UML Y5 i o] X % 3 il 3% Bl A 5

E XECUTABLE UML
BN

ExecutasLe UML

A FOUNDATION FOR
MODEL-DRIVEN ARCHITECTURE

STEPHEN J. MELLOR

MARC J. BALCER

BOOCH
A JAC0BSON
R RUMBAUGH

=p 4 4 & B &

WWW.Sciencep.com

UML & s ¢ Z Xt #6 A4

Executable UML A&

Stephen J. Mellor
Marc J. Balcer

45 8 B i
i =

T o Ve Gy P P

" & & T

Executable UML 8K FF R BUKE) - THEAKRD), KHHMEEMA LR, AHE -HARBCT
WA, i, AR UML 3R R e s PRI . il UML ™kl g gy, wldll
TRATREAY, R UK ET BT AANRY, ARl | Executable UML BE%U 45 1 883 /3 U R AU ¥
£ . WMEEEEH XS MBI MR, PRt T AFRBGIKRRER. 55, ek
ST AMEE, BUE P E T BRI LU B PR R I AR

ABESRME R BOE AN .

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Executable UML: A Foundation for Model Driven Architecture, 1™ Edition by
Stephen J. Mellor and Marc J. Balcer, Copyright©2002

ISBN 0-201-74804-5

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

B e AR SCRIEE A (AEESEEE. 80T BIX AR E X)) #ERT.
AL BRI FS Pearson Education(¥5 4 8 H HAUER)BOLH hin%. LREEABHIH.
B7-:01-2003-2537

EHB ERRE (C1P) BUR

Executable UML 1 A 4 #=Executable UML: A Foundation for Model-Driven Architecture/ (%)
¥ (Mellor,S.J.), () B/R¥E (BalcerM.J.) E—EEIA, —Jbgt: M2EdMit, 2003
ISBN 7-03-011401-9

[.E... 11.O..OFE... lLEHEYREE-UML—EF&IF—&C [V.TP312
I A A e P CIP e 7 (2003) 5 030824 &

Rk RRE/TIEHRE: FRE
AL SAR/HELIH AFALPHRITE
5 & B o#*& IR
x4 @i 16
R4 #4: 100717
http:// www . sciencep.com

sk %M ER
MEHBART SHFEDELE

*
20035 A% —‘m FA: 787X960 1/16
2003 4F- 5 A —REIR E3k: 25
. 1—2000 ‘7¥: 478 000

TEH: 45.00 5T
(EEEERAE, REAFRFERSIE)

T U

RIS

Bt EAURE H M RER TR R 1R m AAS O P52 TR, HW BB EARY K. &
LN DL (R Bt At R, BRI 2y X R AR BN AR O MUK AR
K. 20 HE 60 LA AL AN TE BRI B FE R TR B VT &
FIBYE. FREMGFEFTEM 60 FEREL TR SHF 1AL, WU 70
ACEE AL TR ik 80 AFARRII SR C R R e, BRI XT R AT R k.

T [% SR WK PF R 77 R AE S A L AR TG RVR e M 0 R R R A Ak R I
WX, EEAg. 7. %K. HEEALARGEEIS . R H b
B R 2 U AL AR ROR , IR AR FEM T SMAEL. R ARk T
BFOHES . LUR X &R RIRYBLEfD , TR T 16 1m0 R B i it

20 th42 80 ALK 90 HAH), Hofs B 7 IL R o) 3 R A BT vk Hop,
Booch, Coad/Yourdon ,OMT H1 Jacobson % J7 {455 T il n] M G B4 & R) 1ZiAn] .
H R A S A RS R AR, BIEMSMF. & RHER FYERRL
WARF. B 90 FRAR KRR BHFE. ATTERARFIANE G %A HA
S, NAEEAESBRNREE, Rz ER TGS, oMy
B RBARRKER . FRTH SR TUME. TEXMEN T . 5 -@FnE
(UML)F 90 HAL R ARz A=

