o] AL (R JRAESS, LA R I fTAR #E RIS T
BB IR 1R T VF 2 2B A2 0 I THI) 3 % WA U A0 B SR SR R

LI A B RGRGE AT RIOTFR RRIRA G, B Rt .

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Testing Object-Oriented Systems: Models, Patterns, and Tools, 1 Edition by
Robert V. Binder, Copyright©2000

ISBN 0-201-80938-9

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

DERTTREAR RIS N (RREDEES. RIIENTERAHESSHE) HERT.
At BHRIWA Pearson Education(B A #H i ARER B AFE . TIREHERBHE,

K. 01-2003-2540

BB MR B (CIP) MR

) 0 ARG WA A, WA Y T H=Testing Object-Oriented Systems: Models, Patterns and
Tools/ (3£) FE# (Binder,R.V.) ¥ —®EIEX. —ibsl: R¥ibiRH, 2003
ISBN 7-03-011399-3

I, &g [ESYRES—EFRIT—ET V.TP312
R AR B 5EE CIP BB H T (2003) 35 030826 &

KRG BRI/ RS SR
TAEP 4 SAR/HBHE: AFALTFHEKIE
&/ 3 2 B 8 IR
AR NI 165
BEEY 45100717
http:// www . sciencep.com

RARH R
MEUMHRET ZRHEHESH

*
003FES AE — R FFA&: 787X960 116
2003 E S AB—WER B3k 7712
EN¥: 1—2000 P 1483000
EH#:120.00 5T

(WHERARAE, RAKFELEE)

FEIRIE

BEE H B AR BRSNS MRS TR, AN EWAEREHRY K,
B EY RO AR AR, BORE A, R EERT AL AR IS AR R B 2
K., 20 42 60 SEACH BN AN 1TE B IIAIRBE B TR T BRA AT &
HIEM, TREMGIFEFEM 60 EREXLTEESHFTESRF L, SES| 70
SEREEMLB MTIRT 80 SERVW LA X R TR, HBE MY RIITE T

T 15 % R BB I & S RAEGS AL T R BRI AISE IR X R AP RS BUM BE 6 AR
MM, Biafad. 5. 4K, HEFALBANBAEIS, LFRETELE
FHERNRESME I FEAR, ERABRE LE@® T HREEH. mRdRERRRT
BFHES, LUS XA AR BEM, T mmxRRahfmikit.

20 42 80 £EARK 90 Y, Fefa B T JL R R R B, B,
Booch, Coad/Yourdon . OMT 1 Jacobson 2% 488 T M M X RBATF &K R 1ZIA0]
KRB L F XSS A AR MR, BMERSHE, §BRAR ERERRE:
WwAR, &g 90 ERARRFERIEZBHFE, AMTESHARBIARRN T EREAHE
SRR, NARAES RIS, K2 BEEHTREEYS; JFE&My
ERRREERANER, AHTH-EHXHEIME, AXERT, 4 -BEEF
(UML)F 90 FFR P HARGET A .

UML B BT = mE A R IT L EHR G Booch. J. Rumbaugh 1 L
Jacobson HIE 1 &4E. MATMEF Bl T KEHR FWEERE, # UML WBLE
HFREENE FEE T U a—fors, FEEET RIFRAPYESHE—2T R
BHLE . UML ERE @ RN RGERBEETIEFAMES, SRAMERKNERE,
BRI —BEERIRXME, 1997 4 11 A UML $ OMG HEUER R r R BIEIE
B, HERGAJVESDREH A B NS FEEE S B,

UML ZEBEAE XRE XM T KEM TIE, DMESF L TR M AR LR
EEEFERURER AN TR E LVHBEES, MU FERIESBIRES, R mfr
BRX AR ST & . UML NI—FEEES RSN, FHEFHPH—%
BARFEX . REAENES¥NABEECER TS, (B EEXFHES
RUER RS B Tk A,

