UML Y il) X S ¥ il 5% A 3

J ML 4
VA

FUNDAMENTALS OF
OBJECT-ORIENTED
DEsIGN IN UML

MEILIR PAGE-JO

BOOCH
4 JACOBSON

"éaéf}é&ﬁ&&

www.sciencep.com

UML 5 @i W & F i 2 A E

UML H [a) X &R &1+ E Al

Meilir Page-Jones 4w #

M4 % M
it =

SHE- I

UML E AR I o) 0 BB U-F7 45 B SE ERIARHE . A B A0 41 T i 6 R PF S A
Fre#oR, Rif, #ERCLIRPRE NS, b8 ARG 1 3R 2)4 T | R R AR S
LB Ml B amRE 0 R REE R, S EBOX (R 3 AR 7)M UML #4T T REMN A, B MR8
EAW 14 BYBHA A HE WA REI IR . RS R 1S E R B T o

AATAT T A R B ARMFET . B A RE TR RE B .

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Fundamentals of Object-Oriented Design in UML,1™ Edition by Meilir
Page-Jones, Copyright©2000

ISBN 0-201-69946-x

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Pubtlishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
DR TR NTCIERIEBE A CAEES PR il S04 A AT BUX R eh (] G bd) 88 R 17

AAEHIWAT Pearson Education(¥4 412 80T HH AR 82)OGS (bR &, AR & A4k,
KlF: 01-2003-2542

BERENRE C1P) &iE

UML (Al [0 f % B iF B Bl =Fundamentals of Object-Oriented Design in UML/ (3&) #18§i;
(Johns M.P.) ., —REIA. —Ibst: BlEHi4t, 2003

ISBN 7-03-011409-4

Lu.. L. HLERXRIES, UML—F#i—85 V. TP312

P HIRA B 30 CIP B8 F (2003) B 030819 5

RGBT, BRI/ TEHRE: FRE
TEFH: SHERHEHE: AFALP R
% 2 ko2 iR
T 4RI g6
BB 100717
hitp:// www. sciencep.com

o4 B8 7 ER
FERBERIT MBS
*
20034ES HE — ML FFA: 787X960 116
2003 4E 5 A —-WER EIk. 29344
En¥: 1—2000 FH#: 569 000
TE#r: 50.00 ;&

(R AR, B SR BBEHH)

FENBIS

BEA AR AR R S A S AU IFEE DR, HA TR R AE NI K. &2
5V FRAUAR T B) R L R M, R AL 4 BORL I AR T S LR P AR M A B AL 2 A1

HIENE . TREREFFRFENM 60 EZ X TR Fa9F IES IR, WJLER 70
SERGEFMERY AT ik (80 SRR SR R R IR T vk, L30T) X R H R 1% -
T] XoF G2 B AR TF & e B TR 5 A R T R AN SE A O R R T R LR | &% e
Mk, EiEfg. #5 MK HEFEALARMBLNH, RIFREI R &4
WO E 22 n) BUS AU R R, AR KA F g TR al, R AR LT
BIFBOHET, LUR XM B R B M, TR 7w X 8 MRt

20 {it42 80 4FAK 90 4EACHT, S I T LR mxt it orik . He,
Booch, Coad/Yourdon . OMT il Jacobson 2 J5 348 5| 1 A I X S 54 & By 12 A0] .
B R Z T B R AE S R B R ASARIE], BMERESARR], & AHAR E#oRE
WAR. Eid 90 FAARFRMIRZ BIEE, ABEEAREIAE M AR HE
SR, SR ARSI, PR TR TR A s AR
BRI RMARRNER, AR TR~ LRCH SUME. EXMERT, £—B8EES
(UML)F 90 AR HRLE M A4: -

UML W74 AR =0 E 0 889 7728 % K G. Booch, J. Rumbaugh i 1.
Jacobson B J1EAE. AT EF ik bl 7oA IS, [UML B8
FIFREAE R B T AR ik, 36 FLIRIE T RVERT P SHE St — 44 2
RIPLE. UML AR BH R WRFEEA GRS LT IR, MMM RS,
SR —BRIBERIRRR . 1997 4E 11 H UML % OMG H41F R 98 R br o b s i
B, HTERAS LA G i A R S b R R bR