UML #)/-E 8 AH A mE S RE LS G Booch, J. Rumbaugh Fi1 I
Jacobson BB f1A1E. MM S R Rl T A A A EREES, f UML MBS
PR M T UM —Morik, H AR T R P SHE St - 28
LA, UML AR AR RERAUGREE FREROBLES, SFRAMERRL,
2R — BRI AR . 1997 4E 11 J] UML 8 OMG 44 (E U R AR Ay Esng
H. AR R LA PR R & R L E R REGE F B AR

UML 7EIREEANE A E L mdu i 7R RH T4 DUER RO TFmib 8 5 1:m
EREERUCERE AU CHEEEES, ML FERRARIRES . iR e
X SRBEERHFI T A . UML DL —FREEHE S MBS, R A ir—ut
BARREN. REEFNEFTENABER LA TSN, (HeEX Hmirmss
T ATE 945 P Iy vk ok EL A -

M UML R RA IR, 23 TiHEI WA ER, OMG #RN AT L ¥
RSB HE BT br EO T FRAER AL, S A B B . S

A 5 s s LM AN e n e N s e —

i Executable UML 3 K A &

TN AU SRR RN ARG R, MERGERE . BESERRSE . i A UER &R
8. i RS BRERME . IR s TG/ TR . BURET . JRE M,
FOEA % il W S AR FiH BV, BT HFIE3 M Rgt, () insd
PR b AL FAAR . s I s ST PR HE

f£ UML Bhge R A LA S, BEBIE T AT — MRA PRGBSI . Mgk
A5 §) UML2.0 AR AR 2% UML #9 X —RE KBS . %R UML [F0E 5 Rk .
AL KRR E IR, LR TRMIRMCE R I,

AMNBWR TS HE AR AR UML AR 12 445, SO 1) SR 48 R ST Y
KREEHLL L UML BIEPIRshs . S0 ot i i xR s ris A o L 5 1X
FILAS: (ERMRRAGEWERIT) FEITe T EMMROEARS . S8,
KARE . SR BRI Bk F 450 AL TUAE R T 1) % R B AR U b 4 g 3t
WHIR S (H UML TS R BE D FENP T HEH M ROTREL. MR
MrB . M B GBI L SBR (RBAGEE) N8 T sy e
R EEFENESERE S EAR; (UML G RIEH Hal) i E T28 JLiy i)
Xt 52 FHE AR A MR .

W K UML 7645 Uiz A XA LA . (UML SR RS R) iHE 1T 78
I RGEIT AT EXT UML AT AR ; (A UML #92 Web N Y) ifig 1ig
JH UML 3#17 Web b FIEBEFTROLTE BBCR 54 (BRI R AWK : S5, 0

FHD) AR 8 UML R T] X R 40T BT R B4R M ik b5 1 (R
Fafd . HEZRYS UML B) 18 T andalsz B UML A if iy 3o 2 f 3a AR—— A - HE 204
AEEH AR (UML 5 Visual Basic B FIFF TR) T91HE T M UML BRI F|
Visual Basic &3 (38 SRS Bk .

N RE R RBEHEAROARA . (COM FFOL) M (ATL BEARNSEY . &%
AT W8 X R AR AR——COM 1 ATL BRI AT SEAR NS

H —A (Executable UML i RINEE) . XA BAH T HHFT UML AYBEES HSE
FREAR, AR M50 IE SRR B ARES Y B S AE R N AT B, AR A T R
) —FhHr R ‘

82, TEVRERAONEES TIERAAE GRS S BREN T HRR, [
At A R R U AR R R | SRR RANE TIRARIN R, FRNFCKE &
B TRIASUR. AT, E—-AERL M

ALETU, FrnRAESEPARRENEZEREXED. SARRE. FI .

