g |

buted
In

|

o
42
E ads
L2 9
)

)




Distributed Operating
Systems

NHERIBRIERS

Andrew S. Tanenbaum

FHEXFEFHMRA

Prentice-Hall International, Inc.



(R)EEF 1585

Distributed operation systems/ Andrew S. Tanenbaum

© 1995 by Prentice-Hall, Inc.

Original Edition Published by Prentice Hall, Inc.
All Rights Reserved.

For sale in Mainland China Oonly.

Prentice Hall 2 & AUH 4 K2 A P EEA (REFHPESTE U1
ATHEMEGBHX) MR BT EBRRE,

AL I NE, REWREBHF A, ABUEMTRADR. F RN
B,

FBHEHEREXF BB R HIGE, THEEERESNHE,
LR REAUR EEALA RRIES: 01-97-0167

BHZ% R E (cIp) #i8

HARBAERYG . B30/ ()B4 (Tanenbaum, A. SHF. —dbE.E
HK KA, 1996. 12

(REHBENHEFAB ZAR)

ISBN 7-302-02411-1

L. D% I AHRBERE-BSER- B KX
IV.TP316

TP R A P 548 CIP 348 1 (96) 38 25162 &
HRRE « WA R (U RO 4 K22 P 8%, R 4% 100084)
http:// www. tup. tsinghua. edu. cn
BN . WA KR
RITHE: FEBIERELR LT

F A 850x1168 1/32 EPiK. 19.75

B W 19974E 2 AB 1R 2000452 A4 6 KETRI
H# 5. ISBN 7-302-02411-1/TP-1213

El ¥ 16001 ~19000

£ . 30.00 ¢



th kR % #Y &

TR, BRATRZ & R AEMEE B LEE, TR —
T EFCEE B TR ER B R RS R 2
AEZHY S ME R ZRE S B E 2% £ LER
KWHIPHZR . (ERBE TAEH, iR A 5 E SR AT #4700
SABELRAI ST, EHEEMR, #7105 B &R IRA 2 B
XFRRIAE BWRE S . HET I, EE KT Fifiy k2
EHEFRW FH —FHE: TR LB RETF R, [
B, TERPFEIE T X ITIR BRI ER, HEERER
TR R LB IR Sh, AR % i AT 2B R, (3
FXTERE T RA — & JR 438 0SSR S 3 52
o HWMEXTEHTHE, ROIRERE T —#E I B B2
J7 T BeBTRRAS (43 2 B, AT ED L . AL SE R SN 4
L2 ) A DA 2 ) AR B B SE HE K PR BOb B\ T 7 e
B8, DA TSR B8 T 30 FI 45, 415 S 0 T R M B 28 7 A R
S

AT 2 T A0 0 P R NI B R B LR IR
13, SEX0IL R P % 5% BB ) A M2 S T H LB B 2
B LURIRATHE OO LS A B (AR MR B 4, T4
TR BT A ) T B

AR R
CREVEHEEA B HER)) T H 4
1999.6



Preface

With the publication of Distributed Operating Systems 1 have now com-
pleted my trilogy on operating systems. The three volumes of this trilogy are:

® Operating Systems: Design and Implementation
¢ Distributed Operating Systems
® Modern Operating Systems

The three volumes are not completely independent, however. For schools hav-
ing a two-course sequence in operating systems (or an undergraduate course plus
a graduate course), one possible choice is to use Operating Systems: Design and
Implementation in the first course and Distributed Operating Systems in the
second one. : .

The former book treats the standard principles of single-processor systems,
including processes, synchronization, 1/O, deadlocks, memory management, file
systems, security, and so on. It also illustrates these principles in great detail
through the use of MINIX, a UNIX-clone whose source listing is given in an
appendix. MINIX is available on diskette from Prentice Hall for the IBM PC
(8088 and up), Atari, Amiga, Macintosh, and SPARC processors.