M UML BEHIMATG,, 23 TiEN LR EMR, OMG BIRMFIR v
B HEFHREHE | TSR BRI T RMER AT, S IA R . B8 TIZ]

ii wEst g A Y. AL R

TR MEMERIG ARG EE, WERFLRRA . @E5EHEAR . R AXNIN R
. o R%E. REHES . LSS HTRER TR, REEH | REH
B A . i e 8 AR TR, BT TRk R 5, Flinks
st b FLFRRRE . SR I RN RS ST TR, %,

78 UML BEZERAT LA RAT . BB TRT— MR PR BEE AEHR . B &
Aif) UML2.0 MiA# 25t UML M X — K E KRS . #6 UML # &S 5 5kl .
WIRATAL . BRI SERLEERE, AL B TR E A R,

ANBYCRT SHEEXREART UML AX0 12 A8, RRT BRI RERBHH
KREEEH LR UML BB EA . HRe Rt mE i R B ie Bt 5 ey A X
BILAA: (ERMRRFERKRT) TEE T mEROEAES . B8t
ARAXS G, BB . TR A R A FR 45 b AT T LA SR I) X S H R U i 1
IWHIRETH:; (F UML TR S) FENE T RN RKERNEL . 4
Bree, BOBrE P RIS RIS R S EAR; (R) MR T e AR
B HEEEHERAE SEA; (UML EEST SRR NME T2 80 5
X 5 SIS HNR A A

W R UML 7EXFE S aYic R A X BEJLA . (UML £/ 2FFR) 16 T
B ARG R HEN UML 75 BEA; (I UML #2 Web M FIRF) e T iz
H UML 317 Web W FEBITRGZERHNER S (FRMRRENR: &8 90
BSTHE) M TH UML N TEE N SRR SR SR 5 TR, (i,
. HERY UML WA) VHE T WY& F UML X i [% S 80578 AR —— b e R 8
AREERHEER . (UML 5 Visual Basic W HBFEFE) TEIFE T M UML HRF|
Visual Basic /7 B S84t 5,

NREmEITRRBEHERAEREH: (COM EFLEL) M (ATL HARKNE) | &
ABRVH T E R XTREREFHE AR —COM # ATL B ARMHE IS SHEARNEE.

iH —4 (Executable UML HARNE) , XA BNE T HIT UML RS SH Y
FREOR, FESERIR IR SELIA AT B SRR VTR, t B IR KT &
H—FRTRIRER

B2, REBHRNANTEE THREEGEAENSIBEEN IESER, R
LTI R R TSR AR | HURBERAETEANAN R, ERRECLRE R
B CRAOUE . ATRAR, B—AHIRSM .,

FETI, RGP ARRENEEREXES, SEAREIE . F I L.

ewRAFIHENE Hok HE

Thus spake the master: “Any program, no matter how small,
contains bugs.”

The novice did not believe the master’s words. “What if the

program were so small that it performed a single function?” he
asked.

“Such a program would have no meaning,” said the master,
“but if such a one existed, the operating system would fail
eventually, producing a bug.”

But the novice was not satisfied. “What if the operating system
did not fail?” he asked.

“There is no operating system that does not fail,” said the
master, “but if such a one existed, the hardware would fail
eventually, producing a bug.”

The novice still was not satisfied. “What if the hardware did not
tail?” he asked.

The master gave a great sigh. “There is no hardware that does
not fail,” he said, “but i such a one existed, the user would
want the program to do something different, and this too is a
bug.”

A program without bugs would be an absurdity, a nonesuch. If

there were a program without any bugs then the world would
cease fo exist.