FTRFIHENE B L

Foreword

Creating a modeling language that is also an executable language has long
been a goal of the software community. Many years ago, in 1968 to be
exact, while working with software components to successfully develop a
telecommunications system, we created a modeling language that was the
forerunner to UML. To model components we used sequence diagrams,
collaboration diagrams, and state transition diagrams {a combination of
state charts and activity diagrams). Our modeling language then seam-
lessly translated the component models into code. Each code component
was in its turn compiled into an executable component that was deployed
in our computer system. The computer system was a component manage-
ment system—thus we had “components all the way down.”

Thanks to the seamless relation between the modeling language and the
programming language, almost 90% of the code could be generated.
Changes in the code could translate into models. However, this had to be
done manually, because at that time we didn't have the tools to do the job.
It was almost a clerical event. We called it a job for monkeys. Of course, |
asked myself the question, if we only need the programming environment
to create 10% of the code, do we really need two languages? Couldn't we
integrate the modeling language and the programming language and
make one language with a visual as well as a textual syntax and with com-
mon semantics. Having such a powerful language would dramatically

xix

XX

FOREWORD

eliminate work and it would make life more enjoyable to the developers.

In 1980, I suggested this move in writing as a next step in the development
of our products.

Several years latter, the International Telecommunication Union (ITU),
headquartered in Geneva, created a standard for object modeling, known
as the Specification and Description Language (or SDL). SDL was very
much inspired by the modeling language we were using in developing our
telecommunication system. We referred to it as “The Ericsson Language”.
In the early 1980s we added to SDL constructs to formally define aigo-
rithms and data structures. It was very simple, but at last we had a lan-
guage that would allow us to execute our design models long before these
models had been translated into a programming environment.

Steve Mellor and Marc Balcer now move the concept of “executableness”
a step further. Steve in particular, advances the idea of making an abstract,
platform independent, executable model of a software system which then,
with specially designed tools (bridges), generates or transforms the model
into executable software to run on target computer systemns. The specially

designed tools transform platform independent models to platform
dependent code.

Steve has long been an advocate of this idea. | remember that Steve was on
a panel discussing this several years ago. He was met by a lot of skepticism
by other panelists. After the panel I told him, “There is in my mind no
doubt that you will be proven right—in particular for a small stereotypical
class of systems, but it may take 25 years to get there for the majority of
software development.” After five more years and all the work done by
Steve and others, I think we can get there even sooner.

Steve has now moved his work from Shlaer-Mellor notation to UML as the
base modeling language. He has been the driving force behind the work
on action semantics in UML, which was the missing piece to make UML
an executable language. This is now part of the OMG standard for UML.
He has gone even further. His work on transforming from a platform inde-
pendent executable model to executable code via bridges is one of the cor-

nerstones on which rests the OMG’s new initiative; Model Driven
Architecture (MDA).

FOREWORD Xxi

However, to quote Winston Churchill, “This is not the end. It is not even
the beginning of the end. But it is, perhaps, the end of the beginning.”
Having an executable UML for modeling platform independent software
is a great step forward. We can work on abstract models, validate (debug if
you want) them early before we introduce the platform dependencies and
make sure that the system behaves functionally as expected. However, |
believe we need to take one step further to eliminate a very expensive
impedance in software development. We should move forward and design
the missing link to make UML the language to also execute platform
dependent software, to make UML a third generation language that even-
tually will replace existing programming languages. This is not a technical
problem. This could be done today if the big platform vendors wanted to
do it. We would eliminate the two-language problem (having both a mod-
eling language, UML, and a programming language like C# or Java). We
would get a language that would be both. A language that would be used
for use cases, for platform-independent design, for platforn dependent
designs whether this would be done by transformers as Steve advocates or

by doing the job by interconnecting components—some of which being
new, some of them already being harvested.

Getting an executable UML—to be used both for platform independent
models as Steve and Marc describe in this book and for platform depen-

dent ordinary source code—will be an important step in the future of soft-
ware development.

