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bjects have become the ubiquitous building blocks of modern software,

and object orientation is the pervasive paradigm of contemporary soft-

ware-engineering practice. Books on object-oriented this or object-ori-
ented that are discounted by the dozen, but when What Every Programmer Should
Know About Object-Oriented Design, the first edition of this book, was published,
it was immediately recognized as an original, insightful, and valuable contribution
from one of the most consistently lucid thinkers and readable authors in software
development today.

This newly revised and retitled second edition extends the foundation,
expands the material, and updates the notation to create a reference of both
immediate and lasting value. It is filled with fresh insights on object-oriented
development, from the uses and abuses of inheritance, to how to model problem-
atic data relationships in object classes. It is vintage Page-Jones, meaning up-to-
the-minute and unflaggingly intelligent.

The author has been in the front-line trenches as a consultant and designer
for decades, and the hard-won lessons show on every page of this book. I have
been in the trenches with him, most recently collaborating on a very large-scale
project with an initial use-case model of more than 340 use cases! He is. as the
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reader will learn, above all else, a pragmatist whose attention to fundamentals
and detail is reflected in his analysis and design work as well as in his writing.

The truth is, Meilir is a gifted teacher who has a knack for taking complex and
often misunderstood ideas and casting a conceptual light on them that makes
them stand out in sharp relief from the confusing shadows. He can take a barrow-
load of problems and wrap them up in a single archetypal example that makes it
all seem so obvious that the rest of us are left wondering how we could ever have
failed to see. What do you do when milking time arrives in the object-oriented
dairy farm? Do you send a message to the Cow object to milk itself or a message
to the Milk to un-cow itself? A moment's reflection and the need for an event man-
ager to coordinate the milking becomes crystal clear. His clarifying examples, such
as this one from a conference panel presentation or the “Person owns Dog” conun-
drum, have become part of the essential folklore of object orientation.

Indeed, this book aptly demonstrates how the long-established principles of
sound design already in wide use by practicing professionals can carry over into
and be adapted for developing object-oriented systems in the most advanced new
languages and challenging contexts. Building on such fundamentals, the book
maintains a relentlessly pragmatic focus based on real-world experience, distilling
the essence of that experience into compact examples that will guide the developer,
whether novice or old hand, toward better object-oriented software solutions.

Meilir draws on extensive experience with object-oriented development, as a
consultant, as a teacher, and as a methodologist. He was codeveloper of the Syn-
thesis method, one of the early systematic approaches to object-oriented analysis
and design, and we were collaborators on the creation of the influential Uniform
Object Notation, whose features can be found today reflected and incorporated
into numerous object-oriented methods and notations. The legacy of our work
can even be recognized in the Unified Modeling Language (UML) that has been
adopted as a de facto industry standard and is used to illustrate and clarify
examples throughout this book.

Here you will find everything you need to begin to master the fundamentals of
object-oriented design. Not only are the basic techniques for designing and build-
ing with objects explained with exceptional clarity, but they are illustrated with
abundant examples, and elaborated with discussions of the do’s and don'ts of
good object-oriented systems. The rest is up to you.

September 1999 Larry Constantine
Rowley, Massachusetts Coauthor of Software for Use:
A Practical Guide to the Models and

Methods of Usage-Centered Design

(Reading, Mass.: Addison-Wesley, 1999)



“You say you want some evolution.
Well, you know, I'm doing what I can.”

—Charles Darwin, On the Origin of Species

reface

eople who reviewed this book in its draft form had several questions for me,
questions that perhaps you share. Let me address some of them.

I'm a programmer. Why should I care about design?

Everyone who writes code also designs code—either well or badly, either con-
sciously or unconsciously. My goal in writing this book is to encourage O.0. pro-
fessionals—and their number increases annually—to create good object-oriented
designs consciously and prior to coding. To this end, I introduce notation, princi-
ples, and terminology that you and your colleagues can use to evaluate your
designs and to discuss them meaningfully with one another.

Will this book teach me an 0.0. programming language?

No. Although I occasionally swoop down close to code, this isn’t a book on object-
oriented programming.

Xi
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But if I'm learning an object-oriented language, will this book help?

Yes, it will. If you don’t currently know an object-oriented programming language,
you can begin your object-oriented knowledge with Chapter 1. Knowing the key
concepts of object orientation will speed your learning an object-oriented language
and, I hope, boost your morale as you move into unfamiliar territory. The later
chapters of the book, on sound design, will also help you in getting your early
programs to work successfully.

On the other hand, if you're already an experienced object-oriented program-
mer, you can use Parts Il and HI of the book to enhance the design skills that are
vital to your being a rounded, professional software designer or programmer.

Why aren’t the code examples in this book in C++?

I've written the code in this book in a language of my own devising, which is a
blend of four popular languages: C++, Eiffel, Java, and Smalltalk. I did this
because there are two kinds of programmers: those who are fluent in C++ and
those who aren’t. If you're a C++ aficionado, then you'll find the code a breeze to
translate into C++. If you're not familiar with C++, then you might have found the
language’s arcane syntax distracting. Some examples are given in Java because
it's more accessible to a non-Java programmer than C++ is to a non-C++ pro-
grammer. I'd like you to feel welcome in this book whatever your programming
language might be.

Why isn’t this book devoted to the design of windows, icons, and menus?