Geoffrey James
The Zen of Programming

Foreword

Some early enthusiastic but misguided advocates of object-oriented program-
ming (OOP) dismissed testing in the erroneous belief that the adoption of OQOP
would so reduce the incidence of bugs that testing would no longer be needed.
We first heard similar claims two generations ago in the context of adopting
Cobol as a standard programming language. More recently, CASE failed to de-
liver on its promise despite clear productivity advantages. For all three, Cobol,
CASE, and lately OO, if adoption of the paradigm were to increase productiv-
ity to the point where there would be no labor in code creation, all that would
be left would be testing and debugging—consuming 100 percent of the labor
content. As was learned over decades of sometimes bitter experience for ptoce-
dural programming languages, every advance has a price. In the case of OO, the
very things that lead to greater flexibility, robustness, generality, and produc-
tivity are also the things that conspire to make testing, if not more difficult, then
at least more challenging.

Nearly everything we have learned about testing procedural language pro-
grams also applies to testing OO implementations. Object-oriented testing, as
exposited in this book, is built on that infrastructure. However, the emphasis
and effectiveness of various test techniques is different for OO. For example,
one might never have reason to use either daraflow testing or finite-state ma-
chine testing for an application written in a procedural programming language:
for an application that exploits what OOP has to offer, the use of these tech-
niques is inescapable. In addition, the relative emphasis on unit and integration
testing changes. In procedural languages, unit testing is of primary importance
and integration testing is secondary. In OOP, the relative importance is re-
versed.

Object-oriented programming also brings new problems for testers, prob-
lems that are not to be found in procedural programming. Of these, polymor-
phism, inheritance, and dynamic binding are the most problematic—and they
are at the heart of OO. Some of the early research on OO testing was distinctly

XXXV

xxxvi Foreword

pessimistic—going so far as to say “What’s the use of OO? We can never test it
properly, and probably never really debug it.” Both the research community
and astute practitioners of QOP were not willing to accept that. What has
emerged from those communities’ mutual concerns is an approach to testing
OO software that uses new techniques and/or old techniques reworked to fit
the new paradigm. This knowledge, however, for the most part, has been inac-
cessible to the practitioner; it lay scattered among hundreds of research papers
or in the largely unpublished folklore of OOP. Binder has rectified this gap in a
skillful exposition of research results tempered by the harsh realities of practice
in an edifice that provides methods and techniques for OOP, while building
on a solid foundation of what has been proven through decades of use in pre-

vious programming paradigms. This book, I believe, provides the missing half
of OOP—the testing half.

Boris Beizer
Abington, Pennsylvania

Preface

What Is This Book About?

Testing Object-Oriented Systems is a guide to designing test suites and test
automation for object-oriented software. It shows how to design test cases for
any object-oriented programming language and object-oriented analysis/design
(OOA/D) methodology. Classes, class clusters, frameworks, subsystems, and
application systems are all considered. Practical and comprehensive guidance is
provided for many test design questions, including the following:

* How to design responsibility-based tests for classes and small clusters
using behavior models, state-space coverage, and interface dataflow
analysis.

¢ How to use coverage analysis to assess test completeness.

¢ How to design responsibility-based tests for large clusters and sub-

systems using dependency analysis and hierarchic state models.

How to design responsibility-based tests for application systems using

OOA/D models.

How to automate test execution with object-oriented test drivers, stubs,
test frameworks, and built-in test.

This book is about systems engineering and software engineering as much
as it is about testing object-oriented software. Models are necessary for test de-
sign—this book shows you how to develop testable models focused on pre-
venting and removing bugs. Patterns are used throughout to express best
practices for designing test suites. Tools implement test designs—this book
shows you how to design effective test automation frameworks.

XXXvii

XXXViii

Is This Book for You?

This book is intended for anyone who wants to improve the dependability of
object-oriented systems. The approaches presented range from basic to ad-
vanced. I've tried to make this book like a well-designed kitchen. If all you want
is a sandwich and a cold drink, the high-output range, large work surfaces, and
complete inventory of ingredients won’t get in your way. But the capacity is
there for efficient preparation of a seven-course dinner for 20 guests, when you
need it.