Ivar Jacobson

Preface

At one time, the title for this book was Executable UML For Model-Driven
Architectures (MDA) Using Aspect-Oriented (AQO) Techniques with Extreme
Programming (XP), Agile Modeling (AM), and Other Agile Alliance (AA)
Processes as an Instance of the Rational Unified Process (RUP).

Eventually, we settled instead on Executable UML: A Foundation for
Model-Driven Architecture. This title is snappier, but it's not as fully
buzzword-compliant as the original.

So what is this Executable UML? It is a profile of UML that allows you, the
developer, to define the behavior of a single subject matter in sufficient
detail that it can be executed. In this sense, the model is like code, but
there’s no point in writing “code” in UML just to rewrite it in Java or C++,

so it's rather more revealing to examine what executable UML doesn't say
that code might.

An executable UML model doesn't make coding decisions. It makes no
statement about tasking structures; it makes no statement about distribu-
tion; it makes no statement about classes or encapsulation. An executable
UML model describes only the data and behavior, organized into classes
to be sure, about the subject matter at hand. In other words, an executable

xxiii

XXiv

PREFACE

UML developer describes subject matters at a higher level of abstraction
than she would in a programming language.

To build a system, we build an executable UML of each subject matter.
Typically, the system includes subject matters such as the application, a
user interface, and some general services. The executable UML models for

each of these subject matters are then woven together by an executable
UML model compiler.

The model compiler targets a specific implementation embodying deci-
sions about “coding:” tasking structures, distribution, data structures
(which may be quite different from that suggested by the class structure),
as well as the language. Model compilers can be extremely sophisticated,
taking care of cross-cutting concerns such as transaction safety and roll-
back, or they can be sophisticated in a different way, targeting small foot-
print embedded systems with no tasking or other system support.

In general, a model compiler compiles several executable UML models,
each of which captures a single cross-cutting concern to yield the running
system. In this sense, executable UML makes use of the concepts in
aspect-oriented programming.

Executable UML models support a new Object Management Group initia-
tive, Model-Driven Architecture (MDA). This initiative is in its early stages,
but its goal is to allow developers to compose complete systems out of
models and other components. This goal requires at least an interface as
contract and, behind the interface, the ability to express a solution with-

out making coding decisions. That would be executable UML, or some
variation.

This book does not describe model-driven architecture or its implications.
Rather, this book focuses on one aspect of MDA that we believe to be criti-
cal: the ability to model whole subject matters completely and turn these

models into systems. This ability, we believe, relies on being able to exe-
cute models. Hence executable UML.

Because the developer builds models as executable as a program for each
subject matter, all the principles of extreme programming and agile pro-

cesses can be applied. Indeed, many of the principles of these processes
having nothing to do with coding per se.

PREFACE XXV

You can use executable UML in a deliberate process or, because the mod-
els are executable, an agile one. Our preference is agile and incremental
because it keeps the focus on delivering working software.

And what about RUP? As one of our reviewers, Martin Fowler, so memora-
bly said: “My biggest concern with RUP is that it's so loose that any process
seems to qualify as an instance of RUP. As a result, saying you're using RUP
is a semantics-free statement.” So we can reasonably assert that the pro-
cess described by this book is an instance of RUP. (And if you want, we do.)

Frequently Asked Questions

Is this the only possible Executable UML? No. This rendition views each
object as potentially having a state machine that can execute asynchro-
nously and concurrently. We view this approach as necessary for today’s
distributed computing environments. However, one could define an exe-
cutable UML that relies on synchronous method calls between objects to
produce a completely synchronous model of the subject matter. Similarly,
our particular use of the statechart diagram is not the only possible one.

