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Preface

With the publication of Distributed Operating Systems 1 have now com-
pleted my trilogy on operating systems. The three volumes of this trilogy are:

® Operating Systems: Design and Implementation
¢ Distributed Operating Systems
® Modern Operating Systems

The three volumes are not completely independent, however. For schools hav-
ing a two-course sequence in operating systems (or an undergraduate course plus
a graduate course), one possible choice is to use Operating Systems: Design and
Implementation in the first course and Distributed Operating Systems in the
second one. : .

The former book treats the standard principles of single-processor systems,
including processes, synchronization, 1/O, deadlocks, memory management, file
systems, security, and so on. It also illustrates these principles in great detail
through the use of MINIX, a UNIX-clone whose source listing is given in an
appendix. MINIX is available on diskette from Prentice Hall for the IBM PC
(8088 and up), Atari, Amiga, Macintosh, and SPARC processors.

The latter book (this one), covers distributed operating systems in detail,
including communication, synchronization, processes, file systems, and memory
management, but this time in the context of distributed systems. Four examples
of distributed systems are given in great detail: Amoeba, Mach, Chorus, and
DCE. Amoeba is available for free to universities for educational use. It runs

xiv



PREFACE xv

on the Intel 386/486, SPARC, and Sun 3 processors. For information on how to
obtain Amoeba please FTP the file amoebalintro.ps.Z from fip.cs.vu.nl or con-
tact the author by electronic mail at ast@cs.vu.nl. Potential users should be
forewarned that Amoeba is considerably more complex than MINIX: the docu-
mentation alone (available by FTP), runs to well over 1000 pages and the system
requires at least five large machines and an Ethernet to run well.

By studying these two books in sequence and using both MINIX and
Amoeba, students will obtain a thorough knowledge of the principles and prac-
tice of both single-processor and distributed operating systems. Now that the
trilogy is completed, I plan to revise MINIX and the book describing it.

For universities or computer professionals with less time available, Modern
Operating Systems can be thought of as a condensed version of the other two
books. It provides an introduction to the principles of both single-processor and
distributed operating systems, but without the detailed example of MINIX. It
also omits many of the advanced topics present in this book, including an intro-
duction to ATM, fault-tolerant distributed systems, real time distributed systems,
distributed shared memory, Chorus, DCE, and other topics. In all, about 230
pages of material on distributed systems present in this book have been omitted
from Modern Operating Systems.

Many people have helped me with this book. I would especially like to
thank the following people for reading portions of the manuscript and giving me
many useful suggestions for improvement: Irina Athanasiu, Henri Bal, Saniya
Ben Hassen, David Black, John Carter, Randall Dean, Wiebren de Jonge, John
Dugas, Dick Grune, Anoop Gupta, Frans Kaashoek, Marcus Koebler, Hermann
Kopetz, Ed Lazowska, Dan Lenoski, Kai Li, Marc Maathuis, David Mosberger,
Douglas Orr, Craig Partridge, Carlton Pu, Marc Rozier, Rich Salz, Mike
Schroeder, Karsten Schwan, Greg Sharp, Dennis Shasha, Sol Shatz, Jennifer
Steiner, Chuck Thacker, John Turek, Walt Tuvell, Leendert van Doorn, Robbert
van Renesse, Kees Verstoep, Ellen Zegura, Willy Zwaenpoel, and the
anonymous reviewers. My editor, Bill Zobrist, put up with my attempts to get
everything perfect with nary a whimper.

Despite all this help, no doubt some errors remain. That seems to be inevit-
able, no matter how many people read the manuscript. People who wish to
report errors should contact me by electronic mail.

Finally, I would like to thank Suzanne again. After eight books, she knows
the implications of another one, but her patience and love are boundless. I also
want to thank Barbara and Marvin for using their computers and leaving mine
alone (except for the printer). Teaching them how to use PC word processing
programs has made me appreciate troff more than ever. Finally. I would like to
thank Little Bram for being quiet while I was writing.

Andrew S. Tanenbaum
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Introduction to Distributed
Systems

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and expen-
sive. Even minicomputers normally cost tens of thousands of dollars each. As a
result, most organizations had only a handful of computers, and for lack of a
way to connect them, these operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and even 64-bit
CPUs became common. Many of these had the conputing power of a decent-
sized mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other indus-
tries. From a machine that cost 10 million dollars and executed 1 instruction per
secend, we have come to machines that cost 1000 dollars and execute 10 million
instructions per second, a price/performance gain of 10!'. If cars.had improved
at this rate in the same time period, a Rolls Royce would now cost 10 dollars
and get a billion miles per gallon. (Unfortunately, it would probably also have a
200-page manual telling how to open the door.)

The second development was the invention of high-speed computer net-
works. The local area networks or LANSs allow dozens, or even hundreds, of
machines within a building to be connected in such a way that small amounts of

1



2 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

information can be transferred between machines in a millisecond or so. Larger
amounts of data can be moved between machines at rates of 10 to 100 million
bits/sec and sometimes more. The wide area networks or WANs allow mil-
lions of machines all over the earth to be connected at speeds varying from 64
Kbps (kilobits per second) to gigabits per second for some advanced experimen-
tal networks.

The result of these technologies is that it is now not only feasible, but easy,
to put together computing systems composed of large numbers of CPUs con-
nected by a high-speed network. They are usually called distributed systems,
in contrast to the previous centralized systems (or single-processor systems)
consisting of a single CPU, its memory, peripherals, and some terminals.

There is only one fly in the ointment: software. Distributed systems need
radically different software than centralized systems do. In particular, the
necessary operating systems are only beginning to emerge. The first few steps
have been taken, but there is still a long way to go. Nevertheless, enough is
already known about these distributed operating systems that we can present the
basic ideas. The rest of this book is devoted to studying concepts, implementa-
tion, and examples of distributed operating systems.

1.1. WHAT IS A DISTRIBUTED SYSTEM?

Various definitions of distributed systems have been given n tne merature,
none of them satisfactory and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers
that appear 1o the users of the system as a single computer.

This definition has two aspects. The first one deals with hardware: the machines
are autonomous. The second one deals with software: the users think of the sys-
tem as a single computer. Both are essential. We will come back to these points
later in this chapter, after going over some background material on both the
hardware and the software.

Rather than going further with definitions, it is probably more helpful to
give several examples of distributed systems. As a first example, consider a net-
work of workstations in a university or company department. In addition to each
user’s personal workstation, there might be a pool of processors in the machine
room that are not assigned to specific users but are allocated dynamically as
needed. Such a system might have a single file system, with all files accessible
from all machines in the same way and using the same path name. Furthermore,
when a user typed a command, the system could look for the best place to exe-
cute that command, possibly on the user’s own workstation, possibly on an idle