[assume you have at least a working understanding of object-oriented pro-
gramming and object-oriented analysis/design. If you’re like most OO develop-
ers, you’ve probably specialized in one language (most likely C++ or Java) and
you may have produced or used an object model. I don’t assume that you know
much about testing. You will need some background in computer science and
software engineering to appreciate the advanced material in this book, but you
can apply test design patterns without specialized theoretical training.

You'll find this book useful if you must answer any of the following
questions.

e What are the differences between testing procedural and object-oriented
software?

¢ D’ve just written a new subclass and it seems to be working. Do I need
to retest any of the inherited superclass features?

¢ What kind of testing is needed to be sure that a class behaves correctly
for all possible message sequences?

® What is a good integration test strategy for rapid incremental
development?

¢ How can models represented in the UML be used to design tests?

¢ What can [do to make it easier to test my classes and applications?
* How can I use testing to achieve greater reuse?

* How should I design test drivers and stubs?

¢ How can I make my test cases reusable?

¢ How can I design a good system test plan for an QO application?
¢ How much testing is enough?

The material here is not limited to any particular OO programming lan-
guage, OOA/D methodology, kind of application, or target environment. How-

Preface

Preface

XXXiX

ever, I use the Unified Modeling Language (UML) throughout. Code examples
are given in Ada 95, C++, Java, Eiffel, Objective-C, and Smalltalk.

A Point of View

My seven-year-old son David asked, “Dad, why is your book so big?” I'd just
told David that I'd have to leave his baseball game early to get back to work on
my book. I wanted to explain my choice, so I tried to be clear and truthful in

answering. This is what I told David at the kitchen table on that bright summer
afternoon:

Testing is complicated and I'm an engineer. Making sure that things work right is
very important for engineers. What do you think would happen i our architect
didn't make our house strong enough because he was lazy? It would fall down
and we could get hurt. Suppose the engineers at GM did only a few pages’ worth
of tesfing on the software for the brakes in our car. They might not work when we
need them and we'd crash. So when engineers build something or answer a
question about how to build things, we have to be sure we're right. We have to
be sure nothing is left out. It takes a lot of work.

As 1 was speaking, I realized this was the point of view I'd been struggling to
articulate. It explains why I wrote this book and the way I look at the problem
of testing object-oriented software. Testing is an integral part of software engi-
neering. Object-oriented technology does not diminish the role of testing. It
does alter some important technical details, compared with other programing
paradigms. So, this is a large book about how testing, viewed as software engi-
neering, should be applied to object-oriented systems development. It is large
because testing and object-oriented development are both large subjects, with a
large intersection. By the way—David hit two home runs later that afternoon
while I was torturing the truth out of some obscure notions.

Acknowledgments

No one who helped me with this book is responsible for its failings.! Dave
Bulmaq, Jim Hanlon, Pat Loy, Meilir Page-Jones, and Mark Wallace reviewed
the first technical report about the FREE methodology [Binder 94].

In 1993, Diane Crawford, editor of Communications of the ACM, accepted
my proposal for a special issue on object-oriented testing, which was published
in September 1994. The contributors helped to shape my views on the rela-
tionship between the development process and testing. Bill Sasso (then with
Andersen Consulting and now answering a higher calling) sponsored a presen-
tation where questions were asked that led to development of the Mode
Machine Test pattern (see Chapter 12). Bob Ashenhurst of the University of
Chicago, James Weber, and the rest of the Regis Study Group raised more fun-
damental questions: What is a state? Why should we care about pictures?

The following year, Marie Lenzie, as editor of Object Magazine, accepted
my proposal for a bimonthly testing column. Since 1995, writing this column
has forced me to transform often hazy notions into focused, pragmatic guidance
six times each year. Lee White of CASE Western Reserve University and Martin
Woodward of the University of Liverpool, editors of the journal Software
Testing, Verification, and Reliability, encouraged my work in developing a com-
prehensive survey, patiently waited, and then allocated an entire issue to its
publication. Writing the survey helped to sort which questions were important,
why they were asked, and what the best available thinking did and did not
answer.