Is Executable UML a standard? Yes and No. The notational elements you
see in this book conform to UML, and so qualify as a profile of that stan-
dard. In addition, the execution semantics defined here conform to UML,
though we do both subset UML and impose certain rules to link the ele-
ments together. What is not yet a standard is the exact content of what can
and should be interchanged so that we can guarantee that any and all

model compilers, irrespective of vendor, can compile any arbitrary exe-
cutable UML model.

Throughout this book, we use standards as much as they are established.
In some areas, the book is intended to provide a basis for discussion of
what should ultimately become a standard.

Will there be a standard one day, and how might it differ? Yes, we hope
so. Work has begun informally to define a standard and we will encourage
and support it. We expect the standard to define an underlying semantics

quite similar to that outlined here, and to layer increasingly rich syntax on
top.

Xxvi

PREFACE

Does that mean I should wait? Not at all. This technology is taking off,

and the basic elements are already established. Get ahead of the learning
curve.

I know hardly anything about UML. Is this book too advanced for me?
We assume you have an intuitive understanding of the goals behind UML,

but nothing more. We will show you all the elements you need to build an
executable UML model.

I'm a long-time UML user. Do I need this book? If you want to garner the
benefits of Executable UML, then you'll have to learn the elements that
make it up. Focus on the definitions we use and the chapters that show
how to build and execute models. Skip the notational stuff. Be prepared to
unlearn some UML and habits of mind required to model software struc-
ture, but not required to specify an executable model.

What happened to adornments such as aggregation or composition? We
don’t need them for Executable UML. UML enables you to model software

structure, but that’s not our purpose here, so those adornments, and many
others, are not in our profile.

Some of this seems familiar. Is this just Shlaer-Mellor in UML clothing?
Shlaer-Mellor focused on execution and specification of an abstract solu-
tion, not on specifying software structure. UML can be used for both the
expression of software structure and the abstract model. Executable UML
brings Shlaer-Mellor and UML together by using UML notation and incor-

porating concepts of execution. We hope this will make execution accessi-
ble to a broader community.

I've used Shlaer-Mellor before. Is this any different? A lot can happen in
this industry in ten weeks, let alone the ten years since the publication of
Object Lifecycles. First of all, of course, we all now use UML notation and
vocabulary. (Resistance was futile.) Executable UML takes a more object-
oriented perspective, no longer requiring identifiers or referential
attributes, or other traces of Shlaer-Mellor’s relational roots.

The addition of an action semantics to the UML is a major step forward.
We hope the action semantics, and the very concept of an executable and

translatable UML may one day be seen as a significant contribution of the
Shlaer-Mellor community.

PREFACE Xxvii

Progress in tools has also made certain conventions, such as event num-

bering, less critical to model understanding, though they are still helpful
in keeping our minds clear.

Why do you say “Action Semantics?” Because UML defines only the sem-
antics of actions, it does not define a language.

But how can you execute without an action language? We use an action
semantics—conforming language that is executable today. We show several
other action languages to illustrate that syntax is unimportant.

You use an Online Bookstore case study. Can I use this if I'm a real-time
developer? Yes. We chose a more IT-oriented case study to increase the
reach of the approach. You can find a completely worked out real-time
case study in Leon Starr’s book Executable UML: The Elevator Case Studly.

How can I get an Executable UML tool? All of the examples in this book
were developed using Project Technology’s tool, BridgePoint. A copy of

BridgePoint can be downloaded from the book’s website, www.execut-
ableUMLbook.com.

How is this different from the old “draw the pictures, get some code” CASE
tools? There are two main differences. First, compiling models produces
the whole system, not just interfaces or frameworks. Second, there are
many different model compilers available to buy, and even more that can
be built, to meet exacting software architecture needs.

Where has Executable UML been used? Executable UML has been used to
generate systems as large as two million lines of C++, and as small as
handheld drug delivery devices. Executable UML has also been used in

lease-origination, web-enabled executive reporting, and intermodal
transportation logistics systems.