UML 1EiEEEFIE CHIRE SO LS 7 RE T RIS R T 5 o
FAEEH R LA BT AR o SO, WA E IR Ml 48 5, ek anfar
JE KA BT TIT R . UML LI —FEERGE & S A B, ST Ry e
FARNRE L . REEENEFTFENAEREEEVFZHEE, (B 10X h 6 au%s H
T2 LATE R R 1L 0T EL LY -

M UML WA i, 28] T AL R ER . OMG KR FI AL A
AISCIHEEHE BT SCPR bR T bRrER s . B AT OB Z B0 . B 120

ii UML & &2 £35 31 A o

TR M ZRE RN R A S, ERERRE . WRFESEHARL . ik AL R
. SRR BRE . REHESE. EIVERYOE TR TR, REEH, REH
FCBEEFRG A, M E R R T B, ol TR RS, filined
(MR R NI (5 Eh7 o Y AtV A E TR FE o T

i1 UML2.0 FRAHEXT UML 89 ¥ —IK R AT . KR A) UML ¥ 518 5 %L
AT RERRAE S EIA E R AL 8 T RS I

AN T S A X REAR A UML A 5600 12 A4S, R 1 1Rj 16 X 2 38 RS ey
K WERA AL B UML Wit shids . b b RO i o) X g A B i 21 SR A AT 31X
FEILARE . QEmMX S RGN SGET) FEITHE TS AR S, Akt
KAXTG . AT IR LA B A FR 48 F4 A J JUAE S 1T 1) X G B A Satel b A) B
WHRHIRS ks (H UML HE TR i) EZAN0 TR X AR EL . 0dh
Brie . dtBrEe h BB A EST ik SHA . CRg i adst) 4 d T7EE v bR
I s F TR B A nl B R s (UML T %t S8t 3 at) S0l o 1 22 i 4 T)
St 55 B ST o 3

WA UML fEFF 5 GUsais A X LA, (UML SERF RS K) 1he T e 758
I} RGETF R IT EXF UML #78 AHAR; (F UML 3 Web NIRRT) $He T i
I UML #4T Web W IR ZEBERRA S Bk CaimxT 250, 55, W
PSS T A48 T8 UML R 18 1) X6 82 10 s 40Tl Bir 1 S4B A O i Y5 TR, (e
FF . HEZLYS UML W) BHE T AMATIE FT UML o107 1) R 52 (8 5 R (R AR By
ARBIRY i Hm . (UML 5 Visual Basic 1 JHFLFF H %) T 85HE T M UML £515)
Visual Basic 2 ¥ 1 #4E 5 eg) i

MR BRBEHEARGERA S (COM EF0%) F (ATL HEARNZEY |, 3%
ARG T 5 SR FEHT T AR ——COM F1 ATL £ AR M 4% 15 55 R s

B A —A (Executable UML # R NHE) . XABANG T Al #Uf UML 38 5
FRA, AR A IAIE SR LA R AR TS Y A Sh e i T R . A ok B T 4
P — R A

BZ, XERIW RN ERE T X8R B0 2 o 8RB ik AR, (6
X ST AR A AR SRR AR | B RRAE R AR TIR AN, HEN A O AW
B TR OUE. ATRABE, B ARER A

ALETI, R B AR HE X E B, SRR RIE . 25 M.

R KFEME FK

reword

bjects have become the ubiquitous building blocks of modern software,

and object orientation is the pervasive paradigm of contemporary soft-

ware-engineering practice. Books on object-oriented this or object-ori-
ented that are discounted by the dozen, but when What Every Programmer Should
Know About Object-Oriented Design, the first edition of this book, was published,
it was immediately recognized as an original, insightful, and valuable contribution
from one of the most consistently lucid thinkers and readable authors in software
development today.

This newly revised and retitled second edition extends the foundation,
expands the material, and updates the notation to create a reference of both
immediate and lasting value. It is filled with fresh insights on object-oriented
development, from the uses and abuses of inheritance, to how to model problem-
atic data relationships in object classes. It is vintage Page-Jones, meaning up-to-
the-minute and unflaggingly intelligent.