There are two reasons: First, I don't believe that object orientation is useful only
for the design of graphical user interfaces. Second, there are many books on the
market devoted solely to the topic of object-oriented window design. I want this
book to cover topics that are not well covered by other object-oriented books.
However, in Chapter 7, I offer some notation for window-navigation design.

Is this book about a methodology?

No. As you know, a development methodology contains much more than design.
For example, there’'s requirements analysis, library management, and so on.

Also, a true methodology needs to explain how the various development activities
fit together. A lot of stuff!
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So, instead of turning out a book as diffuse as many other books on object
orientation, I decided to focus on a single topic: object-oriented design.

You've said a lot about what this book isn’t about. What is it about?

It's about the fundamental ideas. notation, terminology, criteria, and principles of
object-oriented software design. Object-oriented software is software that com-
prises objects and the classes to which they belong. An object is a software con-
struct in which operations (which are like functions or procedures) are organized
around a set of variables (which are like data). A class implements a type that
defines the group of objects belonging to that class. ’

The above modest sentences hold some surprising implications for software
designers and programmers, implications that arise from the design concepts of
inheritance, polymorphism, and second-order design. But, since you asked a
specific question, let me give you a specific answer.

Part I of the book (Chapters 1 and 2) provides an introduction to object orien-
tation. Chapter 1 summarizes the key concepts and demystifies “polymorphism,”
“genericity,” and all the other O.0. jargon. Chapter 2 sets object orientation into
the framework of previous developments in software. If you're already familiar
with object orientation (perhaps by having programmed in an object-oriented lan-
guage), then you can skip or skim Part I.

Part Il (Chapters 3 to 7) covers Unified Modeling Language (UML), which has
become the de facto standard notation for depicting object-oriented design. In
passing, Part II also illustrates many of the structures that you find in object-ori-
ented systems. Chapter 3 introduces UML for depicting classes, along with their
attributes and operations. Chapter 4 covers UML for associations, aggregate and
composite objects, and hierarchies of subclasses and superclasses. Chapter 5
sets out UML for messages (both sequential and asynchronous), while Chapter 6
covers UML for state diagrams. Chapter 7 reviews UML for system architecture
and the windows that form a human interface.

Part III (Chapters 8 to 14) covers object-oriented design principles in some
depth. Chapter 8 sets the scene with the crucial notions of connascence and
level-2 encapsulation. Chapter 9 explores the various domains that “classes come
from” and describes different degrees of class cohesion. Chapters 10 and 11 are
the central pillars of Part III, applying the concepts of state-space and behavior to
assess when a class hierarchy is both sound and extendable.
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Chapter 12 offers some light relief, as it examines designs taken from real pro-
jects, including both the subtle and the absurd. (Chapter 12 is really about the
dangers of abusing inheritance and polymorphism.) Chapter 13 looks at some
ways of organizing operations within a given class, and it explains design tech-
niques, such as mix-in classes and operation rings, that will improve class
reusability and maintainability.

Chapter 14 takes a stab at the old question: “What makes a good class?” In
answering this question, Chapter 14 describes the various kinds of class inter-
face, ranging from the horrid to the sublime. A class with an exemplary interface
will be a worthy implementation of an abstract data-type. If the class also obeys
the fundamental principles laid out in earlier chapters, then it will be as robust,
reliable, extensible, reusable, and maintainable as a class can ever be.

Chapter 15 rounds off the book by examining the characteristics, together
with the advantages and disadvantages, of software components. In tracing the
development of an object-oriented component for a business application, I recall
some of the object-oriented principles of the previous chapters.

Although I've added plenty of examples, diagrams, and exercises to reinforce
what I say in the main text, I must admit that the material in Part Il gets tough
at times. Nevertheless, I decided not to trivialize or dilute important issues.
Some aspects of object-oriented design are difficult and to suggest otherwise
would be misleading.

Does this book cover everything in object-oriented design?

I very much doubt it. Each day, I learn more about object orientation, and I'm
sure you do, too. Indeed, it would be a dull world if a single book could tell us
everything about object-oriented design and leave us with nothing more to learn.
And not everything in this book may be completely true! I certainly changed my
mind about one or two things after writing my previous books, as I became older
and wiser—well older, anyway. .

So, although I think that I've covered many important design principles in this
book, if you're serious about object orientation you should continue to read as
much as you can and always challenge what you read.
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Do you offer courses on object-oriented design?

Yes. My firm, Wayland Systems, offers several courses on object-oriented topics.
Our curriculum continually changes, so check out www.waysys.com for our lat-
est offerings.

Bottom-line, as they say: Is this book for me?

What kind of question is that? You expect me to say, “No!"? But seriously, folks,
this book’s for you if you are—or are about to become—a programmer, designer,
systems engineer, or technical manager on a project using object-oriented tech-
niques. Even if you're a beginner to object orientation, you can glean a lot from
this book by reading Part I, practicing some object-oriented programming, and
then returning to Parts II and III.

You should also read this book if you're a university student or professional
programmer who has mastered the techniques of standard procedural program-
ming and is looking for wider horizons. Much of the book’s material is suitable
for a final-year computer-science or software-engineering course in object orienta-
tion.

But, whatever your role in life, I hope that you enjoy this book and find it use-
ful. Good luck!

September 1999 Meilir Page-Jones
Bellevue, Washington
meilir@waysys.com
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