Why did you write this book? Because we had nothing better to do? No:
There are lots of books out there that tell you about UML notation, but few
of them focus on the subset you need for executability. Many books use
UML to describe software structure. We explicitly spurn this usage.

XX viii

PREFACE

Why should I buy this book? Because it describes completely everything
you need to know about executable UML: It's the Executable UML hand-
book.

Stephen J. Mellor
San Francisco, California

Marc J. Balcer
San Francisco, California

March 2002

Acknowledgments

First and foremost, we must acknowledge our debt to the late Sally Shlaer.
She started this ball rolling in the mid-1970s with a project that generated
FORTRAN from a set of primitive data and program files, with daily builds
and—perhaps astonishingly—many of the trappings of today'’s agile pro-
cesses. The system, a radiation treatment facility, had only five bugs in its
first full system test. None lasted over forty-eight hours. And a good job
too, given the subject matter. We deeply miss her warmth, her unparal-
leled concern for people, and especially her steel-trap mind.

In our work together in the late eighties, we focused on objects as an orga-
nizing principle for describing data and behavios, culminating in the two
Shlaer-Mellor books. Execution was then, and is now, the goal. Since then,
of course, the UML has become the lingua franca of object modeling, but
the UML, until the recent past, has not been executable. This book is

intended to link together the executable ideas of Shlaer-Mellor with the
universality of UML.

Someone, someday, should write a paper about the four stages of review
and how they correspond to the four stage of grief. First there’s disbelief,
then denial, then bargaining, and finally acceptance. The paper should
discuss the correspondence between “denial” and the abuse heaped upon

XXix

XXX

ACKNOWLEDGEMENTS

the reviewers as it becomes all too clear that the work needs to be revised.
Fortunately, we didn't send too many of the hate mails we composed.

The table below lists our unfortunate reviewers. Those reviewers marked
with a * were a part of the formal review team. We thank them all for their
sterling efforts and apologize profusely to their burning ears.

* Conrad Bock Mark Blackburn Alistair Blair

* Dirk Epperson Scott Finnie * Martin Fowler

* Takao Futagami Kazuto Horimatsu Yukitoshi Okamura
* Edwin Seidewitz * Leon Starr *William G. Tanner

We would especially like to thank Conrad Bock, Director of Standards at
Kabira Technologies, one of the few people worldwide who has the whole
UML in his head, who provided a most detailed—and so, if he'll forgive us,
an especially annoying—review.

We would like to thank the many talented analysts and developers at
ThoughtWorks (http://www.thoughtworks.com), including Chief Scien-

tist Martin Fowler, for keeping our focus on executability and its impact
on agile development.

Our thanks, too, to William G. Tanner, Software Development Manager at

Project Technology, Inc., who is apparently able to review executable
models with a model compiler in his head.

This book would not be possible without the professionalism of the staff at
Addison Wesley. Susan Winer, our copy editor, moved better than 50% of
our commas and performed countless acts of linguistic hygiene. Kate Sal-
iba, who leads the marketing team, has kept the project on track as it
moved into production. John Fuller has been tolerant as we have
attempted to do his job as production editor. Finally, our thanks to Paul
“Eyebrows” Becker, alternately patient and a pain, who has cajoled us into
finishing this project. Authors are not (always) easy to get along with!

Finally, we'd like to thank members of the community who have long
understood the benefits of execution and modeling at a high level of

abstraction. You know who you are, and we wouldn't still be here if it
weren't for you. Thanks.

Contents

Foreword xxiii
Preface xxvii
Acknowledgments xxxiii

Chapter 1 Introduction 1
1.1 Raising the Level of Abstraction 2
1.2 Executable UML 5
1.3 Making UML Executable 7
1.4 Model Compilers g
1.5 Model-Driven Architecture 1
1.6 References 12

Chapter2 Using Executable UML 13

2.1 The System Model 14

2.1.1 Domain Identification 14
2.1.2 Use Cases 16

2.1.3 Tterating the System Model 17

iii