The author has been in the front-line trenches as a consultant and designer
for decades, and the hard-won lessons show on every page of this book. I have
been in the trenches with him, most recently collaborating on a very large-scale
project with an initial use-case model of more than 340 use cases! He is. as the

X FOREWORD

reader will learn, above all else, a pragmatist whose attention to fundamentals
and detail is reflected in his analysis and design work as well as in his writing.

The truth is, Meilir is a gifted teacher who has a knack for taking complex and
often misunderstood ideas and casting a conceptual light on them that makes
them stand out in sharp relief from the confusing shadows. He can take a barrow-
load of problems and wrap them up in a single archetypal example that makes it
all seem so obvious that the rest of us are left wondering how we could ever have
failed to see. What do you do when milking time arrives in the object-oriented
dairy farm? Do you send a message to the Cow object to milk itself or a message
to the Milk to un-cow itself? A moment's reflection and the need for an event man-
ager to coordinate the milking becomes crystal clear. His clarifying examples, such
as this one from a conference panel presentation or the “Person owns Dog” conun-
drum, have become part of the essential folklore of object orientation.

Indeed, this book aptly demonstrates how the long-established principles of
sound design already in wide use by practicing professionals can carry over into
and be adapted for developing object-oriented systems in the most advanced new
languages and challenging contexts. Building on such fundamentals, the book
maintains a relentlessly pragmatic focus based on real-world experience, distilling
the essence of that experience into compact examples that will guide the developer,
whether novice or old hand, toward better object-oriented software solutions.

Meilir draws on extensive experience with object-oriented development, as a
consultant, as a teacher, and as a methodologist. He was codeveloper of the Syn-
thesis method, one of the early systematic approaches to object-oriented analysis
and design, and we were collaborators on the creation of the influential Uniform
Object Notation, whose features can be found today reflected and incorporated
into numerous object-oriented methods and notations. The legacy of our work
can even be recognized in the Unified Modeling Language (UML) that has been
adopted as a de facto industry standard and is used to illustrate and clarify
examples throughout this book.

Here you will find everything you need to begin to master the fundamentals of
object-oriented design. Not only are the basic techniques for designing and build-
ing with objects explained with exceptional clarity, but they are illustrated with
abundant examples, and elaborated with discussions of the do’s and don'ts of
good object-oriented systems. The rest is up to you.

September 1999 Larry Constantine
Rowley, Massachusetts Coauthor of Software for Use:
A Practical Guide to the Models and

Methods of Usage-Centered Design

(Reading, Mass.: Addison-Wesley, 1999)

“You say you want some evolution.
Well, you know, I'm doing what I can.”

—Charles Darwin, On the Origin of Species

reface

eople who reviewed this book in its draft form had several questions for me,
questions that perhaps you share. Let me address some of them.

I'm a programmer. Why should I care about design?

Everyone who writes code also designs code—either well or badly, either con-
sciously or unconsciously. My goal in writing this book is to encourage O.0. pro-
fessionals—and their number increases annually—to create good object-oriented
designs consciously and prior to coding. To this end, I introduce notation, princi-
ples, and terminology that you and your colleagues can use to evaluate your
designs and to discuss them meaningfully with one another.

Will this book teach me an 0.0. programming language?

No. Although I occasionally swoop down close to code, this isn’t a book on object-
oriented programming.

Xi

Xii PREFACE

But if I'm learning an object-oriented language, will this book help?

Yes, it will. If you don’t currently know an object-oriented programming language,
you can begin your object-oriented knowledge with Chapter 1. Knowing the key
concepts of object orientation will speed your learning an object-oriented language
and, I hope, boost your morale as you move into unfamiliar territory. The later
chapters of the book, on sound design, will also help you in getting your early
programs to work successfully.

On the other hand, if you're already an experienced object-oriented program-
mer, you can use Parts Il and HI of the book to enhance the design skills that are
vital to your being a rounded, professional software designer or programmer.

Why aren’t the code examples in this book in C++?

I've written the code in this book in a language of my own devising, which is a
blend of four popular languages: C++, Eiffel, Java, and Smalltalk. I did this
because there are two kinds of programmers: those who are fluent in C++ and
those who aren’t. If you're a C++ aficionado, then you'll find the code a breeze to
translate into C++. If you're not familiar with C++, then you might have found the
language’s arcane syntax distracting. Some examples are given in Java because
it's more accessible to a non-Java programmer than C++ is to a non-C++ pro-
grammer. I'd like you to feel welcome in this book whatever your programming
language might be.