The latter book (this one), covers distributed operating systems in detail,
including communication, synchronization, processes, file systems, and memory
management, but this time in the context of distributed systems. Four examples
of distributed systems are given in great detail: Amoeba, Mach, Chorus, and
DCE. Amoeba is available for free to universities for educational use. It runs

xiv



PREFACE xv

on the Intel 386/486, SPARC, and Sun 3 processors. For information on how to
obtain Amoeba please FTP the file amoebalintro.ps.Z from fip.cs.vu.nl or con-
tact the author by electronic mail at ast@cs.vu.nl. Potential users should be
forewarned that Amoeba is considerably more complex than MINIX: the docu-
mentation alone (available by FTP), runs to well over 1000 pages and the system
requires at least five large machines and an Ethernet to run well.

By studying these two books in sequence and using both MINIX and
Amoeba, students will obtain a thorough knowledge of the principles and prac-
tice of both single-processor and distributed operating systems. Now that the
trilogy is completed, I plan to revise MINIX and the book describing it.

For universities or computer professionals with less time available, Modern
Operating Systems can be thought of as a condensed version of the other two
books. It provides an introduction to the principles of both single-processor and
distributed operating systems, but without the detailed example of MINIX. It
also omits many of the advanced topics present in this book, including an intro-
duction to ATM, fault-tolerant distributed systems, real time distributed systems,
distributed shared memory, Chorus, DCE, and other topics. In all, about 230
pages of material on distributed systems present in this book have been omitted
from Modern Operating Systems.

Many people have helped me with this book. I would especially like to
thank the following people for reading portions of the manuscript and giving me
many useful suggestions for improvement: Irina Athanasiu, Henri Bal, Saniya
Ben Hassen, David Black, John Carter, Randall Dean, Wiebren de Jonge, John
Dugas, Dick Grune, Anoop Gupta, Frans Kaashoek, Marcus Koebler, Hermann
Kopetz, Ed Lazowska, Dan Lenoski, Kai Li, Marc Maathuis, David Mosberger,
Douglas Orr, Craig Partridge, Carlton Pu, Marc Rozier, Rich Salz, Mike
Schroeder, Karsten Schwan, Greg Sharp, Dennis Shasha, Sol Shatz, Jennifer
Steiner, Chuck Thacker, John Turek, Walt Tuvell, Leendert van Doorn, Robbert
van Renesse, Kees Verstoep, Ellen Zegura, Willy Zwaenpoel, and the
anonymous reviewers. My editor, Bill Zobrist, put up with my attempts to get
everything perfect with nary a whimper.

Despite all this help, no doubt some errors remain. That seems to be inevit-
able, no matter how many people read the manuscript. People who wish to
report errors should contact me by electronic mail.

Finally, I would like to thank Suzanne again. After eight books, she knows
the implications of another one, but her patience and love are boundless. I also
want to thank Barbara and Marvin for using their computers and leaving mine
alone (except for the printer). Teaching them how to use PC word processing
programs has made me appreciate troff more than ever. Finally. I would like to
thank Little Bram for being quiet while I was writing.

Andrew S. Tanenbaum



Contents

PREFACE Xvi
INTRODUCTION TO DISTRIBUTED SYSTEMS 1
1.1 WHAT IS A DISTRIBUTED SYSTEM? 2

1.2 GOALS 3 '

1.2.1 Advantages of Distributed Systems over Centralized Systems 3
1.2.2 Advantages of Distributed Systems over Independent PCs 6
1.2.3 Disadvantages of Distributed Systems 6
1.3 HARDWARE CONCEPTS 8
1.3.1 Bus-Based Multiprocessors 10
1.3.2 Switched Multiprocessors 12
1.3.3 Bus-Based Multicomputers 13
1.3.4 Switched Multicomputers 14
1.4 SOFTWARE CONCEPTS 15 )
1.4.1 Network Operating Systems 16
1.4.2 True Distributed Systems 18
1.4.3 Multiprocessor Timesharing Systems 20
1.5 DESIGN ISSUES 22
1.5.1 Transparency 22
1.5.2 Flexibility 25
1.5.3 Reliability 27
1.5.4 Performance 28
1.5.5 Scalability 29
1.6 SUMMARY 31



vi

2

CONTENTS

COMMUNICATION IN DISTRIBUTED SYSTEMS 34
2.1 LAYERED PROTOCOLS 35

2.1.1 The Physical Layer 38
2.1.2 The Data Link Layer 38
2.1.3 The Network Layer 40
2.1.4 The Transport Layer 40
2.1.5 The Session Layer 41
2.1.6 The Presentation Layer 41
2.1.7 The Application Layer 42