My publications, conference tutorials, and professional development semi-
nars on object-oriented testing served as a conceptual repository and proving
ground. Many of these materials, with the necessary changes, have been reused
here. The cooperation of RBSC Corporation, SIGS Publications, the ACM, the
IEEE, and Wiley (U.K.) is appreciated in this regard (see Sources and Credits

1. John Le Carre crafted this concise statement about assistance he received on The Taslor
of Panama. 1 can’t improve on it.

xli

xlii

Acknowledgments

that follow for details). The real-world problems and questions posed by my
consulting clients and thousands of seminar participants have been humbling
and constant spurs to refinement.

The patient support of Carter Shanklin and his predecessors at Addison-
Wesley kept this project alive. Boris Beizer’s steady encouragement, suggestions,
and acerbic critiques have been invaluable.

Several adept programmers suggested code examples or helped to improve
my own: Brad Appleton (C++ in the Percolation pattern and elsewhere), Steve
Donelow (Objective-C built-in test), Dave Hoag (Java inner class drivers), Paul
Stachour (Ada 95 assertions and drivers), and Peter Vandenberk (Objective-C
assertions).

Drafts of patterns, chapters, and the entire book have been reviewed by
many people. | am very grateful for the reviewers’ thoughtful and detailed
feedback. Elaine Weyuker helped to debug my interpretation of her Variable
Negation strategy presented in Chapter 6. Brad Appleton and the Chicago
Patterns Study Group held two pattern writer’s workshops that focused on the
test design pattern template and early versions of the Invariant Boundary and
Percolation patterns. Ward Cunningham commented on an early draft of the
test pattern template. Several people reviewed test patterns based on their work:
Tom Ostrand (Category-Partition), John Musa (Allocate Tests by Profile), and
Michael Feathers (Incremental Testing Framework). Derek Hatley reviewed an
early version of Combinational Logic (Chapter 6); Lee White, Regression
Testing (Chapter 15); Doug Hoffman, Oracles (Chapter 18); and Dave Hoag,
Test Harness Design (Chapter 19). Anonymous reviewers of an early version of
the manuscript pointed out many opportunities for improvement. Brad Apple-
ton, Boris Beizer, Camille Bell, Jim Hanlon, and Paul Stachour reviewed the en-
tire final manuscript and provided highly useful commentary.

Finally, thanks to Judith, Emily, and David for years of support, patience,
and encouragement.

Sources and Credits

Some of the author’s previous publications have been reused or adapted under
the terms of the copyright agreements with original publishers of Object Maga-
zine, Component Strategies, Communications of the ACM, and the Journal of

Software Testing, Verification and Reliability. See the Bibliographic Notes sec-
tion in each chapter for specific citations.

Acknowledgments xliii

The other sources, citations, and applicable permissions for the materials
quoted on this book’s epigraph page and chapter opener pages follow.

Epigraph Page From Geoffrey James, The Zen of Programming (Santa Monica:
Info Books, 1988), Koan Two. Reprinted by permission of Info Books.

Chopter 2 From Lewis Carroll, Alice in Wonderland (Project Gutenberg etext
Edition, 1994). In the public domain.

(hapter 3 From Michael A. Friedman and Jeffery M. Voas, Software Assessment:
Reliabiliry, Safety, Testability (New York: John Wiley & Sons, Inc, 1995), page
26. Reprinted by permission of John Wiley & Sons, Inc.

Chapter 4 Attributed to Edward A. Murphy, Jr., an engineer working on U.S. Air
Force rocket-sled experiments. Sixteen accelerometers were attached to a test
subject as part of the instrumentation. Each could be attached in two ways, but
only one was correct. Murphy made this observation after discovering that all
16 connections were wrong. The statement was repeated by Major John Stapp
at a subsequent 1949 news conference. In the public domain.