Why isn’t this book devoted to the design of windows, icons, and menus?

There are two reasons: First, I don't believe that object orientation is useful only
for the design of graphical user interfaces. Second, there are many books on the
market devoted solely to the topic of object-oriented window design. I want this
book to cover topics that are not well covered by other object-oriented books.
However, in Chapter 7, I offer some notation for window-navigation design.

Is this book about a methodology?

No. As you know, a development methodology contains much more than design.
For example, there’'s requirements analysis, library management, and so on.

Also, a true methodology needs to explain how the various development activities
fit together. A lot of stuff!

PREFACE xiit

So, instead of turning out a book as diffuse as many other books on object
orientation, I decided to focus on a single topic: object-oriented design.

You've said a lot about what this book isn’t about. What is it about?

It's about the fundamental ideas. notation, terminology, criteria, and principles of
object-oriented software design. Object-oriented software is software that com-
prises objects and the classes to which they belong. An object is a software con-
struct in which operations (which are like functions or procedures) are organized
around a set of variables (which are like data). A class implements a type that
defines the group of objects belonging to that class. ’

The above modest sentences hold some surprising implications for software
designers and programmers, implications that arise from the design concepts of
inheritance, polymorphism, and second-order design. But, since you asked a
specific question, let me give you a specific answer.

Part I of the book (Chapters 1 and 2) provides an introduction to object orien-
tation. Chapter 1 summarizes the key concepts and demystifies “polymorphism,”
“genericity,” and all the other O.0. jargon. Chapter 2 sets object orientation into
the framework of previous developments in software. If you're already familiar
with object orientation (perhaps by having programmed in an object-oriented lan-
guage), then you can skip or skim Part I.

Part Il (Chapters 3 to 7) covers Unified Modeling Language (UML), which has
become the de facto standard notation for depicting object-oriented design. In
passing, Part II also illustrates many of the structures that you find in object-ori-
ented systems. Chapter 3 introduces UML for depicting classes, along with their
attributes and operations. Chapter 4 covers UML for associations, aggregate and
composite objects, and hierarchies of subclasses and superclasses. Chapter 5
sets out UML for messages (both sequential and asynchronous), while Chapter 6
covers UML for state diagrams. Chapter 7 reviews UML for system architecture
and the windows that form a human interface.

Part III (Chapters 8 to 14) covers object-oriented design principles in some
depth. Chapter 8 sets the scene with the crucial notions of connascence and
level-2 encapsulation. Chapter 9 explores the various domains that “classes come
from” and describes different degrees of class cohesion. Chapters 10 and 11 are
the central pillars of Part III, applying the concepts of state-space and behavior to
assess when a class hierarchy is both sound and extendable.

xiv PREFACE

Chapter 12 offers some light relief, as it examines designs taken from real pro-
jects, including both the subtle and the absurd. (Chapter 12 is really about the
dangers of abusing inheritance and polymorphism.) Chapter 13 looks at some
ways of organizing operations within a given class, and it explains design tech-
niques, such as mix-in classes and operation rings, that will improve class
reusability and maintainability.

Chapter 14 takes a stab at the old question: “What makes a good class?” In
answering this question, Chapter 14 describes the various kinds of class inter-
face, ranging from the horrid to the sublime. A class with an exemplary interface
will be a worthy implementation of an abstract data-type. If the class also obeys
the fundamental principles laid out in earlier chapters, then it will be as robust,
reliable, extensible, reusable, and maintainable as a class can ever be.

Chapter 15 rounds off the book by examining the characteristics, together
with the advantages and disadvantages, of software components. In tracing the
development of an object-oriented component for a business application, I recall
some of the object-oriented principles of the previous chapters.

Although I've added plenty of examples, diagrams, and exercises to reinforce
what I say in the main text, I must admit that the material in Part Il gets tough
at times. Nevertheless, I decided not to trivialize or dilute important issues.
Some aspects of object-oriented design are difficult and to suggest otherwise
would be misleading.

Does this book cover everything in object-oriented design?

I very much doubt it. Each day, I learn more about object orientation, and I'm
sure you do, too. Indeed, it would be a dull world if a single book could tell us
everything about object-oriented design and leave us with nothing more to learn.
And not everything in this book may be completely true! I certainly changed my
mind about one or two things after writing my previous books, as I became older
and wiser—well older, anyway. .