2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 42

2.2.1 What Is Asynchronous Transfer Mode? 42

2.2.2 The ATM Physical Layer 44

2.2.3 The ATM Layer 45

2.2.4 The ATM Adaptation Layer 46

2.2.5 ATM Switching 47

2.2.6 Some Implications of ATM for Distributed Systems 49

2.3 THE CLIENT-SERVER MODEL 50

2.3.1 Clients and Servers 51

2.3.2 An Example Client and Server 52

2.3.3 Addressing 56

2.3.4 Blocking versus Nonblocking Primitives 58
2.3.5 Buffered versus Unbuffered Primitives 61
2.3.6 Reliable versus Unreliable Primitives 63
2.3.7 Implementing the Client-Server Model 65

2.4 REMOTE PROCEDURE CALL 68

2.4.1 Basic RPC Operation 68

2.4.2 Parameter Passing 72

2.4.3 Dynamic Binding 77

2.4.4 RPC Semantics in the Presence of Failures 80
24.5 Implementation Issues 84

2.4.6 Problem Areas 95

2.5 GROUP COMMUNICATION 99

2.5.1 Introduction to Group Communication 99
2.5.2 Design Issues 101
2.5.3 Group Communication in ISIS 110

2.6 SUMMARY 114



CONTENTS

SYNCHRONIZATION IN DISTRIBUTED SYSTEMS

3.1 CLOCK SYNCHRONIZATION 119
3.1.1 Logical Clocks 120
3.1.2 Physical Clocks 124
3.1.3 Clock Synchronization Algorithms 127
3.1.4 Use of Synchronized Clocks 132
3.2 MUTUAL EXCLUSION 134
3.2.1 A Centralized Algorithm 134
3.2.2 A Distributed Algorithm 135
3.2.3 A Token Ring Algorithm 138
3.2.4 A Comparison of the Three Algorithms 139
3.3 ELECTION ALGORITHMS 140
3.3.1 The Bully Algorithm 141
3.3.2 A Ring Algorithm 143
3.4 ATOMIC TRANSACTIONS 144
3.4.1 Introduction to Atomic Transactions 144
3.4.2 The Transaction Model 145
3.4.3 Implementation 150
3.4.4 Concurrency Control 154
3.5 DEADLOCKS IN DISTRIBUTED SYSTEMS 158
3.5.1 Distributed Deadlock Detection 159
3.5.2 Distributed Deadlock Prevention 163
3.6 SUMMARY 165

PROCESSES AND PROCESSORS IN DISTRIBUTED SYSTEMS

4.1 THREADS 169
4.1.1 Introduction to Threads 170
4.1.2 Thread Usage 171
4.1.3 Design Issues for Threads Packages 174
4.1.4 Implementing a Threads Package 178
4.1.5 Threads and RPC 184
4.2 SYSTEM MODELS 186
4.2.1 The Workstation Model 186
4.2.2 Using Idle Workstations 189
4.2.3 The Processor Pool Model 193
4.2.4 A Hybrid Model 197
4.3 PROCESSOR ALLOCATION 197
4.3.1 Allocation Models 197