Chapter 7 From Lewis Carroll, Through the Looking Glass (Project Gutenberg
etext Edition, 1994). In the public domain.

Chopter 8 A “ha-ha, only serious” slogan often repeated by Professor Robert
Ashenhurst, University of Chicago Graduate School of Business. Printed here by
permission of Robert Ashenhurst. Ashenhurst notes that, “My quote is in fact
parallel to a saying by philosopher W.V.0. Quine, ‘No entity without identity.’
Although he was speaking in the context of ontology (part of the preoccupation
of the branch called analytic philosophy), it is actually also apropos for object
modeling without a change in wording, using the concepts ‘entity’ (= object)
and ‘identity’ (= system id) as they are understood on the OO context.”

Chapter9 As quoted in Daniel A. Yergin and Joseph Stanislaw, The Commanding

Heights (New York: Simon & Schuster, 1998), page 195. Reprinted by permis-
sion of Simon & Schuster.

Chapter 11 From Brian Marick, The Craft of Software Testing: Subsystem Testing
Including Object-based and Object-oriented Testing (Englewood Cliffs, NJ:
Prentice Hall, 1995), page 342. Reprinted by permission of Pearson Education.

xliv Acknowledgments

(hapter 14 From H. Tredennick (trans.), Aristotle’s Metaphysics (Cambridge,
MA: Loeb Classical Library, Harvard University Press, 1933). Reprinted with
no objection from Harvard University Press.

Chapter 15 From Eric Raymond, The New Hacker’s Dictionary (Cambridge, MA:
The MIT Press, 1991), page 205. Reprinted by permission of The MIT Press.

Chapter 17 At a White House Press Conference, December 1987, President
Ronald Regan said: “Though my pronunciation may give you difficulty, the
maxim is, ‘doveryai, no proveryai’—Trust, but verify.” See George Schultz,
Turmoil and Triumph: My Years as Secretary of State (New York: Charles
Scribner’s Sons, 1993). The Russian proverb translates as the imperative “trust,
but verify,” which rhymes in spoken Russian. My thanks to Nadya Moiseeva,
Oksana Deutsch, and Igor Chudov who verified the spelling and translation in

response to a query in soc.culture.russian.moderated.newsgroup. In the public
domain.

Chapter 18 From The Histories (ISBN: 0460871706, J. M. Dent) by Herodotus,
translated by George Rawlinson, edited by Hugh Bowden. Copyright © 1992,
J. M. Dent. Reprinted by permission of Everyman Publishers PLC.

Trademarks

Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

ENVY is a registered trademark of Object Technology International Inc.
(OTI). OT1 is a wholly owned subsidiary of IBM Canada, Ltd.

NeXT, the NeXT logo, NEXTSTEP, NetInfo, and Objective-C are regis-
tered trademarks of NeXT Software, Inc.

Solaris is a trademark of Sun Microsystems.

Brief Contents

Part | PRELIMINARIES

Chaper |
Chapher 2
Chapter 3
Chapter 4

A Small Challenge

How to Use This Book

Testing: A Brief introdudion

With the Necessary Changes: Testing and Object-oriented Software

Part Il MootLs

Chapler 5
Chapter 6
Chapter 7
Chapter 8

Test Models

Combinational Models
State Machines

A Tester's Guide to the UML

Pagy I ParTemss

Chapter 9
Chapier 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

Resuls-orientsd Test Strategy
Closses

Reusable Components
Subsystems

Integration

Application Systems
Regression Testing

n
a

109
m

1
175
269

315
7

M7
525

627

ns

755

vi

Pazr IV Toots

Chapter 16
Chapter 17
Chapter 18
Chapter 19

L T e S e

Test Automation
Assartions

Orodes

Test Harness Design
Appendix

Glossary
References

index

Brief Contents

9
801

807
N7
957
1065
1073
me
14