So, although I think that I've covered many important design principles in this
book, if you're serious about object orientation you should continue to read as
much as you can and always challenge what you read.

PREFACE xv

Do you offer courses on object-oriented design?

Yes. My firm, Wayland Systems, offers several courses on object-oriented topics.
Our curriculum continually changes, so check out www.waysys.com for our lat-
est offerings.

Bottom-line, as they say: Is this book for me?

What kind of question is that? You expect me to say, “No!"? But seriously, folks,
this book’s for you if you are—or are about to become—a programmer, designer,
systems engineer, or technical manager on a project using object-oriented tech-
niques. Even if you're a beginner to object orientation, you can glean a lot from
this book by reading Part I, practicing some object-oriented programming, and
then returning to Parts II and III.

You should also read this book if you're a university student or professional
programmer who has mastered the techniques of standard procedural program-
ming and is looking for wider horizons. Much of the book’s material is suitable
for a final-year computer-science or software-engineering course in object orienta-
tion.

But, whatever your role in life, I hope that you enjoy this book and find it use-
ful. Good luck!

September 1999 Meilir Page-Jones
Bellevue, Washington
meilir@waysys.com

ontents

Foreword xv
Preface xvii

Part I Introduction 1

Chapter 1 What Does It Mean to Be Object Oriented, Anyway? 3

1.1 Encapsulation 9
1.2 Information/Implementation Hiding 12
1.3 State Retention 14
1.4 Object Identity 15
1.5 Messages 19
1.5.1 Message structure 19
1.5.2 Message arguments 21
1.5.3 The roles of objects in messages 23
1.5.4 Types of message 25
1.6 Classes 27
1.7 Inheritance 33
1.8 Polymorphism 38
1.9 Genericity 43
1.10 Summary 48
1.11 Exercises 50
1.12 Answers 52

1v. CONTENTS

Chapter 2 A Brief History of Object Orientation 57

2.1 Where Did Object Orientation Come From? 57
2.1.1 Larry Constarntine 58
2.1.2 O.-J. Dahl and K. Nygaard 58
2.1.3 Alan Kay, Adele Goldberg, and others 58
2.1.4 Edsger Dijkstra 58
2.1.5 Barbara Liskov 59
2.1.6 David Parnas 59
2.1.7 Jean Ichbiah and others 59
2.1.8 Bjarne Stroustrup 59
2.1.9 Bertrand Meyer 60
2.1.10 Grady Booch, Ivar Jacobson, and Jim Rumbaugh 60
2.2 Object Orientation Comes of Age 60
2.3 Object Orientation As an Engineering Discipline 62
2.4 What's Object Orientation Good For? 64
2.4.1 Analyzing users’ requirements 65
2.4.2 Designing software 65
2.4.3 Constructing software 66
2.4.4 Maintaining software 69
2.4.5 Using software 69
2.4.6 Managing software projects 70
2.5 Summary 73
2.6 Exercises 75
2.7 Answers 76

Part II The Unified Modeling Language 77

Chapter 3 Basic Expression of Classes, Attributes, and
Operations 85

3.1 The Class 85

3.2 Attributes 87

3.3 Operations 89

3.4 Overloaded Operations 92

3.5 Visibility of Attributes and Operations 93
3.6 Class Attributes and Operations 94
3.7 Abstract Operations and Classes 95
3.8 The Utility 97

3.9 Parameterized Classes 98

3.10 Summary 100

3.11 Exercises 102

3.12 Answers 103

CONTENTS

v

Chapter 4 Class Diagrams 107

4.1 The Generalization Construct 108
4.1.1 Single inheritance 108
4.1.2 Multiple inheritance 110
4.1.3 Subclass partitioning 110
4.1.4 Partitioning discriminators 114
4.2 The Association Construct 115
4.2.1 The basic UML notation for associations 116
4.2.2 Associations depicted as classes 119
4.2.3 Higher-order associations 120
4.2.4 Navigability of associations 122
4.3 Whole/Part Associations 123
4.3.1 Composition 123
4.3.2 Aggregation 126
4.4 Summary 130
4.5 Exercises 131
4.6 Answers 133