118

169



viii CONTENTS

4.3.2 Design Issues for Processor Allocation Algorithms 199
4.3.3 Implementation Issues for Processor Allocation Algorithms 201
4.3.4 Example Processor Allocation Algorithms 203
4.4 SCHEDULING IN DISTRIBUTED SYSTEMS 210
4.5 FAULT TOLERANCE 212
4.5.1 Component Faults 212
4.5.2 System Failures 213
4.5.3 Synchronous versus Asynchronous Systems 214
4.5.4 Use of Redundancy 214
4.5.5 Fault Tolerance Using Active Replication 215
4.5.6 Fault Tolerance Using Primary-Backup 217
4.5.7 Agreement in Faulty Systems 219
4.6 REAL-TIME DISTRIBUTED SYSTEMS 223
4.6.1 What Is a Real-Time System? 223
4.6.2 Design Issues 226
4.6.3 Real-Time Communication 230
4.6.4 Real-Time Scheduling 234
4.7 SUMMARY 240

5 DISTRIBUTED FILE SYSTEMS 245

5.1 DISTRIBUTED FILE SYSTEM DESIGN 246
5.1.1 The File Service Interface 246
5.1.2 The Directory Server Interface 248
5.1.3 Semantics of File Sharing 253
5.2 DISTRIBUTED FILE SYSTEM IMPLEMENTATION 256
5.2.1 File Usage 256
5.2.2 System Structure 258
5.2.3 Caching 262
5.2.4 Replication 268
5.2.5 An Example: Sun’s Network File System 272
5.2.6 Lessons Learned 278
5.3 TRENDS IN DISTRIBUTED FILE SYSTEMS 279
5.3.1 New Hardware 280
5.3.2 Scalability 282
5.3.3 Wide Area Networking 283
5.3.4 Mobile Users 284
5.3.5 Fault Tolerance 284
5.3.6 Multimedia 285
5.4 SUMMARY 285



CONTENTS

6 DISTRIBUTED SHARED MEMORY

6.1 INTRODUCTION 290
6.2 WHAT IS SHARED MEMORY? 292
6.2.1 On-Chip Memory 293
6.2.2 Bus-Based Multiprocessors 293
6.2.3 Ring-Based Multiprocessors 298
6.2.4 Switched Multiprocessors 301
6.2.5 NUMA Multiprocessors 308
6.2.6 Comparison of Shared Memory Systems 312
6.3 CONSISTENCY MODELS 315
6.3.1 Strict Consistency 315
6.3.2 Sequential Consistency 317
6.3.3 Causal Consistency 321
6.3.4 PRAM Consistency and Processor Consistency 322
6.3.5 Weak Consistency 325
6.3.6 Release Consistency 327
6.3.7 Entry Consistency 330
6.3.8 Summary of Consistency Models 331
6.4 PAGE-BASED DISTRIBUTED SHARED MEMORY 333
6.4.1 Basic Design 334
6.4.2 Replication 334
6.4.3 Granularity 336
6.4.4 Achieving Sequential Consistency 337
6.4.5 Finding the Owner 339
6.4.6 Finding the Copies 342
6.4.7 Page Replacement 343
6.4.8 Synchronization 344
6.5 SHARED-VARIABLE DISTRIBUTED SHARED MEMORY 345
6.5.1 Munin 346
6.5.2 Midway 353
6.6 OBJECT-BASED DISTRIBUTED SHARED MEMORY 356
6.6.1 Objects 356
6.6.2 Linda 358
6.6.3 Orca 365
6.7 COMPARISON 371
6.8 SUMMARY 372

ix



X CONTENTS

7 CASE STUDY 1: AMOEBA 376

7.1 INTRODUCTION TO AMOEBA 376
7.1.1 History of Amoeba 376
7.1.2 Research Goals 377
7.1.3 The Amoeba System Architecture 378
7.1.4 The Amoeba Microkernel 380
7.1.5 The Amoeba Servers 382
7.2 OBJECTS AND CAPABILITIES IN AMOEBA 384
7.2.1 Capabilities 384
7.2.2 Object Protection 385
7.2.3 Standard Operations 387
7.3 PROCESS MANAGEMENT IN AMOEBA 388
7.3.1 Processes 388
7.3.2 Threads 391 i
7.4 MEMORY MANAGEMENT IN AMOEBA 392
7.4.1 Segments 392
7.4.2 Mapped Segments 393
7.5 COMMUNICATION IN AMOEBA 393
7.5.1 Remote Procedure Call 394
7.5.2 Group Communication in Amoeba 398
7.5.3 The Fast Local Internet Protocol 407
7.6 THE AMOEBA SERVERS 415
7.6.1 The Bullet Server 415
7.6.2 The Directory Server 420
7.6.3 The Replication Server 425
7.6.4 The Run Server 425
7.6.5 The Boot Server 427
7.6.6 The TCP/IP Server 427
7.6.7 Other Servers 428
7.7 SUMMARY 428

8 casesTUDY 2: MACH 431

8.1 INTRODUCTION TO MACH 431
8.1.1 History of Mach 431
8.1.2 Goals of Mach 433
8.1.3 The Mach Microkernel 433
8.1.4 The Mach BSD UNIX Server 435



CONTENTS

8.2 PROCESS MANAGEMENT IN MACH 436
8.2.1 Processes 436
8.2.2 Threads 439
8.2.3 Scheduling 442
8.3 MEMORY MANAGEMENT IN MACH 445
8.3.1 Virtual Memory 446
' 8.3.2 Memory Sharing 449
8.3.3 External Memory Managers 452
8.3.4 Distributed Shared Memory in Mach 456
8.4 COMMUNICATION IN MACH 457
8.4.1 Ports 457
8.4.2 Sending and Receiving Messages 464
8.4.3 The Network Message Server 469
8.5 UNIX EMULATION IN MACH 471
8.6 SUMMARY 472

CASE STUDY 3: CHORUS

9.1 INTRODUCTION TO CHORUS 475
9.1.1 History of Chorus 476
9.1.2 Goals of Chorus 477
9.1.3 System Structure 478
9.1.4 Kernel Abstractions 479
9.1.5 Kemel Structure 481
9.1.6 The UNIX Subsystem 483
9.1.7 The Object-Oriented Subsystem 483
9.2 PROCESS MANAGEMENT IN CHORUS 483
9.2.1 Processes 484
9.2.2 Threads 485
9.2.3 Scheduling 486
9.2.4 Traps, Exceptions, and Interrupts 487
9.2.5 Kemel Calls for Process Management 488
9.3 MEMORY MANAGEMENT IN CHORUS 490
9.3.1 Regions and Segments 490
9.3.2 Mappers 491
3.3.3 Distributed Shared Memory 492
9.3.4 Kemel Calls for Memory Management 493

xi

475



xii CONTENTS

9.4 COMMUNICATON IN CHORUS 495
9.4.1 Messages 495
9.4.2 Ports 495
9.4.3 Communication Operations 496
9.4.4 Kemnel Calls for Communication 498
9.5 UNIX EMULATION IN CHORUS 499
9.5.1 Structure of a UNIX Process 500
9.5.2 Extensions to UNIX 500
9.5.3 Implementation of UNIX on Chorus 501
9.6 COOL: AN OBJECT-ORIENTED SUBSYSTEM 507
9.6.1 The COOL Architecture 507
9.6.2 The COOL Base Layer 507
9.6.3 The COOL Generic Runtime System 509
9.6.4 The Language Runtime System 509
9.6.5 Implementation of COOL 510
9.7 COMPARISON OF AMOEBA, MACH, AND CHORUS 510
9.7.1 Philosophy 511
9.7.2 Objects 512
9.7.3 Processes 513
9.7.4 Memory Mode! 514
9.7.5 Communication 515
9.7.6 Servers 516
9.8 SUMMARY 517

10 cask sTupy 4: DCE 520

i0.1 INTRODUCTION TO DCE 520
10.1.1 History of DCE 520
10.1.2 Goals of DCE 521
10.1.3 DCE Components 522
10.1.4 Cells 525

10.2 THREADS 527
10.2.1 Introduction to DCE Threads 527
10.2.2 Scheduling 529
10.2.3 Synchronization 530
10.2.4 Thread Calls 531