Chapter 5 Object-Interaction Diagrams 137

5.1 The Collaboration Diagram 138
5.1.1 Depicting a message 139
5.1.2 Polymorphism in the collaboration diagram 142
5.1.3 Iterated messages 143
5.1.4 Use of self in messages 144
5.2 The Sequence Diagram 146
5.3 Asynchronous Messages and Concurrent Execution 149
5.3.1 Depicting an asynchronous message 149
5.3.2 The callback mechanism 151
5.3.3 Asynchronous messages with priority 155
5.3.4 Depicting a broadcast (nontargeted) message 157
5.4 Summary 159
5.5 Exercises 161
5.6 Answers 162

Chapter 6 State Diagrams 164

6.1 Basic State Diagrams 165

6.2 Nested States 167

6.3 Concurrent States and Synchronization 171

6.4 Transient States from Message-Result Arguments 176
6.5 Continuously Variable Attributes 178

6.6 Summary 180

vi CONTENTS

6.7 Exercises 182
6.8 Answers 184

Chapter 7 Architecture and Interface Diagrams 188

7.1 Depicting System Architecture 189
7.1.1 Packages 189
7.1.2 Deployment diagrams for hardware artifacts 191
7.1.3 Deployment diagrams for software constructs 193
7.2 Depicting the Human Interface 196
7.2.1 The window-layout diagram 196
7.2.2 The window-navigation diagram 198
7.2.3 A brief digression: What'’s object oriented about a GUI? 200
7.3 Summary 202
7.4 Exercises 203
7.5 Answers 204

Part Il The Principles of Object-Oriented Design 207

Chapter 8 Encapsulation and Connascence 209

8.1 Encapsulation Structure 209
8.1.1 Levels of encapsulation 210
8.1.2 Design criteria governing interacting levels of encapsulation 212
8.2 Connascence 214
8.2.1 Varieties of connascence 214
8.2.2 Contranascence 220
8.2.3 Connascence and encapsulation boundaries 221
8.2.4 Connascence and maintainability 222
8.2.5 Connascence abuses in object-oriented systems 224
8.2.6 The term connascence 227
8.3 Summary 228
8.4 Exercises 230
8.5 Answers 231

Chapter 9 Domains, Encumbrance, and Cohesion 233

9.1 Domains of Object Classes 234

9.1.1 The foundation domain 235

9.1.2 The architecture domain 235

9.1.3 The business domain 236

9.1.4 The application domain 237

9.1.5 The source of classes in each domain 238
9.2 Encumbrance 241

9.2.1 What is encumbrance? 241

CONTENTS

Vii

9.2.2 The use of encumbrance 244
9.2.3 The Law of Demeter 244
9.3 Class Cohesion: A Class and Its Features 246
9.3.1 Mixed-instance cohesion 247
9.3.2 Mixed-domain cohesion 248
9.3.3 Mixed-role cohesion 250
9.4 Summary 253
9.5 Exercises 254
9.6 Answers 255

Chapter 10 State-Space and Behavior 259

10.1 State-Space and Behavior of a Class 259

10.2 The State-Space of a Subclass 263

10.3 The Behavior of a Subclass 266

10.4 The Class Invariant as a Restriction on a State-Space 267
10.5 Preconditions and Postconditions 269

10.6 Summary 272

10.7 Exercises 273

10.8 Answers 274

Chapter 11 Type Conformance and Closed Behavior 278

11.1 Class versus Type 279
11.2 The Principle of Type Conformance 281
11.2.1 The principles of contravariance and covariance 282
11.2.2 An example of contravariance and covariance 283
11.2.3 A graphic illustration of contravariance and covariance 288
11.2.4 A summary of the requirements for type conformance 290
11.3 The Principle of Closed Behavior 291
11.4 Summary 294
11.5 Exercises 295
11.6 Answers 296

Chapter 12 The Perils of Inheritance and Polymorphism 299

12.1 Abuses of Inheritance 299
12.1.1 Mistaken aggregates 300
12.1.2 Inverted hierarchy 301
12.1.3 Confusing class and instance 302
12.1.4 Misapplyingisa 306

12.2 The Danger of Polymorphism 309
12.2.1 Polymorphism of operations 309
12.2.2 Polymorphism of variables 312