10.3 REMOTE PROCEDURE CALL 535
10.3.1 Goals of DCE RPC 535
10.3.2 Writing a Client and a Server 536
10.3.3 Binding a Client to a Server 538
10.3.4 Performing an RPC 539



CONTENTS xiii

10.4 TIME SERVICE 540
10.4.1 DTS Time Model 541
10.4.2 DTS Implementation 543
10.5 DIRECTORY SERVICE 544
10.5.1 Names 546
10.5.2 The Cell Directory Service 547
10.5.3 The Global Directory Service 549
10.6 SECURITY SERVICE 554
10.6.1 Security Model 555
10.6.2 Security Components 557
10.6.3 Tickets and Authenticators 558
10.6.4 Authenticated RPC 559
10.6.5 ACLs 562
10.7 DISTRIBUTED FILE SYSTEM 564
10.7.1 DFS Interface 565
10.7.2 DFS Components in the Server Kernel 566
10.7.3 DFS Components in the Client Kemmel 569
10.7.4 DFS Components in User Space 571
10.8 SUMMARY 573

1 1 BIBLIOGRAPHY AND SUGGESTED READINGS 577

11.1 SUGGESTED READINGS 577
11.2 ALPHABETICAL BIBLIOGRAPHY 584

INDEX 603



Introduction to Distributed
Systems

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and expen-
sive. Even minicomputers normally cost tens of thousands of dollars each. As a
result, most organizations had only a handful of computers, and for lack of a
way to connect them, these operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and even 64-bit
CPUs became common. Many of these had the conputing power of a decent-
sized mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other indus-
tries. From a machine that cost 10 million dollars and executed 1 instruction per
secend, we have come to machines that cost 1000 dollars and execute 10 million
instructions per second, a price/performance gain of 10!'. If cars.had improved
at this rate in the same time period, a Rolls Royce would now cost 10 dollars
and get a billion miles per gallon. (Unfortunately, it would probably also have a
200-page manual telling how to open the door.)

The second development was the invention of high-speed computer net-
works. The local area networks or LANSs allow dozens, or even hundreds, of
machines within a building to be connected in such a way that small amounts of

1



2 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

information can be transferred between machines in a millisecond or so. Larger
amounts of data can be moved between machines at rates of 10 to 100 million
bits/sec and sometimes more. The wide area networks or WANs allow mil-
lions of machines all over the earth to be connected at speeds varying from 64
Kbps (kilobits per second) to gigabits per second for some advanced experimen-
tal networks.

The result of these technologies is that it is now not only feasible, but easy,
to put together computing systems composed of large numbers of CPUs con-
nected by a high-speed network. They are usually called distributed systems,
in contrast to the previous centralized systems (or single-processor systems)
consisting of a single CPU, its memory, peripherals, and some terminals.

There is only one fly in the ointment: software. Distributed systems need
radically different software than centralized systems do. In particular, the
necessary operating systems are only beginning to emerge. The first few steps
have been taken, but there is still a long way to go. Nevertheless, enough is
already known about these distributed operating systems that we can present the
basic ideas. The rest of this book is devoted to studying concepts, implementa-
tion, and examples of distributed operating systems.

1.1. WHAT IS A DISTRIBUTED SYSTEM?

Various definitions of distributed systems have been given n tne merature,
none of them satisfactory and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers
that appear 1o the users of the system as a single computer.

This definition has two aspects. The first one deals with hardware: the machines
are autonomous. The second one deals with software: the users think of the sys-
tem as a single computer. Both are essential. We will come back to these points
later in this chapter, after going over some background material on both the
hardware and the software.

Rather than going further with definitions, it is probably more helpful to
give several examples of distributed systems. As a first example, consider a net-
work of workstations in a university or company department. In addition to each
user’s personal workstation, there might be a pool of processors in the machine
room that are not assigned to specific users but are allocated dynamically as
needed. Such a system might have a single file system, with all files accessible
from all machines in the same way and using the same path name. Furthermore,
when a user typed a command, the system could look for the best place to exe-
cute that command, possibly on the user’s own workstation, possibly on an idle



